Coleman-Callan-Wess-Zumino Construction

Logan A. Morrison

University of California, Santa Cruz
loanmorr@ucsc.edu

June 14, 2017

Overview

(1) Part I: Introduction

- Motivation
- Example: Chiral Symmetry Breaking
(2) Part II: CCWZ Construction
- Construction of States from Vacuum
- Identification of NGB
- Transformations Properties of Fields under \mathcal{G}, \mathcal{H} and $\mathcal{G} / \mathcal{H}$
- Construction of Low-Energy Lagrangian
(3) Part III: Chiral Perturbation Theory
- Construction of NGB and Transformation Properties
- Chiral Lagrangian
- Further Complications

Part I: Introduction

Motivation

- Many quantum field theories exhibit symmetry breaking patterns from a group \mathcal{G} to a subgroup \mathcal{H}.
- When a symmetry group is broken down to subgroup, the observable degrees of freedom (DOF) will change.
- By Goldstone's theorem, we while find $N_{\mathcal{G}}-N_{\mathcal{H}}$ Goldstone boson after symmetry breaking.
- In order to describe the observable DOF, a general method for constructing Lagrangians made out of Goldstone bosons is needed.
- The Coleman-Callan-Wess-Zumino (CCWZ) Construction provides a systematic way to describe low-energy DOF.

Chiral Symmetry Breaking

Chiral Symmetry Breaking

- In the Standard Model (SM) the QCD Lagrangian for light quarks is

$$
\mathcal{L}_{\mathrm{QCD}}=-\frac{1}{4} \operatorname{Tr}\left(G_{\mu \nu} G^{\mu \nu}\right)+i\left(q_{R}^{\dagger} \bar{\sigma}_{\mu} D^{\mu} q_{R}+q_{L}^{\dagger} \bar{\sigma}_{\mu} D^{\mu} q_{L}\right)+\text { mass terms }
$$

Chiral Symmetry Breaking

- In the Standard Model (SM) the QCD Lagrangian for light quarks is

$$
\begin{gathered}
\mathcal{L}_{\mathrm{QCD}}=-\frac{1}{4} \operatorname{Tr}\left(G_{\mu \nu} G^{\mu \nu}\right)+i\left(q_{R}^{\dagger} \bar{\sigma}_{\mu} D^{\mu} q_{R}+q_{L}^{\dagger} \bar{\sigma}_{\mu} D^{\mu} q_{L}\right)+\text { mass terms } \\
q_{R}=\left(\begin{array}{l}
u_{R} \\
d_{R} \\
s_{R}
\end{array}\right) \quad q_{L}=\left(\begin{array}{c}
u_{L} \\
d_{L} \\
s_{L}
\end{array}\right) \quad \text { where } \quad u_{R}=\left(\begin{array}{l}
u_{R, r} \\
u_{R, g} \\
u_{R, b}
\end{array}\right)
\end{gathered}
$$

R, L refer to right and left-handed particles

Chiral Symmetry Breaking

- In the Standard Model (SM) the QCD Lagrangian for light quarks is

$$
\begin{gathered}
\mathcal{L}_{\mathrm{QCD}}=-\frac{1}{4} \operatorname{Tr}\left(G_{\mu \nu} G^{\mu \nu}\right)+i\left(q_{R}^{\dagger} \bar{\sigma}_{\mu} D^{\mu} q_{R}+q_{L}^{\dagger} \bar{\sigma}_{\mu} D^{\mu} q_{L}\right)+\text { mass terms } \\
q_{R}=\left(\begin{array}{c}
u_{R} \\
d_{R} \\
s_{R}
\end{array}\right) \quad q_{L}=\left(\begin{array}{c}
u_{L} \\
d_{L} \\
s_{L}
\end{array}\right) \quad \text { where } \quad u_{R}=\left(\begin{array}{l}
u_{R, r} \\
u_{R, g} \\
u_{R, b}
\end{array}\right)
\end{gathered}
$$

R, L refer to right and left-handed particles
u, d, s stand for the up, down and strange quark
$G_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}-g f^{a b c} A_{\mu}^{b} A_{\mu}^{c}$
A_{μ}^{a} gauge fields (gluons)

Chiral Symmetry Breaking

- In the Standard Model (SM) the QCD Lagrangian for light quarks is

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} \operatorname{Tr}\left(G_{\mu \nu} G^{\mu \nu}\right)+i\left(q_{R}^{\dagger} \bar{\sigma}_{\mu} D^{\mu} q_{R}+q_{L}^{\dagger} \bar{\sigma}_{\mu} D^{\mu} q_{L}\right)+\text { mass terms }
$$

$$
D_{\mu} q_{R}=\partial_{\mu}\left(\begin{array}{c}
u_{R} \\
d_{R} \\
s_{R}
\end{array}\right)-i g A_{\mu}^{a} \tau_{a}\left(\begin{array}{c}
u_{R} \\
d_{R} \\
s_{R}
\end{array}\right) \quad\left(\begin{array}{l}
u_{R, r} \\
u_{R, g} \\
u_{R, b}
\end{array}\right)
$$

D_{μ} is the covariant derivative,
τ_{a} are the generators of $\mathrm{SU}(3)$ which act on triplets u_{R}, etc., and A_{μ}^{a} are the gauge-fields (gluons)

Chiral Symmetry Breaking

- In the Standard Model (SM) the QCD Lagrangian for light quarks is

$$
\begin{gathered}
\mathcal{L}_{\mathrm{QCD}}=-\frac{1}{4} \operatorname{Tr}\left(G_{\mu \nu} G^{\mu \nu}\right)+i\left(q_{R}^{\dagger} \bar{\sigma}_{\mu} D^{\mu} q_{R}+q_{L}^{\dagger} \bar{\sigma}_{\mu} D^{\mu} q_{L}\right)+\text { mass terms } \\
\sigma_{\mu}=\left(\mathbb{1}_{2 \times 2}, \boldsymbol{\sigma}\right) \quad \bar{\sigma}_{\mu}=\left(\mathbb{1}_{2 \times 2},-\boldsymbol{\sigma}\right)
\end{gathered}
$$

Chiral Symmetry Breaking

- In the Standard Model (SM) the QCD Lagrangian for light quarks is

$$
\mathcal{L}_{\mathrm{QCD}}=-\frac{1}{4} \operatorname{Tr}\left(G_{\mu \nu} G^{\mu \nu}\right)+i\left(q_{R}^{\dagger} \bar{\sigma}_{\mu} D^{\mu} q_{R}+q_{L}^{\dagger} \bar{\sigma}_{\mu} D^{\mu} q_{L}\right)+\text { mass terms }
$$

- QCD Lagrangian exhibits a global chiral symmetry: $\mathcal{G}=\mathrm{SU}(3)_{L} \otimes \mathrm{SU}(3)_{R}$ in the chiral (massless) limit:

$$
q_{L} \rightarrow \exp \left(i \theta_{L}^{a} \tau_{a}\right) q_{L} \quad q_{R}=\left(\begin{array}{c}
u_{R} \\
d_{R} \\
s_{R}
\end{array}\right) \rightarrow \exp \left(i \theta_{R}^{a} \tau_{a}\right)\left(\begin{array}{c}
u_{R} \\
d_{R} \\
s_{R}
\end{array}\right)
$$

Chiral Symmetry Breaking

- In the Standard Model (SM) the QCD Lagrangian for light quarks is

$$
\mathcal{L}_{\mathrm{QCD}}=-\frac{1}{4} \operatorname{Tr}\left(G_{\mu \nu} G^{\mu \nu}\right)+i\left(q_{R}^{\dagger} \bar{\sigma}_{\mu} D^{\mu} q_{R}+q_{L}^{\dagger} \bar{\sigma}_{\mu} D^{\mu} q_{L}\right)+\text { mass terms }
$$

- QCD Lagrangian exhibits a global chiral symmetry: $\mathcal{G}=\mathrm{SU}(3)_{L} \otimes \mathrm{SU}(3)_{R}$ in the chiral (massless) limit:

$$
q_{R} \rightarrow \exp \left(i \theta_{R}^{a} \tau_{a}\right) q_{R} \quad q_{L} \rightarrow \exp \left(i \theta_{L}^{a} \tau_{a}\right) q_{L}
$$

$$
\begin{aligned}
q_{R}^{\dagger} \bar{\sigma}_{\mu} D^{\mu} q_{R} \rightarrow\left(e^{i \theta_{R}^{a} \tau_{a}} q_{R}\right)^{\dagger} \bar{\sigma}_{\mu} D^{\mu}\left(e^{i \theta_{R}^{b} \tau_{b}} q_{R}\right) & =q_{R}^{\dagger} e^{-i \theta_{R}^{a} \tau_{a}} \bar{\sigma}_{\mu} D^{\mu} e^{i \theta_{R}^{b} \tau_{b}} q_{R} \\
& =q_{R}^{\dagger} \bar{\sigma}_{\mu} D^{\mu} e^{-i \theta_{R}^{a} \tau_{a}} e^{i \theta_{R}^{b} \tau_{b}} q_{R} \\
& =q_{R}^{\dagger} \bar{\sigma}_{\mu} D^{\mu} q_{R}
\end{aligned}
$$

Chiral Symmetry Breaking

- In the Standard Model (SM) the QCD Lagrangian for light quarks is

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} \operatorname{Tr}\left(G_{\mu \nu} G^{\mu \nu}\right)+i\left(q_{R}^{\dagger} \bar{\sigma}_{\mu} D^{\mu} q_{R}+q_{L}^{\dagger} \bar{\sigma}_{\mu} D^{\mu} q_{L}\right)+\text { mass terms }
$$

- QCD Lagrangian exhibits a global chiral symmetry: $\mathcal{G}=\mathrm{SU}(3)_{L} \otimes \mathrm{SU}(3)_{R}$ in the chiral (massless) limit:

$$
q_{L} \rightarrow \exp \left(i \theta_{L}^{a} \tau_{a}\right) q_{L} \quad q_{R} \rightarrow \exp \left(i \theta_{R}^{a} \tau_{a}\right) q_{R}
$$

- \mathcal{G} is broken down to the subgroup $\mathcal{H}=\mathrm{SU}(3)_{V}\left(\theta_{a}=\theta_{b}\right)$ due to quark condensate: $\langle\Omega| \bar{q} q|\Omega\rangle \neq 0$ below confinement scale Λ_{QCD}.

Chiral Symmetry Breaking

- \mathcal{G} is broken down to the subgroup $\mathcal{H}=\mathrm{SU}(3)_{V}\left(\theta_{a}=\theta_{b}\right)$ due to quark condensate: $\langle\Omega| \bar{q} q|\Omega\rangle \neq 0$ below confinement scale Λ_{QCD}.

$$
0 \neq\langle\Omega| \bar{q} q|\Omega\rangle=\langle\Omega| q_{R}^{\dagger} q_{L}+q_{L}^{\dagger} q_{R}|\Omega\rangle
$$

Since $\langle\Omega| \bar{q} q|\Omega\rangle$ is invariant under $\operatorname{SU}(3)_{V}\left(\theta_{a}=\theta_{b}\right)$ but not under $\mathrm{SU}(3)_{A}\left(\theta_{a}=-\theta_{b}\right)$

$$
\mathrm{SU}(3)_{L} \otimes \mathrm{SU}(3)_{R} \cong \mathrm{SU}(3)_{V} \otimes \mathrm{SU}(3)_{A} \rightarrow \mathrm{SU}(3)_{V}
$$

Goldstone's Theorem

When a continuous symmetry group \mathcal{G} is broken down to a subgroup $\mathcal{H} \subset \mathcal{G}$ in which the broken generators do not leave the vacuum invariant, then there will be a massless scalar for every broken generator called a Nambu-Goldstone Boson.

High and Low-Energy DOF

- Bellow the confinement scale, quarks are no longer the observable DOF. The new DOF are Nambu-Goldstone bosons (NGB): pions, kaons etc.

Figure: Schematic diagram showing the relevant DOF as a function of energy in QCD.

NOTE

- I have lied a bit. The actually symmetry group of the classical Lagrangian is $\mathrm{U}(3)_{R} \otimes \mathrm{U}(3)_{L} \cong \mathrm{SU}(3)_{R} \otimes \mathrm{SU}(3)_{L} \otimes \mathrm{U}(1)_{V} \otimes \mathrm{U}(1)_{A}$
- The $\mathrm{U}(1)_{A}$ is not good quantum symmetry, it is anomalous
- The symmetry breaking pattern is actually $\mathrm{SU}(3)_{R} \otimes \mathrm{SU}(3)_{L} \otimes \mathrm{U}(1)_{V} \rightarrow \mathrm{SU}(3)_{V} \otimes \mathrm{U}(1)_{V}$
- Due to the non-zero mass terms in the QCD Lagrangian:

$$
\mathcal{L}_{M}=-\left(q_{R}^{\dagger} M q_{L}+q_{L}^{\dagger} M q_{R}\right), \quad M=\operatorname{diag}\left(m_{u}, m_{d}, m_{s}\right)
$$

the $\mathrm{SU}(3)_{V} \otimes \mathrm{SU}(3)_{A}$ symmetry is explicitly broken, but approximately still present since $m_{u}, m_{d}, m_{s} \ll \Lambda_{\mathrm{QCD}}$.

