Goldstone Bosons and Chiral Symmetry

Breaking in QCD

Physics 222 2011, Advanced Quantum Field Theory

Michael Dine
Department of Physics
University of California, Santa Cruz

May 2011

Physics 222 2011, Advanced Quantum Field Theory Goldstone Bosons and Chiral Symmetry Breaking in QCD



Before reading this handout, carefully read Peskin

and Schroeder’s section 7.1

It is easy to prove Goldstone’s theorem for theories with
fundamental scalar fields. But the theorem is more general,
and some of its most interesting applications are in theories
without fundamental scalars. We can illustrate this with QCD. In
the limit that there are two massless quarks (i.e. in the limit that
we neglect the mass of the u and d quarks), we can write the
QCD lagrangian in terms of four-component spinors
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This lagrangian has symmetries:
- |
v Ty v e Ty

(7@ are the Pauli matrices). In the limit that two quarks are
massless, QCD is thus said to have the symmetry
SU(2), x SU(2)pg.

Exercise: check; make sure you understand what role is
played by all of the indices— there are indices for color, flavor,
and lorentz transformations.
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We can write the theory in terms of two component fermions,
so that the symmetry is manifest. Writing a general
four-component fermion as

()

the lagrangian has the form:
L =igo"D,q" + iqo"D,q"

Again, it is important to stress that g and g are both left-handed
fermions. g annihilates quarks and creates (right-handed)
andtiquarks; g annihilates (left-handed) anti-quarks and creates
(right-handed) quarks.
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In this form, we have two separate symmetries:
iard — iard _
q— e“Lzq; g— e“rzqg

Written in this way, it is clear why the symmetry is called
SU(2). x SU(2)g
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Now it is believed that in QCD, the operator WV has a non-zero
vacuum expectation value, i.e.

< WV >~ (0.3GeV)35s.

(This is in four component language; in two component
language this is:

< \Tff\Uf/ + \TJ?W? >£ 0)

It is easy to see that this leaves unbroken ordinary isospin, the
transformation, in four component language, without the s, or
in two component language, with wi = —w3.

Physics 222 2011, Advanced Quantum Field Theory Goldstone Bosons and Chiral Symmetry Breaking in QCD



But there are three broken symmetries. Correspondingly, we
expect that there are three Goldstone bosons. How can we
prove this statement? Call

- _ Ta
O=VV,0% = \U’yS?\U.
Under an infinitesmal transformation,
60 = 2iwl0%: 60?2 = jW20O.

Exercise: Check this (it's easy; just expand out the
transformation matrices to first order in w?).
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In the quantum theory, these becomes the commutation
relations:

[Q2, 0] = 2i0% [Q3, O°] = (wsZO.
Now if we take the expectation value of both sides of this
relation, we see that there is some sort of statement about the
matrix elements of the current. To see precisely what this is,
and that there must be a massless particle, we study

0= / dxd,[< QIT(FA(x)0P(0))Q > e~ P*]

(this just follows because the integral of a total derivative is
zero).
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We can evaluate the right hand side, carefully writing out the
time-ordered product in terms of 6 functions, and noting that 9,
on the 6 functions gives §-functions:

/ d*x < Q|[j°(x), ©P(0)]6(x°)|Q > e~ PX

_ip, / d*x < Q|T(a(x)05(0))Q > .

Exercise: Check this.
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Now consider the limit p# = 0. The first term on the right hand
side becomes the matrix element of [Q2, ©?(0)] = ©O(0). This is
non-zero. The second term must be singular, then, if the
equation is to hold. This singularity, as we will now show,
requires the presence of a massless particle. As in Peskin and
Schroder’s discussion of the spectral function in chapter 7, to
study this term we introduce a complete set of states, and, say
for x° > 0, write it as

d®qg
Z;/ 2Eq()

< Q[j*A(x)|Aq >
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We need a pole at zero momentum, in order to cancel the p,,.
From the structure of the spectral representation, such a pole
can only arise if there is a massless particle. We call this
particle 7. On Lorentz-invariance grounds,

< Q[jH3|7P >= f.p"s%.

Call
< Ag|O3(X)|7P >= Z52°.
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Considering the other time ordering, we obtain for the left hand
side a massless scalar propagator, p—’z, multiplied by Zf,p*, so
the equation is now consistent:

2
<PV >— szﬁz.

It is easy to see that in this form, Goldstone’s theorem
generalizes to any theory without fundamental scalars in which
a global symmetry is spontaneously broken.
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Returning to QCD, what about the fact that the quarks are
massive? The quark mass terms break explicitly the
symmetries. But if these masses are small, we should be able
to think of the potential as “tilted." This gives rise to a small
mass for the pions. We can estimate this mass by considering
the symmetry-breaking terms in the lagrangian:

where M is the “quark mass matrix",

~(my O
M<0 md>'
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Since the m mesons are, by assumption, light, we can focus on
these. If we have a non-zero pion field, we can think of the
fermions as being given by:

,'La5La
Y=¢m" 2V,

In other words, the pion fields are like symmetry
transformations of the vacuum (and everything else).
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Now assume that there is an “effective interaction" for the pions
containing kinetic terms }(9,72)2. Assuming the form above for
V, the pions get a potential from the fermion mass terms. To
work out this potential, one plugs this form for the fermions into
the lagrangian and replaces the fermions by their vacuum
expectation value. This gives that

V(r) = (0.3 GeV)3Tr(e™* ™" M)
one can expand to second order in the pion fields, obtaining:

m2f2 = (my + my)(0.3)3.

™
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We can describe this by introducing a “non-linear chiral
lagrangian". Take the fields to be described by a unitary matrix

Y(x)= e
> transforms as
Y — UsUf

Including only terms with two derivatives, the lagrangian is
uniquely fixed by the symmetry:

L = f2Tr(9,XTo"Y).

Expanding to second order in the pion fields gives ordinary
kinetic terms; at higher orders we obtain derivative interactions.
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Now the quark mass terms break the symmetry, but if we
pretend that the mass terms are fields, the lagrangian is
invariant provided we transform the mass terms as well

Lm = N2Tr(ZM)
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Exercise: Derive this pion mass formula, known as the
Gell-Mann, Oakes, Renner formula, by considering the
non-linear lagrangian.
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