- The pions, Kaons, etc. are then called psuedo-Nambu-Golstone bosons.

Chiral Lagrangian

- Since pions, kaon etc. are the correct DOF bellow the confinement scale, we need a Lagrangian that describes their dynamics.

Chiral Lagrangian

- Since pions, kaon etc. are the correct DOF bellow the confinement scale, we need a Lagrangian that describes their dynamics.
- Need low-energy Lagrangian describing pions, etc. to obey the high energy symmetries.

Chiral Lagrangian

- Since pions, kaon etc. are the correct DOF bellow the confinement scale, we need a Lagrangian that describes their dynamics.
- Need low-energy Lagrangian describing pions, etc. to obey the high energy symmetries.
- We will find that the correct way to parameterize the NGB is

$$
\Sigma=\exp \left(\frac{i \sqrt{2}}{f_{\pi}} \Pi^{a} \lambda_{a}\right)
$$

Π^{a} modes

Chiral Lagrangian

- Since pions, kaon etc. are the correct DOF bellow the confinement scale, we need a Lagrangian that describes their dynamics.
- Need low-energy Lagrangian describing pions, etc. to obey the high energy symmetries.
- We will find that the correct way to parameterize the NGB is

$$
\Sigma=\exp \left(\frac{i \sqrt{2}}{f_{\pi}} \Pi^{a} \lambda_{a}\right)
$$

Π^{a} are the NBG

Chiral Lagrangian

- Since pions, kaon etc. are the correct DOF bellow the confinement scale, we need a Lagrangian that describes their dynamics.
- Need low-energy Lagrangian describing pions, etc. to obey the high energy symmetries.
- We will find that the correct way to parameterize the NGB is

$$
\Sigma=\exp \left(\frac{i \sqrt{2}}{f_{\pi}} \Pi^{a} \lambda_{a}\right)
$$

λ_{a} Gell-Mann matrices

Chiral Lagrangian

- Since pions, kaon etc. are the correct DOF bellow the confinement scale, we need a Lagrangian that describes their dynamics.
- Need low-energy Lagrangian describing pions, etc. to obey the high energy symmetries.
- We will find that the correct way to parameterize the NGB is

$$
\Sigma=\exp \left(\frac{i \sqrt{2}}{f_{\pi}} \Pi^{a} \lambda_{a}\right)
$$

f_{π} is a constant, called the pion decay constant. It is determined, empirically, to be $f_{\pi} \approx 130.4 \mathrm{MeV}$.

Chiral Lagrangian

- Since pions, kaon etc. are the correct DOF bellow the confinement scale, we need a Lagrangian that describes their dynamics.
- Need low-energy Lagrangian describing pions, etc. to obey the high energy symmetries.
- We will find that the correct way to parameterize the NGB is

$$
\Sigma=\exp \left(\frac{i \sqrt{2}}{f_{\pi}} \Pi^{a} \lambda_{a}\right)
$$

Σ will under $\mathrm{SU}(3)_{R} \otimes \mathrm{SU}(3)_{L}$ transform as

$$
\Sigma \rightarrow R \Sigma L^{\dagger}
$$

for $(R, L) \in \mathrm{SU}(3)_{R} \otimes \mathrm{SU}(3)_{L}$.

Chiral Lagrangian

- Since pions, kaon etc. are the correct DOF bellow the confinement scale, we need a Lagrangian that describes their dynamics.
- Need low-energy Lagrangian describing pions, etc. to obey the high energy symmetries.
- We will find that the correct way to parameterize the NGB is

$$
\Sigma=\exp \left(\frac{i \sqrt{2}}{f_{\pi}} \Pi^{a} \lambda_{a}\right)
$$

- The Lagrangian describing the light mesons will be given by

$$
\mathcal{L}=\frac{f_{\pi}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} \Sigma^{\dagger} \partial^{\mu} \Sigma\right)+\cdots
$$

Part II
 CCWZ Construction

Construction of States from Vacuum

- Consider a theory with a set of fields $\boldsymbol{\Phi}(x)$ transforming under a compact Lie group \mathcal{G}.

Construction of States from Vacuum

- Consider a theory with a set of fields $\boldsymbol{\Phi}(x)$ transforming under a compact Lie group \mathcal{G}.
- Suppose these field acquire a non-zero expectation value $\langle\Omega| \Phi|\Omega\rangle=\boldsymbol{F}$ which is invariant under a subgroup $\mathcal{H} \subset \mathcal{G}$
- \mathcal{H} is the little group

$$
\text { e.g. } \mathcal{G}=\mathrm{SO}(3) \rightarrow \mathcal{H}=\mathrm{SO}(2)
$$

Construction of States from Vacuum

- Consider a theory with a set of fields $\boldsymbol{\Phi}(x)$ transforming under a compact Lie group \mathcal{G}.
- Suppose these field acquire a non-zero expectation value $\langle\Omega| \boldsymbol{\Phi}|\Omega\rangle=\boldsymbol{F}$ which is invariant under a subgroup $\mathcal{H} \subset \mathcal{G}$
- We want to identify the NGB, one for each broken generator. One candidate is:

$$
\boldsymbol{\Phi}(x)=\exp \left(\frac{i \sqrt{2}}{F_{0}} \Theta_{A}(x) T^{A}\right) \boldsymbol{F}
$$

T^{A} generators of the Lie algebra of \mathcal{G}
$\Theta_{A}(x)$ potentially massless, scalar fields (have no potential since a constant Θ_{a} yields an equivalent vacuum)
F_{0} constant with mass dimension $\left[F_{0}\right]=m^{1}$

Identification of NGB

- Define T^{a} to be the unbroken generators (generators that leave vacuum invariant) and $\hat{T}^{\hat{a}}$ to be the broken generators

$$
T^{a} \boldsymbol{F}=0 \quad \text { and } \quad \hat{T}^{\hat{a}} \boldsymbol{F} \neq 0
$$

Little a index for unbroken generators
Little \hat{a} index for broken generators

Identification of NGB

- Define T^{a} to be the unbroken generators (generators that leave vacuum invariant) and \hat{T}^{a} to be the broken generators
- A generic group element of $g \in \mathcal{G}$ can be written as Fundamental formula of CCWZ

$$
g=\exp \left(i \alpha_{A} T^{A}\right)=\exp \left(i f_{\hat{a}}[\alpha] \hat{T}^{\hat{a}}\right) \exp \left(i f_{a}[\alpha] T^{a}\right)
$$

Identification of NGB

- A generic group element of $g \in \mathcal{G}$ can be written as

$$
g=\exp \left(i \alpha_{A} T^{A}\right)=\exp \left(i f_{\hat{a}}[\alpha] \hat{T}^{\hat{a}}\right) \exp \left(i f_{a}[\alpha] T^{a}\right)
$$

* Infinitesimal proof

$$
\exp \left(i \alpha_{A} T^{A}\right)=I+i \alpha_{\hat{a}} \hat{T}^{\hat{a}}+i \alpha_{a} T^{a}+\mathcal{O}\left(\alpha^{2}\right)
$$

Identification of NGB

- A generic group element of $g \in \mathcal{G}$ can be written as

$$
g=\exp \left(i \alpha_{A} T^{A}\right)=\exp \left(i f_{\hat{a}}[\alpha] \hat{T}^{\hat{a}}\right) \exp \left(i f_{a}[\alpha] T^{a}\right)
$$

* Infinitesimal proof

$$
\begin{aligned}
\exp \left(i \alpha_{A} T^{A}\right) & =I+i \alpha_{\hat{a}} \hat{T}^{\hat{a}}+i \alpha_{a} T^{a}+\mathcal{O}\left(\alpha^{2}\right) \\
\exp \left(i f_{\hat{a}}[\alpha] \hat{T}^{\hat{a}}\right) \exp \left(i f_{a}[\alpha] T^{a}\right) & =I+i f_{\hat{a}} \hat{T}^{\hat{a}}+i f_{a} T^{a}+\mathcal{O}\left(f_{\hat{a}} f_{a}, f_{\hat{a}}^{2}, f_{a}^{2}\right)
\end{aligned}
$$

Identification of NGB

- A generic group element of $g \in \mathcal{G}$ can be written as

$$
g=\exp \left(i \alpha_{A} T^{A}\right)=\exp \left(i f_{\hat{a}}[\alpha] \hat{T}^{\hat{a}}\right) \exp \left(i f_{a}[\alpha] T^{a}\right)
$$

* Infinitesimal proof

$$
\begin{aligned}
\exp \left(i \alpha_{A} T^{A}\right) & =I+i \alpha_{\hat{a}} \hat{T}^{\hat{a}}+i \alpha_{a} T^{a}+\mathcal{O}\left(\alpha^{2}\right) \\
\exp \left(i f_{\hat{a}}[\alpha] \hat{T}^{\hat{a}}\right) \exp \left(i f_{a}[\alpha] T^{a}\right) & =I+i f_{\hat{a}} \hat{T}^{\hat{a}}+i f_{a} T^{a}+\mathcal{O}\left(f_{\hat{a}} f_{a}, f_{\hat{a}}^{2}, f_{a}^{2}\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& f_{\hat{a}}[\alpha]=\alpha_{\hat{a}}+\mathcal{O}\left(\alpha^{2}\right) \\
& f_{a}[\alpha]=\alpha_{a}+\mathcal{O}\left(\alpha^{2}\right)
\end{aligned}
$$

Identification of NGB

- Define T^{a} to be the unbroken generators (generators that leave vacuum invariant) and \hat{T}^{a} to be the broken generators
- A generic group element of $g \in \mathcal{G}$ can be written as

$$
g=\exp \left(i \alpha_{A} T^{A}\right)=\exp \left(i f_{\hat{a}}[\alpha] \hat{T}^{\hat{a}}\right) \exp \left(i f_{a}[\alpha] T^{a}\right)
$$

- Since T^{a} leaves the vacuum invariant, we can write Φ as

$$
\begin{aligned}
\Phi(x)=\exp \left(\frac{i \sqrt{2}}{F_{0}} \Theta_{A} T^{A}\right) \boldsymbol{F} & =\exp \left(\frac{i \sqrt{2}}{F_{0}} \Pi_{\hat{a}} \hat{T}^{\hat{a}}\right) \exp \left(i \xi(x) T^{a}\right) \boldsymbol{F} \\
& =\exp \left(\frac{i \sqrt{2}}{F_{0}} \Pi_{\hat{a}} \hat{T}^{\hat{a}}\right) \boldsymbol{F}
\end{aligned}
$$

Since $\exp \left(i \xi(x) T^{a}\right) \boldsymbol{F}=\exp (0) \boldsymbol{F}=\boldsymbol{F}$

Identification of NGB

- Define T^{a} to be the unbroken generators (generators that leave vacuum invariant) and \hat{T}^{a} to be the broken generators
- A generic group element of $g \in \mathcal{G}$ can be written as

$$
g=\exp \left(i \alpha_{A} T^{A}\right)=\exp \left(i f_{\hat{a}}[\alpha] \hat{T}^{\hat{a}}\right) \exp \left(i f_{a}[\alpha] T^{a}\right)
$$

- Since T^{a} leaves the vacuum invariant, we can write $\boldsymbol{\Phi}$ in terms of the Goldstone boson matrix

Goldstone Boson Matrix

$$
\Phi(x)=U[\Pi] \boldsymbol{F} \quad \text { where } \quad U[\Pi] \equiv \exp \left(\frac{i \sqrt{2}}{F_{0}} \Pi_{a} \hat{T}^{a}\right)
$$

Π_{a} are the NBGs, one for each broken generator.

Transformations Properties of Fields under \mathcal{G}

- We would like to determine how $U[\Pi]$ transforms under a generic group element $g \in \mathcal{G}$

Transformations Properties of Fields under \mathcal{G}

- We would like to determine how $U[\Pi]$ transforms under a generic group element $g \in \mathcal{G}$
- Using the decomposition of a generic group element into broken and unbroken generators, we find

$$
g \boldsymbol{\Phi}(\boldsymbol{x})=g U[\Pi] \boldsymbol{F}=U\left[\Pi^{(g)}\right] h[\Pi, g] \boldsymbol{F}=U\left[\Pi^{(g)}\right] \boldsymbol{F}
$$

Transformations Properties of Fields under \mathcal{G}

- We would like to determine how $U[\Pi]$ transforms under a generic group element $g \in \mathcal{G}$
- Using the decomposition of a generic group element into broken and unbroken generators, we find

$$
g \boldsymbol{\Phi}(\boldsymbol{x})=g U[\Pi] \boldsymbol{F}=U\left[\Pi^{(g)}\right] h[\Pi, g] \boldsymbol{F}=U\left[\Pi^{(g)}\right] \boldsymbol{F}
$$

- We thus find that the Π fields transform as

$$
g U[\Pi]=U\left[\Pi^{(g)}\right] h[\Pi, g] \quad \Longrightarrow \quad U\left[\Pi^{(g)}\right]=g U[\Pi](h[\Pi, g])^{-1}
$$

Transformations Properties of Fields under \mathcal{G}

- We would like to determine how $U[\Pi]$ transforms under a generic group element $g \in \mathcal{G}$
- Using the decomposition of a generic group element into broken and unbroken generators, we find

$$
g \boldsymbol{\Phi}(\boldsymbol{x})=g U[\Pi] \boldsymbol{F}=U\left[\Pi^{(g)}\right] h[\Pi, g] \boldsymbol{F}=U\left[\Pi^{(g)}\right] \boldsymbol{F}
$$

- We thus find that the Π fields transform as

$$
g U[\Pi]=U\left[\Pi^{(g)}\right] h[\Pi, g] \quad \Longrightarrow \quad U\left[\Pi^{(g)}\right]=g U[\Pi](h[\Pi, g])^{-1}
$$

- This obeys the group multiplication law.

Transformations Properties of Fields under \mathcal{G}

- This obeys the group multiplication law. Transforming by $g_{1} g_{2}$

$$
\begin{aligned}
g_{1} g_{2} \boldsymbol{\Phi}=g_{1} g_{2} U[\Pi] \boldsymbol{F} & =g_{1} U\left[\Pi^{\left(g_{2}\right)}\right] h\left[\Pi, g_{2}\right] \boldsymbol{F} \\
& =U\left[\Pi^{\left(g_{1} g_{2}\right)}\right] h\left[\Pi^{\left(g_{2}\right)}, g_{2}\right] h\left[\Pi, g_{2}\right] \boldsymbol{F} \\
& =U\left[\Pi^{\left(g_{1} g_{2}\right)}\right] h\left[\Pi, g_{1} g_{2}\right] \boldsymbol{F} \\
& =U\left[\Pi^{\left(g_{1} g_{2}\right)}\right] \boldsymbol{F}
\end{aligned}
$$

- With $h\left[\Pi, g_{1} g_{2}\right]=h\left[\Pi^{\left(g_{2}\right)}, g_{1}\right] h\left[\Pi, g_{2}\right]$ and

$$
U\left[\Pi^{\left(g_{1} g_{2}\right)}\right]=g_{1} g_{2} U[\Pi] h\left[\Pi, g_{2}\right]^{-1} h\left[\Pi^{\left(g_{2}\right)}, g_{1}\right]^{-1}=g_{1} g_{2} U[\Pi] h\left[\Pi, g_{1} g_{2}\right]^{-1}
$$

- $U[\Pi]$ is called a non-linear realization of \mathcal{G} (called a realization instead of representation since it is non-linear)

Transformation Properties of Fields Under \mathcal{H}

- To determine how $U[\Pi]$ transforms under \mathcal{H}, we need the commutation relations between generators: $T^{a}, \hat{T}^{\hat{a}}$

Transformation Properties of Fields Under \mathcal{H}

- To determine how $U[\Pi]$ transforms under \mathcal{H}, we need the commutation relations between generators: $T^{a}, \hat{T}^{\hat{a}}$
- The commutation relations are

$$
\left[T^{a}, T^{b}\right]=i f_{c}^{a b} T^{c}+i f_{c}^{a b} \hat{T}^{\hat{c}} \equiv T^{c}\left(t_{\mathrm{Ad}^{a}}\right)_{c}^{b}
$$

$f_{\hat{c}}^{a b}=0$ since \mathcal{H} is a subgroup
$t_{\text {Ad }}$ is adjoint representation of \mathcal{H} generators

Transformation Properties of Fields Under \mathcal{H}

- To determine how $U[\Pi]$ transforms under \mathcal{H}, we need the commutation relations between generators: $T^{a}, \hat{T}^{\hat{a}}$
- The commutation relations are

$$
\begin{aligned}
& {\left[T^{a}, T^{b}\right]=i f_{c}^{a b} T^{c}+i f_{c}^{a b} \hat{T^{\hat{c}}} \equiv T^{c}\left(t_{\mathrm{Ad}}^{a}\right)_{c}^{b}} \\
& {\left[T^{a}, \hat{T}^{\hat{b}}\right]={\underset{f}{c}}_{f_{c}^{a b}}^{T^{c}}+i f_{\hat{c}}^{a \hat{b}} \hat{T}^{\hat{c}} \equiv \hat{T}^{\hat{c}}\left(t_{\pi}^{a}\right)_{\hat{c}}^{\hat{b}}}
\end{aligned}
$$

$f_{c}^{a \hat{b}}=0$ since $f_{\hat{c}}^{a b}=0$ and f is totally anti-symmetric
t_{π}^{a} is some yet unknown representation we call $\boldsymbol{r}_{\boldsymbol{\pi}}$

Transformation Properties of Fields Under \mathcal{H}

- To determine how $U[\Pi]$ transforms under \mathcal{H}, we need the commutation relations between generators: $T^{a}, \hat{T}^{\hat{a}}$
- The commutation relations are

$$
\begin{aligned}
& {\left[T^{a}, T^{b}\right]=i f_{c}^{a b} T^{c}+i f_{c}^{a b} \hat{T}^{\hat{c}} \equiv T^{c}\left(t_{\mathrm{Ad}}^{a}\right)_{c}^{b}} \\
& {\left[T^{a}, \hat{T}^{\hat{b}}\right]=i f^{a \hat{b}} T^{c}+i f_{\hat{c}}^{a \hat{b}} \hat{T}^{\hat{c}} \equiv T^{\hat{c}}\left(t_{\pi}^{a}\right)_{\hat{c}}^{\hat{b}}} \\
& {\left[\hat{T}^{\hat{a}}, \hat{T}^{\hat{b}}\right]=i f_{c}^{\hat{a} \hat{b}} T^{c}+i f_{\hat{c}}^{\hat{a} \hat{b}} \hat{T}^{\hat{c}}}
\end{aligned}
$$

Transformation Properties of Fields Under \mathcal{H}

- To determine how $U[\Pi]$ transforms under \mathcal{H}, we need the commutation relations between generators: $T^{a}, \hat{T}^{\hat{a}}$
- The commutation relations are

$$
\begin{aligned}
& {\left[T^{a}, T^{b}\right]=i f_{c}^{a b} T^{c}+i f_{c}^{a b} \hat{T}^{\hat{c}} \equiv T^{c}\left(t_{\mathrm{Ad}}^{a}\right)_{c}^{b}} \\
& {\left[T^{a}, \hat{T}^{\hat{b}}\right]=i f^{a \hat{b}} T^{c}+i f_{\hat{c}}^{a \hat{b}} \hat{T}^{\hat{c}} \equiv T^{\hat{c}}\left(t_{\pi}^{a}\right)_{\hat{c}}^{\hat{b}}} \\
& {\left[\hat{T}^{\hat{a}}, \hat{T}^{\hat{b}}\right]=i f_{c}^{\hat{a} \hat{b}} T^{c}+i f_{\hat{c}}^{\hat{a} \hat{b}} \hat{T}^{\hat{c}}}
\end{aligned}
$$

- Next, we note the following identity:

$$
\exp \left(i \alpha_{a} T^{a}\right) \hat{T}^{\hat{a}} \exp \left(-i \alpha_{a} T^{a}\right)=\hat{T}^{\hat{b}}\left[\exp \left(i \alpha_{a} t_{\pi}^{a}\right)\right]_{\hat{b}}^{\hat{a}}
$$

Transformation Properties of Fields Under \mathcal{H}

- Next, we note the following identity:

$$
\exp \left(i \alpha_{a} T^{a}\right) \hat{T}^{\hat{a}} \exp \left(-i \alpha_{a} T^{a}\right)=\hat{T}^{\hat{b}}\left[\exp \left(i \alpha_{a} t_{\pi}^{a}\right)\right]_{\hat{b}}^{\hat{a}}
$$

^ Infinitesimal proof

$$
\exp \left(i \alpha_{a} T^{a}\right) \hat{T}^{\hat{a}} \exp \left(-i \alpha_{a} T^{a}\right)=\left(I+i \alpha_{a} T^{a}\right) \hat{T}^{\hat{a}}\left(I-i \alpha_{a} T^{a}\right)+\mathcal{O}\left(\alpha^{2}\right)
$$

Transformation Properties of Fields Under \mathcal{H}

- Next, we note the following identity:

$$
\exp \left(i \alpha_{a} T^{a}\right) \hat{T}^{\hat{a}} \exp \left(-i \alpha_{a} T^{a}\right)=\hat{T}^{\hat{b}}\left[\exp \left(i \alpha_{a} t_{\pi}^{a}\right)\right]_{\hat{b}}^{\hat{a}}
$$

^ Infinitesimal proof

$$
\begin{aligned}
\exp \left(i \alpha_{a} T^{a}\right) \hat{T}^{\hat{a}} \exp \left(-i \alpha_{a} T^{a}\right) & =\left(I+i \alpha_{a} T^{a}\right) \hat{T}^{\hat{a}}\left(I-i \alpha_{a} T^{a}\right)+\mathcal{O}\left(\alpha^{2}\right) \\
& =\hat{T}^{\hat{a}}+i \alpha_{a}\left(T^{a} \hat{T}^{\hat{a}}-\hat{T}^{\hat{a}} T^{a}\right)+\mathcal{O}\left(\alpha^{2}\right)
\end{aligned}
$$

Transformation Properties of Fields Under \mathcal{H}

- Next, we note the following identity:

$$
\exp \left(i \alpha_{a} T^{a}\right) \hat{T}^{\hat{a}} \exp \left(-i \alpha_{a} T^{a}\right)=\hat{T}^{\hat{b}}\left[\exp \left(i \alpha_{a} t_{\pi}^{a}\right)\right]_{\hat{b}}^{\hat{a}}
$$

* Infinitesimal proof

$$
\begin{aligned}
\exp \left(i \alpha_{a} T^{a}\right) \hat{T}^{\hat{a}} \exp \left(-i \alpha_{a} T^{a}\right) & =\left(I+i \alpha_{a} T^{a}\right) \hat{T}^{\hat{a}}\left(I-i \alpha_{a} T^{a}\right)+\mathcal{O}\left(\alpha^{2}\right) \\
& =\hat{T}^{\hat{a}}+i \alpha_{a}\left(T^{a} \hat{T}^{\hat{a}}-\hat{T}^{\hat{a}} T^{a}\right)+\mathcal{O}\left(\alpha^{2}\right) \\
& =\hat{T}^{\hat{a}}+i \alpha_{a}\left[T^{a}, \hat{T}^{\hat{a}}\right]+\mathcal{O}\left(\alpha^{2}\right)
\end{aligned}
$$

Transformation Properties of Fields Under \mathcal{H}

- Next, we note the following identity:

$$
\exp \left(i \alpha_{a} T^{a}\right) \hat{T}^{\hat{a}} \exp \left(-i \alpha_{a} T^{a}\right)=\hat{T}^{\hat{b}}\left[\exp \left(i \alpha_{a} t_{\pi}^{a}\right)\right]_{\hat{b}}^{\hat{a}}
$$

* Infinitesimal proof

$$
\begin{aligned}
\exp \left(i \alpha_{a} T^{a}\right) \hat{T}^{\hat{a}} \exp \left(-i \alpha_{a} T^{a}\right) & =\left(I+i \alpha_{a} T^{a}\right) \hat{T}^{\hat{a}}\left(I-i \alpha_{a} T^{a}\right)+\mathcal{O}\left(\alpha^{2}\right) \\
& =\hat{T}^{\hat{a}}+i \alpha_{a}\left(T^{a} \hat{T}^{\hat{a}}-\hat{T}^{\hat{a}} T^{a}\right)+\mathcal{O}\left(\alpha^{2}\right) \\
& =\hat{T}^{\hat{a}}+i \alpha_{a}\left[T^{a}, \hat{T}^{\hat{a}}\right]+\mathcal{O}\left(\alpha^{2}\right) \\
& =\hat{T}^{\hat{a}}+i \alpha_{a} \hat{T}^{\hat{b}}\left(t_{\pi}^{a}\right)_{\hat{b}}^{\hat{a}}+\mathcal{O}\left(\alpha^{2}\right)
\end{aligned}
$$

Transformation Properties of Fields Under \mathcal{H}

- Next, we note the following identity:

$$
\exp \left(i \alpha_{a} T^{a}\right) \hat{T}^{\hat{a}} \exp \left(-i \alpha_{a} T^{a}\right)=\hat{T}^{\hat{b}}\left[\exp \left(i \alpha_{a} t_{\pi}^{a}\right)\right]_{\hat{b}}^{\hat{a}}
$$

* Infinitesimal proof

$$
\begin{aligned}
\exp \left(i \alpha_{a} T^{a}\right) \hat{T}^{\hat{a}} \exp \left(-i \alpha_{a} T^{a}\right) & =\left(I+i \alpha_{a} T^{a}\right) \hat{T}^{\hat{a}}\left(I-i \alpha_{a} T^{a}\right)+\mathcal{O}\left(\alpha^{2}\right) \\
& =\hat{T}^{\hat{a}}+i \alpha_{a}\left(T^{a} \hat{T}^{\hat{a}}-\hat{T}^{\hat{a}} T^{a}\right)+\mathcal{O}\left(\alpha^{2}\right) \\
& =\hat{T}^{\hat{a}}+i \alpha_{a}\left[T^{a}, \hat{T}^{\hat{a}}\right]+\mathcal{O}\left(\alpha^{2}\right) \\
& =\hat{T}^{\hat{a}}+i \alpha_{a} \hat{T}^{\hat{b}}\left(t_{\pi}^{a}\right)_{\hat{b}}^{\hat{a}}+\mathcal{O}\left(\alpha^{2}\right) \\
& =\hat{T}^{\hat{b}}\left(\delta_{\hat{b}}^{\hat{a}}+i \alpha_{a}\left(t_{\pi}^{a}\right)_{\hat{b}}^{\hat{a}}\right)+\mathcal{O}\left(\alpha^{2}\right)
\end{aligned}
$$

Transformation Properties of Fields Under \mathcal{H}

- Using the previous identity, we find that for $g=g_{\mathcal{H}}=\exp \left(i \alpha_{a} T^{a}\right)$ and $c=i \sqrt{2} / F_{0}$

$$
g_{\mathcal{H}} U[\Pi]=g_{\mathcal{H}} \exp \left(c \Pi_{\hat{a}} \hat{T}^{\hat{a}}\right)
$$

Transformation Properties of Fields Under \mathcal{H}

- Using the previous identity, we find that for $g=g_{\mathcal{H}}=\exp \left(i \alpha_{a} T^{a}\right)$ and $c=i \sqrt{2} / F_{0}$

$$
\begin{aligned}
g_{\mathcal{H}} U[\Pi] & =g_{\mathcal{H}} \exp \left(c \Pi_{\hat{a}} \hat{T}^{\hat{a}}\right) \\
& =g_{\mathcal{H}}\left(I+c \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\frac{c^{2}}{2} \Pi_{\hat{a}} \Pi_{\hat{b}} \hat{T}^{\hat{a}} \hat{T}^{\hat{b}}+\ldots\right)
\end{aligned}
$$

Transformation Properties of Fields Under \mathcal{H}

- Using the previous identity, we find that for $g=g_{\mathcal{H}}=\exp \left(i \alpha_{a} T^{a}\right)$ and $c=i \sqrt{2} / F_{0}$

$$
\begin{aligned}
g_{\mathcal{H}} U[\Pi] & =g_{\mathcal{H}} \exp \left(c \Pi_{\hat{a}} \hat{T}^{\hat{a}}\right) \\
& =g_{\mathcal{H}}\left(I+c \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\frac{c^{2}}{2} \Pi_{\hat{a}} \Pi_{\hat{b}} \hat{T}^{\hat{a}} \hat{T}^{\hat{b}}+\ldots\right) \\
& =\left(I+c \Pi_{\hat{a}} g_{\mathcal{H}} \hat{T}^{\hat{a}} g_{\mathcal{H}}^{-1}+\frac{c^{2}}{2} \Pi_{\hat{a}} \Pi_{\hat{b}} g_{\mathcal{H}} \hat{T}^{\hat{a}} g_{\mathcal{H}}^{-1} g_{\mathcal{H}} \hat{T}^{\hat{b}} g_{\mathcal{H}}^{-1}+\ldots\right) g_{\mathcal{H}}
\end{aligned}
$$

Transformation Properties of Fields Under \mathcal{H}

- Using the previous identity, we find that for $g=g_{\mathcal{H}}=\exp \left(i \alpha_{a} T^{a}\right)$ and $c=i \sqrt{2} / F_{0}$

$$
\begin{aligned}
g_{\mathcal{H}} U[\Pi] & =g_{\mathcal{H}} \exp \left(c \Pi_{\hat{a}} \hat{T}^{\hat{a}}\right) \\
& =g_{\mathcal{H}}\left(I+c \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\frac{c^{2}}{2} \Pi_{\hat{a}} \Pi_{\hat{b}} \hat{T}^{\hat{a}} \hat{T}^{\hat{b}}+\ldots\right) \\
& =\left(I+c \Pi_{\hat{a}} g_{\mathcal{H}} \hat{T}^{\hat{a}} g_{\mathcal{H}}^{-1}+\frac{c^{2}}{2} \Pi_{\hat{a}} \Pi_{\hat{b}} g_{\mathcal{H}} \hat{T}^{\hat{a}} g_{\mathcal{H}}^{-1} g_{\mathcal{H}} \hat{T}^{\hat{b}} g_{\mathcal{H}}^{-1}+\ldots\right) g_{\mathcal{H}} \\
& =\exp \left(c \Pi_{\hat{a}} g_{\mathcal{H}} \hat{T}^{\hat{a}} g_{\mathcal{H}}^{-1}\right) g_{\mathcal{H}}
\end{aligned}
$$

Transformation Properties of Fields Under \mathcal{H}

- Using the previous identity, we find that for $g=g_{\mathcal{H}}=\exp \left(i \alpha_{a} T^{a}\right)$ and $c=i \sqrt{2} / F_{0}$

$$
g_{\mathcal{H}} U[\Pi]=g_{\mathcal{H}} \exp \left(c \Pi_{\hat{a}} \hat{T}^{\hat{a}}\right)
$$

$$
\begin{aligned}
= & g_{\mathcal{H}}\left(I+c \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\frac{c^{2}}{2} \Pi_{\hat{a}} \Pi_{\hat{b}} \hat{T}^{\hat{a}} \hat{T}^{\hat{b}}+\ldots\right) \\
= & \left(I+c \Pi_{\hat{a}} g_{\mathcal{H}} \hat{T}^{\hat{a}} g_{\mathcal{H}}^{-1}+\frac{c^{2}}{2} \Pi_{\hat{a}} \Pi_{\hat{b}} g_{\mathcal{H}} \hat{T}^{\hat{a}} g_{\mathcal{H}}^{-1} g_{\mathcal{H}} \hat{T}^{\hat{b}} g_{\mathcal{H}}^{-1}+\ldots\right) g_{\mathcal{H}} \\
= & \exp \left(c \Pi_{\hat{a}} g_{\mathcal{H}} \hat{T}^{\hat{a}} g_{\mathcal{H}}^{-1}\right) g_{\mathcal{H}} \\
& \quad \text { using previous result }
\end{aligned}
$$

$$
=\exp \left(c \hat{T}^{\hat{b}}\left[\exp \left(i \alpha_{a} t_{\pi}^{a}\right)\right]_{\hat{b}}^{\hat{a}} \Pi_{\hat{a}}\right) g_{\mathcal{H}}
$$

Transformation Properties of Fields Under \mathcal{H}

- Using the previous identity, we find that for $g=g_{\mathcal{H}}=\exp \left(i \alpha_{a} T^{a}\right)$ and $c=i \sqrt{2} / F_{0}$

$$
\begin{aligned}
g_{\mathcal{H}} U[\Pi] & =g_{\mathcal{H}} \exp \left(c \Pi_{\hat{a}} \hat{T}^{\hat{a}}\right) \\
& =g_{\mathcal{H}}\left(I+c \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\frac{c^{2}}{2} \Pi_{\hat{a}} \Pi_{\hat{b}} \hat{T}^{\hat{a}} \hat{T}^{\hat{b}}+\ldots\right) \\
& =\left(I+c \Pi_{\hat{a}} g_{\mathcal{H}} \hat{T}^{\hat{a}} g_{\mathcal{H}}^{-1}+\frac{c^{2}}{2} \Pi_{\hat{a}} \Pi_{\hat{b}} g_{\mathcal{H}} \hat{T}^{\hat{a}} g_{\mathcal{H}}^{-1} g_{\mathcal{H}} \hat{T}^{\hat{b}} g_{\mathcal{H}}^{-1}+\ldots\right) g_{\mathcal{H}} \\
& =\exp \left(c \Pi_{\hat{a}} g_{\mathcal{H}} \hat{T}^{\hat{a}} g_{\mathcal{H}}^{-1}\right) g_{\mathcal{H}} \\
& =\exp \left(c T^{\hat{b}}\left[\exp \left(i \alpha_{a} t_{\pi}^{a}\right)\right]_{\hat{b}}^{\hat{a}} \Pi_{\hat{a}}\right) g_{\mathcal{H}} \\
& =U\left[\exp \left(i \alpha_{a} t_{\pi}^{a}\right) \Pi\right] g_{\mathcal{H}}
\end{aligned}
$$

Transformation Properties of Fields Under \mathcal{H}

- The NGB transform under \mathcal{H} as NGB Transformation Under \mathcal{H}

$$
\left(\Pi^{\left(g_{\mathcal{H}}\right)}\right)_{\hat{b}}=\left[\exp \left(i \alpha_{a} t_{\pi}^{a}\right)\right]_{\hat{b}}^{\hat{a}} \Pi_{\hat{a}}
$$

Transformation Properties Under $\mathcal{G} / \mathcal{H}$

- For a general group \mathcal{G}, it is not possible to obtain a closed form expression for how Π transforms under the broken group element

Transformation Properties Under $\mathcal{G} / \mathcal{H}$

- For a general group \mathcal{G}, it is not possible to obtain a closed form expression for how Π transforms under the broken group element
- We can obtain an infinitesimal expression

Transformation Properties Under $\mathcal{G} / \mathcal{H}$

- For a general group \mathcal{G}, it is not possible to obtain a closed form expression for how Π transforms under the broken group element
- We can obtain an infinitesimal expression
- Consider an infinitesimal element of $\mathcal{G} / \mathcal{H}$,

$$
g_{\mathcal{G} / \mathcal{H}}=1+i \alpha_{\hat{a}} \hat{T}^{\hat{a}}
$$

Transformation Properties Under $\mathcal{G} / \mathcal{H}$

- For a general group \mathcal{G}, it is not possible to obtain a closed form expression for how Π transforms under the broken group element
- We can obtain an infinitesimal expression
- Consider an infinitesimal element of $\mathcal{G} / \mathcal{H}$,

$$
g_{\mathcal{G} / \mathcal{H}}=1+i \alpha_{\hat{a}} \hat{T}^{\hat{a}}
$$

- Under $g_{\mathcal{G} / \mathcal{H}}, U[\Pi]$ transforms as

$$
g_{\mathcal{G} / \mathcal{H}} U[\pi]=\left(1+i \alpha_{\hat{a}} \hat{T}^{\hat{a}}+\mathcal{O}\left(\alpha^{2}\right)\right)\left(1+\frac{i \sqrt{2}}{F_{0}} \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\mathcal{O}\left(\frac{\Pi^{2}}{F_{0}}\right)\right)
$$

Transformation Properties Under $\mathcal{G} / \mathcal{H}$

- For a general group \mathcal{G}, it is not possible to obtain a closed form expression for how Π transforms under the broken group element
- We can obtain an infinitesimal expression
- Consider an infinitesimal element of $\mathcal{G} / \mathcal{H}$,

$$
g_{\mathcal{G} / \mathcal{H}}=1+i \alpha_{\hat{a}} \hat{T}^{\hat{a}}
$$

- Under $g_{\mathcal{G} / \mathcal{H}}, U[\Pi]$ transforms as

$$
\begin{aligned}
g_{\mathcal{G} / \mathcal{H}} U[\pi]= & \left(1+i \alpha_{\hat{a}} \hat{T}^{\hat{a}}+\mathcal{O}\left(\alpha^{2}\right)\right)\left(1+\frac{i \sqrt{2}}{F_{0}} \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\mathcal{O}\left(\frac{\Pi^{2}}{F_{0}}\right)\right) \\
= & 1+\frac{i \sqrt{2}}{F_{0}} \hat{T}^{\hat{a}}\left(\Pi_{\hat{a}}+\frac{F_{0}}{\sqrt{2}} \alpha_{\hat{a}}+\mathcal{O}\left(\alpha \frac{\Pi^{2}}{F_{0}}+\alpha \frac{\Pi^{3}}{F_{0}}+\cdots\right)\right) \\
& +\mathcal{O}\left(\alpha^{2}\right)
\end{aligned}
$$

Transformation Properties Under $\mathcal{G} / \mathcal{H}$

- For a general group \mathcal{G}, it is not possible to obtain a closed form expression for how Π transforms under the broken group element
- We can obtain an infinitesimal expression
- Consider an infinitesimal element of $\mathcal{G} / \mathcal{H}$,

$$
g_{\mathcal{G} / \mathcal{H}}=1+i \alpha_{\hat{a}} \hat{T}^{\hat{a}}
$$

- Under $g_{\mathcal{G} / \mathcal{H}}, U[\Pi]$ transforms as

$$
g_{\mathcal{G} / \mathcal{H}} U[\pi]=1+\frac{i \sqrt{2}}{F_{0}} \hat{T}^{\hat{a}}\left(\Pi_{\hat{a}}+\frac{F_{0}}{\sqrt{2}} \alpha_{\hat{a}}\right)+\cdots
$$

Transformation Properties Under $\mathcal{G} / \mathcal{H}$

- For a general group \mathcal{G}, it is not possible to obtain a closed form expression for how Π transforms under the broken group element
- We can obtain an infinitesimal expression
- Consider an infinitesimal element of $\mathcal{G} / \mathcal{H}$,

$$
g_{\mathcal{G} / \mathcal{H}}=1+i \alpha_{\hat{a}} \hat{T}^{\hat{a}}
$$

- Under $g_{\mathcal{G} / \mathcal{H}}, U[\Pi]$ transforms as

$$
g_{\mathcal{G} / \mathcal{H}} U[\pi]=1+\frac{i \sqrt{2}}{F_{0}} \hat{T}^{\hat{a}}\left(\Pi_{\hat{a}}+\frac{F_{0}}{\sqrt{2}} \alpha_{\hat{a}}\right)+\cdots
$$

- Therefore, Π transforms as a shift

NGB Transformation Under $\mathcal{G} / \mathcal{H}$

$$
\Pi_{\hat{a}} \rightarrow \Pi_{\hat{a}}+\frac{F_{0}}{\sqrt{2}} \alpha_{\hat{a}}+\cdots
$$

Construction of Invariants

- To describe the dynamics of the NGB, we need to construct a Lagrangian which is invariant under \mathcal{G}

Construction of Invariants

- To describe the dynamics of the NGB, we need to construct a Lagrangian which is invariant under \mathcal{G}
- We consider a one-form (Maurer-Cartan form) which we parameterize in terms of $d_{\mu}[\Pi]$ and $e_{\mu}[\Pi]$

$$
i U^{-1} \partial_{\mu} U=d_{\mu, \hat{a}} \hat{T}^{\hat{a}}+e_{\mu, a} T^{a} \equiv d_{\mu}+e_{\mu}
$$

Construction of Invariants

- To describe the dynamics of the NGB, we need to construct a Lagrangian which is invariant under \mathcal{G}
- We consider a one-form (Maurer-Cartan form) which we parameterize in terms of $d_{\mu}[\Pi]$ and $e_{\mu}[\Pi]$

$$
i U^{-1} \partial_{\mu} U=d_{\mu, \hat{a}} \hat{T}^{\hat{a}}+e_{\mu, a} T^{a} \equiv d_{\mu}+e_{\mu}
$$

- Recall that U transforms as $U \rightarrow g U h^{-1}[\Pi, g]$, where $h^{-1}[\Pi, g]$ is space time dependent because of $\Pi(x)$. Thus,

$$
i U^{-1} \partial_{\mu} U \rightarrow i h U^{-1} g^{-1} \partial_{\mu}\left(g U h^{-1}\right)
$$

Construction of Invariants

- To describe the dynamics of the NGB, we need to construct a Lagrangian which is invariant under \mathcal{G}
- We consider a one-form (Maurer-Cartan form) which we parameterize in terms of $d_{\mu}[\Pi]$ and $e_{\mu}[\Pi]$

$$
i U^{-1} \partial_{\mu} U=d_{\mu, \hat{a}} \hat{T}^{\hat{a}}+e_{\mu, a} T^{a} \equiv d_{\mu}+e_{\mu}
$$

- Recall that U transforms as $U \rightarrow g U h^{-1}[\Pi, g]$, where $h^{-1}[\Pi, g]$ is space time dependent because of $\Pi(x)$. Thus,

$$
\begin{aligned}
i U^{-1} \partial_{\mu} U & \rightarrow i h U^{-1} g^{-1} \partial_{\mu}\left(g U h^{-1}\right) \\
& =i h U^{-1} g^{-1}\left(g\left(\partial_{\mu} U\right) h^{-1}+g U\left(\partial_{\mu} h^{-1}\right)\right)
\end{aligned}
$$

Construction of Invariants

- To describe the dynamics of the NGB, we need to construct a Lagrangian which is invariant under \mathcal{G}
- We consider a one-form (Maurer-Cartan form) which we parameterize in terms of $d_{\mu}[\Pi]$ and $e_{\mu}[\Pi]$

$$
i U^{-1} \partial_{\mu} U=d_{\mu, \hat{a}} \hat{T}^{\hat{a}}+e_{\mu, a} T^{a} \equiv d_{\mu}+e_{\mu}
$$

- Recall that U transforms as $U \rightarrow g U h^{-1}[\Pi, g]$, where $h^{-1}[\Pi, g]$ is space time dependent because of $\Pi(x)$. Thus,

$$
\begin{aligned}
i U^{-1} \partial_{\mu} U & \rightarrow i h U^{-1} g^{-1} \partial_{\mu}\left(g U h^{-1}\right) \\
& =i h U^{-1} g^{-1}\left(g\left(\partial_{\mu} U\right) h^{-1}+g U\left(\partial_{\mu} h^{-1}\right)\right) \\
& =i h U^{-1}\left(\partial_{\mu} U\right) h^{-1}+i h\left(\partial_{\mu} h^{-1}\right)
\end{aligned}
$$

Construction of Invariants

- $i U^{-1} \partial_{\mu} U$ transforms as

$$
i U^{-1} \partial_{\mu} U=i h U^{-1}\left(\partial_{\mu} U\right) h^{-1}+i h \partial_{\mu} h^{-1}
$$

Construction of Invariants

- $i U^{-1} \partial_{\mu} U$ transforms as

$$
i U^{-1} \partial_{\mu} U=i h U^{-1}\left(\partial_{\mu} U\right) h^{-1}+i h \partial_{\mu} h^{-1}
$$

- In terms of d_{μ} and e_{μ}, this is

$$
\begin{aligned}
d_{\mu}+e_{\mu} & =h\left(d_{\mu}+e_{\mu}\right) h^{-1}+i h \partial_{\mu} h^{-1} \\
& =h d_{\mu} h^{-1}+h\left(e_{\mu}+i \partial_{\mu}\right) h^{-1}
\end{aligned}
$$

Construction of Invariants

- $i U^{-1} \partial_{\mu} U$ transforms as

$$
i U^{-1} \partial_{\mu} U=i h U^{-1}\left(\partial_{\mu} U\right) h^{-1}+i h \partial_{\mu} h^{-1}
$$

- Thus, d_{μ} and e_{μ} transform under an arbitrary group element $g \in \mathcal{G}$ as

$$
\begin{aligned}
& d_{\mu} \rightarrow h[\Pi, g] d_{\mu} h^{-1}[\Pi, g] \\
& e_{\mu} \rightarrow h[\Pi, g]\left(e_{\mu}+i \partial_{\mu}\right) h^{-1}[\Pi, g]
\end{aligned}
$$

Construction of Invariants

- $i U^{-1} \partial_{\mu} U$ transforms as

$$
i U^{-1} \partial_{\mu} U=i h U^{-1}\left(\partial_{\mu} U\right) h^{-1}+i h \partial_{\mu} h^{-1}
$$

- Thus, d_{μ} and e_{μ} transform under an arbitrary group element $g \in \mathcal{G}$ as

$$
\begin{aligned}
d_{\mu} & \rightarrow h[\Pi, g] d_{\mu} h^{-1}[\Pi, g] \\
e_{\mu} & \rightarrow h[\Pi, g]\left(e_{\mu}+i \partial_{\mu}\right) h^{-1}[\Pi, g]
\end{aligned}
$$

- d_{μ} transforms in the $\boldsymbol{r}_{\boldsymbol{\pi}}$ representation even under a full group transformation

$$
d_{\mu, \hat{a}} \rightarrow \exp \left[i \xi_{a}[\Pi, g]\left(t_{\pi}^{a}\right)\right]_{\hat{a}}^{\hat{b}} d_{\mu, \hat{b}}
$$

Construction of Invariants

- $i U^{-1} \partial_{\mu} U$ transforms as

$$
i U^{-1} \partial_{\mu} U=i h U^{-1}\left(\partial_{\mu} U\right) h^{-1}+i h \partial_{\mu} h^{-1}
$$

- Thus, d_{μ} and e_{μ} transform under an arbitrary group element $g \in \mathcal{G}$ as

$$
\begin{aligned}
d_{\mu} & \rightarrow h[\Pi, g] d_{\mu} h^{-1}[\Pi, g] \\
e_{\mu} & \rightarrow h[\Pi, g]\left(e_{\mu}+i \partial_{\mu}\right) h^{-1}[\Pi, g]
\end{aligned}
$$

- d_{μ} transforms in the $\boldsymbol{r}_{\boldsymbol{\pi}}$ representation even under a full group transformation

$$
d_{\mu, \hat{a}} \rightarrow \exp \left[i \xi_{a}[\Pi, g]\left(t_{\pi}^{a}\right)\right]_{\hat{a}}^{\hat{b}} d_{\mu, \hat{b}}
$$

- e_{μ} transforms like a gauge field with \mathcal{H} being a local gauge group

Lowest Order Lagrangian

- Since d_{μ} transforms for a general group element $g \in \mathcal{G}$ as $d_{\mu} \rightarrow h[\Pi, g] d_{\mu} h^{-1}[\Pi, g]$, we can see that

$$
\operatorname{Tr}\left(d_{\mu} d^{\mu}\right)
$$

Lowest Order Lagrangian

- Since d_{μ} transforms for a general group element $g \in \mathcal{G}$ as $d_{\mu} \rightarrow h[\Pi, g] d_{\mu} h^{-1}[\Pi, g]$, we can see that

$$
\operatorname{Tr}\left(d_{\mu} d^{\mu}\right)
$$

$$
\operatorname{Tr}\left(d_{\mu} d^{\mu}\right) \rightarrow \operatorname{Tr}\left(h[\Pi, g] d_{\mu} h^{-1}[\Pi, g] h[\Pi, g] d^{\mu} h^{-1}[\Pi, g]\right)
$$

Lowest Order Lagrangian

- Since d_{μ} transforms for a general group element $g \in \mathcal{G}$ as $d_{\mu} \rightarrow h[\Pi, g] d_{\mu} h^{-1}[\Pi, g]$, we can see that

$$
\operatorname{Tr}\left(d_{\mu} d^{\mu}\right)
$$

$$
\begin{aligned}
\operatorname{Tr}\left(d_{\mu} d^{\mu}\right) & \rightarrow \operatorname{Tr}\left(h[\Pi, g] d_{\mu} h^{-1}[\Pi, g] h[\Pi, g] d^{\mu} h^{-1}[\Pi, g]\right) \\
& =\operatorname{Tr}\left(h[\Pi, g] d_{\mu} d^{\mu} h^{-1}[\Pi, g]\right)
\end{aligned}
$$

Lowest Order Lagrangian

- Since d_{μ} transforms for a general group element $g \in \mathcal{G}$ as $d_{\mu} \rightarrow h[\Pi, g] d_{\mu} h^{-1}[\Pi, g]$, we can see that

$$
\operatorname{Tr}\left(d_{\mu} d^{\mu}\right)
$$

$$
\begin{aligned}
\operatorname{Tr}\left(d_{\mu} d^{\mu}\right) & \rightarrow \operatorname{Tr}\left(h[\Pi, g] d_{\mu} h^{-1}[\Pi, g] h[\Pi, g] d^{\mu} h^{-1}[\Pi, g]\right) \\
& =\operatorname{Tr}\left(h[\Pi, g] d_{\mu} d^{\mu} h^{-1}[\Pi, g]\right) \\
& =\operatorname{Tr}\left(h^{-1}[\Pi, g] h[\Pi, g] d_{\mu} d^{\mu}\right)
\end{aligned}
$$

Lowest Order Lagrangian

- Since d_{μ} transforms for a general group element $g \in \mathcal{G}$ as $d_{\mu} \rightarrow h[\Pi, g] d_{\mu} h^{-1}[\Pi, g]$, we can see that

$$
\operatorname{Tr}\left(d_{\mu} d^{\mu}\right)
$$

$$
\begin{aligned}
\operatorname{Tr}\left(d_{\mu} d^{\mu}\right) & \rightarrow \operatorname{Tr}\left(h[\Pi, g] d_{\mu} h^{-1}[\Pi, g] h[\Pi, g] d^{\mu} h^{-1}[\Pi, g]\right) \\
& =\operatorname{Tr}\left(h[\Pi, g] d_{\mu} d^{\mu} h^{-1}[\Pi, g]\right) \\
& =\operatorname{Tr}\left(h^{-1}[\Pi, g] h[\Pi, g] d_{\mu} d^{\mu}\right) \\
& =\operatorname{Tr}\left(d_{\mu} d^{\mu}\right)
\end{aligned}
$$

Lowest Order Lagrangian

- Since d_{μ} transforms for a general group element $g \in \mathcal{G}$ as $d_{\mu} \rightarrow h[\Pi, g] d_{\mu} h^{-1}[\Pi, g]$, we can see that

$$
\operatorname{Tr}\left(d_{\mu} d^{\mu}\right)
$$

- Expanding $i U^{-1} \partial_{\mu} U$, we find, letting $c=\sqrt{2} / F_{0}$

$$
i U^{-1} \partial_{\mu} U=i\left(I-i c \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\cdots\right) \partial_{\mu}\left(I+i c \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\cdots\right)
$$

Lowest Order Lagrangian

- Since d_{μ} transforms for a general group element $g \in \mathcal{G}$ as $d_{\mu} \rightarrow h[\Pi, g] d_{\mu} h^{-1}[\Pi, g]$, we can see that

$$
\operatorname{Tr}\left(d_{\mu} d^{\mu}\right)
$$

- Expanding $i U^{-1} \partial_{\mu} U$, we find, letting $c=\sqrt{2} / F_{0}$

$$
\begin{aligned}
i U^{-1} \partial_{\mu} U & =i\left(I-i c \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\cdots\right) \partial_{\mu}\left(I+i c \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\cdots\right) \\
& =i\left(I-i c \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\cdots\right)\left(i c \partial_{\mu} \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\cdots\right)
\end{aligned}
$$

Lowest Order Lagrangian

- Since d_{μ} transforms for a general group element $g \in \mathcal{G}$ as $d_{\mu} \rightarrow h[\Pi, g] d_{\mu} h^{-1}[\Pi, g]$, we can see that

$$
\operatorname{Tr}\left(d_{\mu} d^{\mu}\right)
$$

- Expanding $i U^{-1} \partial_{\mu} U$, we find, letting $c=\sqrt{2} / F_{0}$

$$
\begin{aligned}
i U^{-1} \partial_{\mu} U & =i\left(I-i c \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\cdots\right) \partial_{\mu}\left(I+i c \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\cdots\right) \\
& =i\left(I-i c \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\cdots\right)\left(i c \partial_{\mu} \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\cdots\right) \\
& =-c \partial_{\mu} \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\cdots
\end{aligned}
$$

Lowest Order Lagrangian

- Since d_{μ} transforms for a general group element $g \in \mathcal{G}$ as $d_{\mu} \rightarrow h[\Pi, g] d_{\mu} h^{-1}[\Pi, g]$, we can see that

$$
\operatorname{Tr}\left(d_{\mu} d^{\mu}\right)
$$

- Expanding $i U^{-1} \partial_{\mu} U$, we find, letting $c=\sqrt{2} / F_{0}$

$$
\begin{aligned}
i U^{-1} \partial_{\mu} U & =i\left(I-i c \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\cdots\right) \partial_{\mu}\left(I+i c \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\cdots\right) \\
& =i\left(I-i c \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\cdots\right)\left(i c \partial_{\mu} \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\cdots\right) \\
& =-c \partial_{\mu} \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\cdots \\
& =-\frac{\sqrt{2}}{F_{0}} \partial_{\mu} \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\cdots
\end{aligned}
$$

Lowest Order Lagrangian

- Since d_{μ} transforms for a general group element $g \in \mathcal{G}$ as $d_{\mu} \rightarrow h[\Pi, g] d_{\mu} h^{-1}[\Pi, g]$, we can see that

$$
\operatorname{Tr}\left(d_{\mu} d^{\mu}\right)
$$

- Expanding $i U^{-1} \partial_{\mu} U$, we find, letting $c=\sqrt{2} / F_{0}$

$$
i U^{-1} \partial_{\mu} U=-\frac{\sqrt{2}}{F_{0}} \partial_{\mu} \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\cdots
$$

- Therefore, we find that d_{μ} is

$$
d_{\mu, \hat{a}} \hat{T}^{\hat{a}}=-\frac{\sqrt{2}}{F_{0}} \partial_{\mu} \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\cdots \quad \Longrightarrow \quad d_{\mu, \hat{a}}=-\frac{\sqrt{2}}{F_{0}} \partial_{\mu} \Pi_{\hat{a}}+\cdots
$$

Lowest Order Lagrangian

- Since d_{μ} transforms for a general group element $g \in \mathcal{G}$ as $d_{\mu} \rightarrow h[\Pi, g] d_{\mu} h^{-1}[\Pi, g]$, we can see that

$$
\operatorname{Tr}\left(d_{\mu} d^{\mu}\right)
$$

- Expanding $i U^{-1} \partial_{\mu} U$, we find, letting $c=\sqrt{2} / F_{0}$

$$
i U^{-1} \partial_{\mu} U=-\frac{\sqrt{2}}{F_{0}} \partial_{\mu} \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\cdots
$$

- Therefore, we find that d_{μ} is

$$
d_{\mu, \hat{a}} \hat{T}^{\hat{a}}=-\frac{\sqrt{2}}{F_{0}} \partial_{\mu} \Pi_{\hat{a}} \hat{T}^{\hat{a}}+\cdots \quad \Longrightarrow \quad d_{\mu, \hat{a}}=-\frac{\sqrt{2}}{F_{0}} \partial_{\mu} \Pi_{\hat{a}}+\cdots
$$

- The lowest order Lagrangian is thus

$$
\mathcal{L}^{(2)}=\frac{F_{0}^{2}}{4} \operatorname{Tr}\left(d_{\mu} d^{\mu}\right)=\frac{1}{2}\left(\partial_{\mu} \Pi_{\hat{a}}\right)\left(\partial^{\mu} \Pi_{\hat{a}}\right)+\cdots
$$

Part III
 Chiral Perturbation Theory (ChPT)

Goldstone Boson Matrix

- Symmetry group is $\mathcal{G}=\mathrm{SU}(3)_{L} \otimes \mathrm{SU}(3)_{R}$ which is broken down to $\mathcal{H}=\mathrm{SU}(3)_{V}$

Goldstone Boson Matrix

- Symmetry group is $\mathcal{G}=\mathrm{SU}(3)_{L} \otimes \mathrm{SU}(3)_{R}$ which is broken down to $\mathcal{H}=\mathrm{SU}(3)_{V}$
- We can write generic element $g \in \mathcal{G}$ as

$$
g=(L, R) \quad L \in \mathrm{SU}(3)_{L}, R \in \mathrm{SU}(3)_{R}
$$

Goldstone Boson Matrix

- Symmetry group is $\mathcal{G}=\mathrm{SU}(3)_{L} \otimes \mathrm{SU}(3)_{R}$ which is broken down to $\mathcal{H}=\mathrm{SU}(3)_{V}$
- We can write generic element $g \in \mathcal{G}$ as

$$
g=(L, R) \quad L \in \mathrm{SU}(3)_{L}, R \in \mathrm{SU}(3)_{R}
$$

- An element $h \in \mathcal{H}$ can be written as

$$
h=(V, V) \quad V \in \mathrm{SU}(3)_{V}
$$

Goldstone Boson Matrix

- Symmetry group is $\mathcal{G}=\mathrm{SU}(3)_{L} \otimes \mathrm{SU}(3)_{R}$ which is broken down to $\mathcal{H}=\mathrm{SU}(3)_{V}$
- We can write generic element $g \in \mathcal{G}$ as

$$
g=(L, R) \quad L \in \mathrm{SU}(3)_{L}, R \in \mathrm{SU}(3)_{R}
$$

- An element $h \in \mathcal{H}$ can be written as

$$
h=(V, V) \quad V \in \mathrm{SU}(3)_{V}
$$

- Note that a generic element of g can be written as

$$
g=(L, R)=\left(L, R L^{\dagger} L\right)=\left(1, R L^{\dagger}\right)(L, L)
$$

Goldstone Boson Matrix

Symmetry group is $\mathcal{G}=\mathrm{SU}(3)$, $R(3)_{V}$
$\mathcal{H}=\mathrm{SU}$ ca
This is similar to $e^{i \sqrt{2} \Theta_{a} T^{a} / F_{0}}=U[\Pi] h[\Pi, g]$
g can be written as
$g=(L, R)=\left(L, R L^{\dagger} L\right)=\left(1, R L^{\dagger}\right)(L, L)$

Goldstone Boson Matrix

- Symmetry group is $\mathcal{G}=\mathrm{SU}(3)_{L} \otimes \mathrm{SU}(3)_{R}$ which is broken down to $\mathcal{H}=\mathrm{SU}(3)_{V}$
- We can write generic element $g \in \mathcal{G}$ as

$$
g=(L, R) \quad L \in \mathrm{SU}(3)_{L}, R \in \mathrm{SU}(3)_{R}
$$

- An element $h \in \mathcal{H}$ can be written as

$$
h=(V, V) \quad V \in \mathrm{SU}(3)_{V}
$$

- Note that a generic element of g can be written as

$$
g=(L, R)=\left(L, R L^{\dagger} L\right)=\left(1, R L^{\dagger}\right)(L, L)
$$

- We identify the Goldstone matrix as $\Sigma=R L^{\dagger} \in \mathrm{SU}(3)$

Goldstone Matrix

- The Goldstone matrix is

$$
\Sigma=R L^{\dagger}=\exp \left(\frac{i \sqrt{2}}{f_{\pi}} \Pi^{a} \lambda_{a}\right)
$$

Goldstone Matrix

- The Goldstone matrix is

$$
\Sigma=R L^{\dagger}=\exp \left(\frac{i \sqrt{2}}{f_{\pi}} \Pi^{a} \lambda_{a}\right)
$$

- $\Pi^{a} \lambda_{a}$ is

$$
\Pi^{a} \lambda_{a}=\left(\begin{array}{ccc}
\pi^{0}+\frac{1}{\sqrt{3}} \eta & \sqrt{2} \pi^{+} & \sqrt{2} K^{+} \\
\sqrt{2} \pi^{-} & -\pi^{0}+\frac{1}{3} \eta & \sqrt{2} K^{0} \\
\sqrt{2} K^{-} & \sqrt{2} \bar{K}^{0} & -\frac{2}{3} \eta
\end{array}\right)
$$

Goldstone Matrix

- The Goldstone matrix is

$$
\Sigma=R L^{\dagger}=\exp \left(\frac{i \sqrt{2}}{f_{\pi}} \Pi^{a} \lambda_{a}\right)
$$

- $\Pi^{a} \lambda_{a}$ is

$$
\Pi^{a} \lambda_{a}=\left(\begin{array}{ccc}
\pi^{0}+\frac{1}{\sqrt{3}} \eta & \sqrt{2} \pi^{+} & \sqrt{2} K^{+} \\
\sqrt{2} \pi^{-} & -\pi^{0}+\frac{1}{3} \eta & \sqrt{2} K^{0} \\
\sqrt{2} K^{-} & \sqrt{2} \bar{K}^{0} & -\frac{2}{3} \eta
\end{array}\right)
$$

π^{0} : Neutral pion
$\pi^{ \pm}$: Charged pions

Goldstone Matrix

- The Goldstone matrix is

$$
\Sigma=R L^{\dagger}=\exp \left(\frac{i \sqrt{2}}{f_{\pi}} \Pi^{a} \lambda_{a}\right)
$$

- $\Pi^{a} \lambda_{a}$ is

$$
\Pi^{a} \lambda_{a}=\left(\begin{array}{ccc}
\pi^{0}+\frac{1}{\sqrt{3}} \eta & \sqrt{2} \pi^{+} & \sqrt{2} K^{+} \\
\sqrt{2} \pi^{-} & -\pi^{0}+\frac{1}{3} \eta & \sqrt{2} K^{0} \\
\sqrt{2} K^{-} & \sqrt{2} \bar{K}^{0} & -\frac{2}{3} \eta
\end{array}\right)
$$

K^{0}, \bar{K}^{0} : Neutral Kaon and anit-neutral Kaon
$K^{ \pm}$: Charged Kaons

Goldstone Matrix

- The Goldstone matrix is

$$
\Sigma=R L^{\dagger}=\exp \left(\frac{i \sqrt{2}}{f_{\pi}} \Pi^{a} \lambda_{a}\right)
$$

- $\Pi^{a} \lambda_{a}$ is

$$
\Pi^{a} \lambda_{a}=\left(\begin{array}{ccc}
\pi^{0}+\frac{1}{\sqrt{3}} \eta & \sqrt{2} \pi^{+} & \sqrt{2} K^{+} \\
\sqrt{2} \pi^{-} & -\pi^{0}+\frac{1}{3} \eta & \sqrt{2} K^{0} \\
\sqrt{2} K^{-} & \sqrt{2} \bar{K}^{0} & -\frac{2}{3} \eta
\end{array}\right)
$$

η : Eta

Transformations Properties

- Under a generic group element $g=(\tilde{L}, \tilde{R}), \Sigma$ transforms as

Transformations Properties

- Under a generic group element $g=(\tilde{L}, \tilde{R}), \Sigma$ transforms as

$$
(1, \Sigma)=\left(1, R L^{\dagger}\right) \rightarrow(\tilde{L}, \tilde{R})\left(1, R L^{\dagger}\right)
$$

Transformations Properties

- Under a generic group element $g=(\tilde{L}, \tilde{R}), \Sigma$ transforms as

$$
\begin{aligned}
(1, \Sigma)=\left(1, R L^{\dagger}\right) & \rightarrow(\tilde{L}, \tilde{R})\left(1, R L^{\dagger}\right) \\
& =\left(\tilde{L}, \tilde{R} R L^{\dagger}\right)
\end{aligned}
$$

Transformations Properties

- Under a generic group element $g=(\tilde{L}, \tilde{R}), \Sigma$ transforms as

$$
\begin{aligned}
(1, \Sigma)=\left(1, R L^{\dagger}\right) & \rightarrow(\tilde{L}, \tilde{R})\left(1, R L^{\dagger}\right) \\
& =\left(\tilde{L}, \tilde{R} R L^{\dagger}\right) \\
& =\left(\tilde{L}, \tilde{R} R L^{\dagger} \tilde{L}^{\dagger} \tilde{L}\right)
\end{aligned}
$$

Transformations Properties

- Under a generic group element $g=(\tilde{L}, \tilde{R}), \Sigma$ transforms as

$$
\begin{aligned}
(1, \Sigma)=\left(1, R L^{\dagger}\right) & \rightarrow(\tilde{L}, \tilde{R})\left(1, R L^{\dagger}\right) \\
& =\left(\tilde{L}, \tilde{R} R L^{\dagger}\right) \\
& =\left(\tilde{L}, \tilde{R} R L^{\dagger} \tilde{L}^{\dagger} \tilde{L}\right) \\
& =\left(1, \tilde{R} R L^{\dagger} \tilde{L}^{\dagger}\right)(\tilde{L}, \tilde{L})
\end{aligned}
$$

Transformations Properties

- Under a generic group element $g=(\tilde{L}, \tilde{R}), \Sigma$ transforms as

$$
\begin{aligned}
(1, \Sigma)=\left(1, R L^{\dagger}\right) & \rightarrow(\tilde{L}, \tilde{R})\left(1, R L^{\dagger}\right) \\
& =\left(\tilde{L}, \tilde{R} R L^{\dagger}\right) \\
& =\left(\tilde{L}, \tilde{R} R L^{\dagger} \tilde{L}^{\dagger} \tilde{L}\right) \\
& =\left(1, \tilde{R} R L^{\dagger} \tilde{L}^{\dagger}\right)(\tilde{L}, \tilde{L}) \\
& =\left(1, \tilde{R} \Sigma \tilde{L}^{\dagger}\right) h
\end{aligned}
$$

Transformations Properties

- Under a generic group element $g=(\tilde{L}, \tilde{R}), \Sigma$ transforms as

$$
\Sigma \rightarrow \tilde{R} \Sigma \tilde{L}^{\dagger}
$$

Transformations Properties

- Under a generic group element $g=(\tilde{L}, \tilde{R}), \Sigma$ transforms as

$$
\Sigma \rightarrow \tilde{R} \Sigma \tilde{L}^{\dagger}
$$

- Under $h=(V, V) \in \mathcal{H}, \Sigma$ transforms as

Transformations Properties

- Under $h=(V, V) \in \mathcal{H}, \Sigma$ transforms as $\left(c=\sqrt{2} / f_{\pi}, \tau^{a}=\lambda_{a} / 2\right)$

$$
\Sigma \rightarrow V \Sigma V^{\dagger}
$$

Transformations Properties

- Under $h=(V, V) \in \mathcal{H}, \Sigma$ transforms as $\left(c=\sqrt{2} / f_{\pi}, \tau^{a}=\lambda_{a} / 2\right)$

$$
\begin{aligned}
\Sigma & \rightarrow V \Sigma V^{\dagger} \\
& =V \exp \left(i c \Pi^{a} \lambda_{a}\right) V^{\dagger}+\cdots
\end{aligned}
$$

Transformations Properties

- Under $h=(V, V) \in \mathcal{H}, \Sigma$ transforms as $\left(c=\sqrt{2} / f_{\pi}, \tau^{a}=\lambda_{a} / 2\right)$

$$
\begin{aligned}
\Sigma & \rightarrow V \Sigma V^{\dagger} \\
& =V \exp \left(i c \Pi^{a} \lambda_{a}\right) V^{\dagger} \\
& =\left(I+i \alpha^{a} \tau_{a}\right)\left(I+i c \Pi^{b} \tau_{b}\right)\left(I-i \alpha^{c} \tau_{c}\right)+\cdots
\end{aligned}
$$

Transformations Properties

- Under $h=(V, V) \in \mathcal{H}, \Sigma$ transforms as $\left(c=\sqrt{2} / f_{\pi}, \tau^{a}=\lambda_{a} / 2\right)$

$$
\begin{aligned}
\Sigma & \rightarrow V \Sigma V^{\dagger} \\
& =V \exp \left(i c \Pi^{a} \lambda_{a}\right) V^{\dagger} \\
& =\left(I+i \alpha^{a} \tau_{a}\right)\left(I+i c \Pi^{b} \tau_{b}\right)\left(I-i \alpha^{c} \tau_{c}\right)+\cdots \\
& =I+i c \Pi^{b} \tau_{b}-c \alpha^{a} \Pi^{b} \tau_{a} \tau_{b}+c \alpha^{a} \Pi^{b} \tau_{b} \tau_{a}+\cdots
\end{aligned}
$$

Transformations Properties

- Under $h=(V, V) \in \mathcal{H}, \Sigma$ transforms as $\left(c=\sqrt{2} / f_{\pi}, \tau^{a}=\lambda_{a} / 2\right)$

$$
\begin{aligned}
\Sigma & \rightarrow V \Sigma V^{\dagger} \\
& =V \exp \left(i c \Pi^{a} \lambda_{a}\right) V^{\dagger} \\
& =\left(I+i \alpha^{a} \tau_{a}\right)\left(I+i c \Pi^{b} \tau_{b}\right)\left(I-i \alpha^{c} \tau_{c}\right)+\cdots \\
& =I+i c \Pi^{b} \tau_{b}-c \alpha^{a} \Pi^{b} \tau_{a} \tau_{b}+c \alpha^{a} \Pi^{b} \tau_{b} \tau_{a}+\cdots \\
& =I+i c \Pi^{b} \tau_{b}-c \alpha^{a} \Pi^{b}\left[\tau_{a}, \tau_{b}\right]+\cdots
\end{aligned}
$$

Transformations Properties

- Under $h=(V, V) \in \mathcal{H}, \Sigma$ transforms as $\left(c=\sqrt{2} / f_{\pi}, \tau^{a}=\lambda_{a} / 2\right)$

$$
\begin{aligned}
\Sigma & \rightarrow V \Sigma V^{\dagger} \\
& =V \exp \left(i c \Pi^{a} \lambda_{a}\right) V^{\dagger} \\
& =\left(I+i \alpha^{a} \tau_{a}\right)\left(I+i c \Pi^{b} \tau_{b}\right)\left(I-i \alpha^{c} \tau_{c}\right)+\cdots \\
& =I+i c \Pi^{b} \tau_{b}-c \alpha^{a} \Pi^{b} \tau_{a} \tau_{b}+c \alpha^{a} \Pi^{b} \tau_{b} \tau_{a}+\cdots \\
& =I+i c \Pi^{b} \tau_{b}-c \alpha^{a} \Pi^{b}\left[\tau_{a}, \tau_{b}\right]+\cdots \\
& =I+i c \Pi^{b} \tau_{b}-i c \alpha^{a} \Pi^{b} f^{a b c} \tau_{c}+\cdots
\end{aligned}
$$

Transformations Properties

- Under $h=(V, V) \in \mathcal{H}, \Sigma$ transforms as $\left(c=\sqrt{2} / f_{\pi}, \tau^{a}=\lambda_{a} / 2\right)$

$$
\begin{aligned}
\Sigma & \rightarrow V \Sigma V^{\dagger} \\
& =V \exp \left(i c \Pi^{a} \lambda_{a}\right) V^{\dagger} \\
& =\left(I+i \alpha^{a} \tau_{a}\right)\left(I+i c \Pi^{b} \tau_{b}\right)\left(I-i \alpha^{c} \tau_{c}\right)+\cdots \\
& =I+i c \Pi^{b} \tau_{b}-c \alpha^{a} \Pi^{b} \tau_{a} \tau_{b}+c \alpha^{a} \Pi^{b} \tau_{b} \tau_{a}+\cdots \\
& =I+i c \Pi^{b} \tau_{b}-c \alpha^{a} \Pi^{b}\left[\tau_{a}, \tau_{b}\right]+\cdots \\
& =I+i c \Pi^{b} \tau_{b}-i c \alpha^{a} \Pi^{b} f^{a b c} \tau_{c}+\cdots \\
& =I+i c \tau_{c}\left(\Pi^{c}-f^{a b c} \alpha^{a} \Pi^{b}\right)+\cdots
\end{aligned}
$$

Transformations Properties

- Under a generic group element $g=(\tilde{L}, \tilde{R}), \Sigma$ transforms as

$$
\Sigma \rightarrow \tilde{R} \Sigma \tilde{L}^{\dagger}
$$

- Under $h=(V, V) \in \mathcal{H}, \Sigma$ transforms under adjoint!

$$
\Pi^{c} \xrightarrow{h} \Pi^{c}-f^{a b c} \alpha^{a} \Pi^{b}
$$

Transformations Properties

- Under a generic group element $g=(\tilde{L}, \tilde{R}), \Sigma$ transforms as

$$
\Sigma \rightarrow \tilde{R} \Sigma \tilde{L}^{\dagger}
$$

- Under $h=(V, V) \in \mathcal{H}, \Sigma$ transforms as

$$
\Pi^{c} \rightarrow \Pi^{c}-f^{a b c} \alpha^{a} \Pi^{b}
$$

- Under an element of the coset space $\left(I, R L^{\dagger}\right), \Sigma$ transforms as

Transformations Properties

- Under an element of the coset space $\left(I, R L^{\dagger}\right), \Sigma$ transforms as

$$
\mathcal{G} / \mathcal{H}=\{(L, R) \mathcal{H}\}
$$

Transformations Properties

- Under an element of the coset space $\left(I, R L^{\dagger}\right), \Sigma$ transforms as

$$
\mathcal{G} / \mathcal{H}=\{(L, R) \mathcal{H}\}
$$

Typical element in $(L, R) \mathcal{H}$ can be written as

$$
\begin{aligned}
(L, R)(V, V)=(L V, R V)=\left(L V, R L^{\dagger} L V\right) & =\left(I, R L^{\dagger}\right)(L V, L V) \\
& =\left(I, R L^{\dagger}\right)\left(V^{\prime}, V^{\prime}\right)
\end{aligned}
$$

Transformations Properties

- Under an element of the coset space $\left(I, R L^{\dagger}\right), \Sigma$ transforms as

$$
\mathcal{G} / \mathcal{H}=\{(L, R) \mathcal{H}\}
$$

Typical element in $(L, R) \mathcal{H}$ can be written as

$$
\begin{aligned}
(L, R)(V, V)=(L V, R V)=\left(L V, R L^{\dagger} L V\right) & =\left(I, R L^{\dagger}\right)(L V, L V) \\
& =\left(I, R L^{\dagger}\right)\left(V^{\prime}, V^{\prime}\right)
\end{aligned}
$$

Thus, $\left(1, R L^{\dagger}\right)\left(V^{\prime}, V^{\prime}\right)=(L, R)(V, V)$, hence

$$
\left(1, R L^{\dagger}\right) \mathcal{H}=(L, R) \mathcal{H}
$$

Transformations Properties

- Under a generic group element $g=(\tilde{L}, \tilde{R}), \Sigma$ transforms as

$$
\Sigma \rightarrow \tilde{R} \Sigma \tilde{L}^{\dagger}
$$

- Under $h=(V, V) \in \mathcal{H}, \Sigma$ transforms as

$$
\Pi^{c} \rightarrow \Pi^{c}-f^{a b c} \alpha^{a} \Pi^{b}
$$

- Under an element of the coset space $\left(I, R L^{\dagger}\right), \Sigma$ transforms as

$$
\Sigma \rightarrow R L^{\dagger} \Sigma
$$

Transformations Properties

- Under a generic group element $g=(\tilde{L}, \tilde{R}), \Sigma$ transforms as

$$
\Sigma \rightarrow \tilde{R} \Sigma \tilde{L}^{\dagger}
$$

- Under $h=(V, V) \in \mathcal{H}, \Sigma$ transforms as

$$
\Pi^{c} \rightarrow \Pi^{c}-f^{a b c} \alpha^{a} \Pi^{b}
$$

- Under an element of the coset space $\left(I, R L^{\dagger}\right), \Sigma$ transforms as

$$
\begin{aligned}
& \Sigma \rightarrow R L^{\dagger} \Sigma \\
& \Sigma \rightarrow\left(I+i \alpha^{a} \tau_{a}\right)\left(I+i c \Pi^{a} \tau_{a}\right)+\cdots
\end{aligned}
$$

Transformations Properties

- Under a generic group element $g=(\tilde{L}, \tilde{R}), \Sigma$ transforms as

$$
\Sigma \rightarrow \tilde{R} \Sigma \tilde{L}^{\dagger}
$$

- Under $h=(V, V) \in \mathcal{H}, \Sigma$ transforms as

$$
\Pi^{c} \rightarrow \Pi^{c}-f^{a b c} \alpha^{a} \Pi^{b}
$$

- Under an element of the coset space $\left(I, R L^{\dagger}\right), \Sigma$ transforms as

$$
\begin{aligned}
\Sigma & \rightarrow R L^{\dagger} \Sigma \\
\Sigma & \rightarrow\left(I+i \alpha^{a} \tau_{a}\right)\left(I+i c \Pi^{a} \tau_{a}\right)+\cdots \\
& =I+i c \tau_{a}\left(\Pi^{a}+\frac{1}{c} \alpha^{a}\right)+\cdots
\end{aligned}
$$

Transformations Properties

- Under a generic group element $g=(\tilde{L}, \tilde{R}), \Sigma$ transforms as

$$
\Sigma \rightarrow \tilde{R} \Sigma \tilde{L}^{\dagger}
$$

- Under $h=(V, V) \in \mathcal{H}, \Sigma$ transforms as

$$
\Pi^{c} \rightarrow \Pi^{c}-f^{a b c} \alpha^{a} \Pi^{b}
$$

- Under an element of the coset space $\left(I, R L^{\dagger}\right), \Sigma$ transforms as a shift!

$$
\Pi^{a} \xrightarrow{g^{\mathcal{G} / \mathcal{H}}} \Pi^{a}+\frac{f_{\pi}}{\sqrt{2}} \alpha^{a}
$$

Chiral Lagrangian

- To compute the lowest order chiral Lagrangian, we need to compute $i \Sigma^{\dagger} \partial_{\mu} \Sigma$. Turns out that $i \Sigma^{\dagger} \partial_{\mu} \Sigma=d_{\mu}$

Chiral Lagrangian

- To compute the lowest order chiral Lagrangian, we need to compute $i \Sigma^{\dagger} \partial_{\mu} \Sigma$. Turns out that $i \Sigma^{\dagger} \partial_{\mu} \Sigma=d_{\mu}$

$$
i \Sigma^{\dagger} \partial_{\mu} \Sigma=i\left(I-i c \Pi^{a} \tau_{a}\right) \partial_{\mu}\left(I+i c \Pi^{a} \tau_{a}\right)+\cdots
$$

Chiral Lagrangian

- To compute the lowest order chiral Lagrangian, we need to compute $i \Sigma^{\dagger} \partial_{\mu} \Sigma$. Turns out that $i \Sigma^{\dagger} \partial_{\mu} \Sigma=d_{\mu}$

$$
\begin{aligned}
i \Sigma^{\dagger} \partial_{\mu} \Sigma & =i\left(I-i c \Pi^{a} \tau_{a}\right) \partial_{\mu}\left(I+i c \Pi^{a} \tau_{a}\right)+\cdots \\
& =-c \partial_{\mu} \Pi^{a} \tau_{a}+\cdots
\end{aligned}
$$

Chiral Lagrangian

- To compute the lowest order chiral Lagrangian, we need to compute $i \Sigma^{\dagger} \partial_{\mu} \Sigma$. Turns out that $i \Sigma^{\dagger} \partial_{\mu} \Sigma=d_{\mu}$

$$
\begin{aligned}
i \Sigma^{\dagger} \partial_{\mu} \Sigma & =i\left(I-i c \Pi^{a} \tau_{a}\right) \partial_{\mu}\left(I+i c \Pi^{a} \tau_{a}\right)+\cdots \\
& =-c \partial_{\mu} \Pi^{a} \tau_{a}+\cdots \\
& =-\frac{\sqrt{2}}{f_{\pi}} \partial_{\mu} \Pi^{a} \tau_{a}+\cdots
\end{aligned}
$$

Chiral Lagrangian

- To compute the lowest order chiral Lagrangian, we need to compute $i \Sigma^{\dagger} \partial_{\mu} \Sigma$. Turns out that $i \Sigma^{\dagger} \partial_{\mu} \Sigma=d_{\mu}$

$$
d_{\mu}=-\frac{\sqrt{2}}{f_{\pi}} \partial_{\mu} \Pi^{a} \tau_{a}+\cdots
$$

Chiral Lagrangian

- To compute the lowest order chiral Lagrangian, we need to compute $i \Sigma^{\dagger} \partial_{\mu} \Sigma$. Turns out that $i \Sigma^{\dagger} \partial_{\mu} \Sigma=d_{\mu}$
- To lowest order, d_{μ} is

$$
d_{\mu}=-\frac{\sqrt{2}}{f_{\pi}} \partial_{\mu} \Pi^{a} \tau_{a}+\cdots
$$

- The lowest order chiral Lagrangian is

$$
\mathcal{L}^{(2)}=\frac{f_{\pi}^{2}}{4} \operatorname{Tr}\left(d_{\mu} d^{\mu}\right)
$$

Chiral Lagrangian

- To compute the lowest order chiral Lagrangian, we need to compute $i \Sigma^{\dagger} \partial_{\mu} \Sigma$. Turns out that $i \Sigma^{\dagger} \partial_{\mu} \Sigma=d_{\mu}$
- To lowest order, d_{μ} is

$$
d_{\mu}=-\frac{\sqrt{2}}{f_{\pi}} \partial_{\mu} \Pi^{a} \tau_{a}+\cdots
$$

- The lowest order chiral Lagrangian is

$$
\mathcal{L}^{(2)}=\frac{f_{\pi}^{2}}{4} \operatorname{Tr}\left(d_{\mu} d^{\mu}\right)
$$

- Note that

$$
d_{\mu} d^{\mu}=-\Sigma\left(\partial_{\mu} \Sigma^{\dagger}\right) \Sigma\left(\partial^{\mu} \Sigma^{\dagger}\right)
$$

Chiral Lagrangian

- To compute the lowest order chiral Lagrangian, we need to compute $i \Sigma^{\dagger} \partial_{\mu} \Sigma$. Turns out that $i \Sigma^{\dagger} \partial_{\mu} \Sigma=d_{\mu}$
- To lowest order, d_{μ} is

$$
d_{\mu}=-\frac{\sqrt{2}}{f_{\pi}} \partial_{\mu} \Pi^{a} \tau_{a}+\cdots
$$

- The lowest order chiral Lagrangian is

$$
\mathcal{L}^{(2)}=\frac{f_{\pi}^{2}}{4} \operatorname{Tr}\left(d_{\mu} d^{\mu}\right)
$$

- Note that

$$
\begin{aligned}
d_{\mu} d^{\mu} & =-\Sigma\left(\partial_{\mu} \Sigma^{\dagger}\right) \Sigma\left(\partial^{\mu} \Sigma^{\dagger}\right) \\
& =\left(\partial_{\mu} \Sigma\right) \Sigma^{\dagger} \Sigma\left(\partial^{\mu} \Sigma^{\dagger}\right)+\text { total derivative }
\end{aligned}
$$

Chiral Lagrangian

- To compute the lowest order chiral Lagrangian, we need to compute $i \Sigma^{\dagger} \partial_{\mu} \Sigma$. Turns out that $i \Sigma^{\dagger} \partial_{\mu} \Sigma=d_{\mu}$
- To lowest order, d_{μ} is

$$
d_{\mu}=-\frac{\sqrt{2}}{f_{\pi}} \partial_{\mu} \Pi^{a} \tau_{a}+\cdots
$$

- The lowest order chiral Lagrangian is

$$
\mathcal{L}^{(2)}=\frac{f_{\pi}^{2}}{4} \operatorname{Tr}\left(d_{\mu} d^{\mu}\right)
$$

- Note that

$$
\begin{aligned}
d_{\mu} d^{\mu} & =-\Sigma^{\dagger}\left(\partial_{\mu} \Sigma\right) \Sigma^{\dagger}\left(\partial^{\mu} \Sigma\right) \\
& =\left(\partial_{\mu} \Sigma^{\dagger}\right) \Sigma \Sigma^{\dagger}\left(\partial^{\mu} \Sigma^{\dagger}\right)+\text { total derivative } \\
& =\left(\partial_{\mu} \Sigma\right)\left(\partial^{\mu} \Sigma^{\dagger}\right)+\text { total derivative }
\end{aligned}
$$

Chiral Lagrangian

- To compute the lowest order chiral Lagrangian, we need to compute $i \Sigma^{\dagger} \partial_{\mu} \Sigma$. Turns out that $i \Sigma^{\dagger} \partial_{\mu} \Sigma=d_{\mu}$
- To lowest order, d_{μ} is

$$
d_{\mu}=-\frac{\sqrt{2}}{f_{\pi}} \partial_{\mu} \Pi^{a} \tau_{a}+\cdots
$$

- The lowest order chiral Lagrangian is

$$
\mathcal{L}^{(2)}=\frac{f_{\pi}^{2}}{4} \operatorname{Tr}\left(d_{\mu} d^{\mu}\right)=\frac{f_{\pi}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\right)
$$

Quark Masses and Symmetry Breaking

- Chiral symmetry is not exact. The quark masses break chiral symmetry.

Quark Masses and Symmetry Breaking

- Chiral symmetry is not exact. The quark masses break chiral symmetry.
- Can modify chiral Lagrangian to include symmetry breaking

$$
\mathcal{L}^{(2)}=\frac{f_{\pi}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\right)+\frac{f_{\pi}^{2} B_{0}}{2} \operatorname{Tr}\left(\Sigma M^{\dagger}+M \Sigma^{\dagger}\right)
$$

Quark Masses and Symmetry Breaking

- Chiral symmetry is not exact. The quark masses break chiral symmetry.
- Can modify chiral Lagrangian to include symmetry breaking

$$
\mathcal{L}^{(2)}=\frac{f_{\pi}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\right)+\frac{f_{\pi}^{2} B_{0}}{2} \operatorname{Tr}\left(\Sigma M^{\dagger}+M \Sigma^{\dagger}\right)
$$

- Treat M as a field which transforms as $M \rightarrow R M L^{\dagger}$ (Spurion field)

Quark Masses and Symmetry Breaking

- Chiral symmetry is not exact. The quark masses break chiral symmetry.
- Can modify chiral Lagrangian to include symmetry breaking

$$
\mathcal{L}^{(2)}=\frac{f_{\pi}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\right)+\frac{f_{\pi}^{2} B_{0}}{2} \operatorname{Tr}\left(\Sigma M^{\dagger}+M \Sigma^{\dagger}\right)
$$

- Treat M as a field which transforms as $M \rightarrow R M L^{\dagger}$ (Spurion field)
- \mathcal{H} symmetry is broken by the expectation value of M

$$
\langle M\rangle=\operatorname{diag}\left(m_{u}, m_{d}, m_{s}\right)
$$

Gauging Global Symmetry and Gauge Bosons

- It is possible to describe gauge interactions using chiral Lagrangian

Gauging Global Symmetry and Gauge Bosons

- It is possible to describe gauge interactions using chiral Lagrangian
- To do so, the ordinary derivative is replaced with a covariant one

$$
\mathcal{L}^{(2)}=\frac{f_{\pi}^{2}}{4} \operatorname{Tr}\left(D_{\mu} \Sigma D^{\mu} \Sigma\right)+\frac{f_{\pi}^{2} B_{0}}{2} \operatorname{Tr}\left(\Sigma M^{\dagger}+M \Sigma^{\dagger}\right)
$$

where

$$
D_{\mu} \Sigma=\partial_{\mu} \Sigma-i r_{\mu} \Sigma+i \Sigma l_{\mu}
$$

Gauging Global Symmetry and Gauge Bosons

- It is possible to describe gauge interactions using chiral Lagrangian
- To do so, the ordinary derivative is replaced with a covariant one

$$
\mathcal{L}^{(2)}=\frac{f_{\pi}^{2}}{4} \operatorname{Tr}\left(D_{\mu} \Sigma D^{\mu} \Sigma\right)+\frac{f_{\pi}^{2} B_{0}}{2} \operatorname{Tr}\left(\Sigma M^{\dagger}+M \Sigma^{\dagger}\right)
$$

where

$$
D_{\mu} \Sigma=\partial_{\mu} \Sigma-i r_{\mu} \Sigma+i \Sigma l_{\mu}
$$

- Gauge bosons are described by r_{μ} and l_{μ}.

Gauging Global Symmetry and Gauge Bosons

- It is possible to describe gauge interactions using chiral Lagrangian
- To do so, the ordinary derivative is replaced with a covariant one

$$
\mathcal{L}^{(2)}=\frac{f_{\pi}^{2}}{4} \operatorname{Tr}\left(D_{\mu} \Sigma D^{\mu} \Sigma\right)+\frac{f_{\pi}^{2} B_{0}}{2} \operatorname{Tr}\left(\Sigma M^{\dagger}+M \Sigma^{\dagger}\right)
$$

where

$$
D_{\mu} \Sigma=\partial_{\mu} \Sigma-i r_{\mu} \Sigma+i \Sigma l_{\mu}
$$

- Gauge bosons are described by r_{μ} and l_{μ}.
- This can be done for a general group \mathcal{G} by modifying the Maurer-Cartan form. $i U^{-1} \partial_{\mu} U$ is replaced with

$$
\bar{A}_{\mu}=U[\Pi]^{-1}\left(A_{\mu}+i \partial_{\mu}\right) U[\Pi]=d_{\mu}+e_{\mu}
$$

Summary

- When we have a theory invariant under a Lie group \mathcal{G} which is broken down to a subgroup \mathcal{H}, need a method to describe dynamics of the NBG
- Found that a smart way to parameterize the NBG was through

$$
\exp \left(\frac{i \sqrt{2}}{F_{0}} \Pi_{\hat{a}} \hat{T}^{\hat{a}}\right)
$$

- Can construct a term d_{μ} from Maurer-Cartan form $i U[\Pi]^{-1} \partial_{\mu} U[\Pi]$ which transformed under g as

$$
d_{\mu} \rightarrow h[\Pi, g] d_{\mu} h[\Pi, g]^{-1}
$$

- Lowest order Lagrangian can be constructed using

$$
\mathcal{L}^{(2)}=\frac{F_{0}^{2}}{4} \operatorname{Tr}\left(d_{\mu} d^{\mu}\right)
$$

The End

References

國 Panico，G．，\＆Wulzer，A．（2016）
The Composite Nambu－Goldstone Higgs．Lecture Notes in Physics．
arXiv：1506．01961v2
doi：10．1007／978－3－319－22617－0
國 Scherer，S．（2002）
Introduction to Chiral Perturbation Theory．
Advances in Nuclear Physics，Vol．27，p．277－538．
arXiv：hep－ph／0210398
doi：10．1007／0－306－47916－8＿2
囯 Adler，S．L．，Mandelstam，S．，Weinberg，S．，\＆Zimmermann，W．（1970）． Lectures on Elementary Particles and Quantum Field Theory（Vol．1） （S．Deser，M．Grisaru，\＆H．Pendleton，Eds．）．
Cambridge：M．I．T．Press．
國 Goddard，P．，\＆Olive，D．I．（1978）．
Magnetic Monopoles in Gauge Field Theories
Reports on Progress in Physics，41（9），1357－1437
doi：10．1088／0034－4885／41／9／001

