

SUSY Parameter Determination at the LHC Using Kinematic Edges and Cross Sections

Herbi Dreiner

Collaboration with:Michael Krämer (Aachen)Jonas Lindert(Aachen)Ben O'Leary(Aachen)

Paper: **JHEP** 1004:109,2010

Main Idea

- Extend Fittino to include total cross sections at the LHC
- How do the fits improve?
- Substantial improvement at low energy and luminosity: 7 TeV, 1 fb⁻¹; not so much at high energy and lumi
- Our extension will be included in next release of Fittino

FITTINO

- Numerical fitting program to SUSY Lagrangian parameters
- Fittino, a program for determining MSSM parameters from collider observables using an iterative method

Philip Bechtle, Klaus Desch, Peter Wienemann,

Comput.Phys.Commun.174:47-70,2006; hep-ph/0412012

• Constraining SUSY models with Fittino using measurements before, with and beyond the LHC

Philip Bechtle, Klaus Desch, Mathias Uhlenbrock, Peter Wienemann,

Eur.Phys.J.C66:215-259,2010; arXiv:0907.2589 [hep-ph]

Basics of Fittino

• Start from pMSSM: 19 \mathcal{L}_{SUSY} parameters, P_i

(CP conservation, MFV, degen. 1st & 2nd generation, only $A_{\tau,b,t}$)

• Define set of observables O_i which depend through loops on all P_i

 $O_i = f(\text{all parameters } P_i)$

- Unbiased starting point
- Move in parameter space with various techniques
 - Simulated Annealing
 - Markov Chain
 - χ^2 minimization via MINIMIZE in MINUIT

• Find best fit

Possible LHC Observables in Fittino

- (• Low energy observables)
 - Masses, limits on masses of unobserved particles
 - Widths & branching fractions
 - Edges in mass spectra
 - Products of cross—sections and branching fractions
 - Ratios of branching fractions

Extend to include total rates

Inclusive Cross Section

• $pp \longrightarrow \tilde{g}\tilde{g}, \ \tilde{g}\tilde{q}, \ \tilde{g}\tilde{q}^*, \ \tilde{q}\tilde{q}, \ \tilde{q}\tilde{q}^*, \ \tilde{q}^*\tilde{q}^*$

• Varies over about 5 orders of magnitude in the detectable range

Standard Cascade Chain

• Use the following observables in Fittino

Group I:

- $-m_{\ell\ell}^{\text{max}}$, the dilepton invariant mass edge,
- $-m_{a\ell\ell}^{\max}$, the jet-dilepton invariant mass edge,
- $m_{a\ell}^{\text{low}}$, the jet-lepton low invariant mass edge,
- $-m_{q\ell}^{high}$, the jet-lepton high invariant mass edge.
- Extend to more observables (Group II & III) for high Lumi and energy

<u>Cross Sections – Rates</u>

• Why weren't they included before in **Fittino**? (ILC X-sections are)

- Theoretical uncertainties expected to be too large (NLO?)
- Computation of rate signatures is too time consuming to be efficiently used in fit algorithms: HERWIG/PYTHIA with cuts
- Note: "Determining SUSY model parameters and masses at the LHC using crosssections, kinematic edges and other observables"; C. G. Lester, M. A. Parker, M. J. White, JHEP 0601 (2006) 080; hep-ph/0508143
- Also problematical: supercomputer, small number of points, nonreproducable results, "only" LO

• What is our proposal for implementation?

Consider Two Signatures

- 1. Inclusive signal of $n_{\rm jet} \ge 2$ with $p_{T,\rm jet} > 50\,{
 m GeV}$, $|\eta_{\rm jet}| < 2.5$ plus $\not\!\!\!E_T > 100\,{
 m GeV}$
- 2. Exclusive signal: 2 OSSF leptons (e or μ) with $p_{T,\ell} > 10 \,\text{GeV}$ and $|\eta_\ell| < 2.5$ plus signature 1.

• Rate:
$$\frac{N}{\text{Lumi}} = \sigma_{\text{theor}} \times \text{BR} \times \text{Acceptance}$$

- BR easily calculated with **SPheno** in **Fittino**
- Assume narrow-width approx. to factorize production and decay

Cross–Section: Look–up Tables

- Compute LO cross section $pp \longrightarrow \tilde{g}\tilde{g}, \ \tilde{g}\tilde{q}^*, \ \tilde{g}\tilde{q}^*, \ \tilde{q}\tilde{q}^*, \ \tilde{q}^*\tilde{q}^*$
- Store in $(m_{\tilde{q}}, m_{\tilde{q}})$ -grid: Masses 200 2000 GeV (Step size 20 GeV)
- Compute NLO K-factors (**Prospino**) and store in $(m_{\tilde{g}}, m_{\tilde{q}})$ -grid. Averaged over \tilde{q}, \tilde{q}^* and \tilde{q}_L, \tilde{q}_R (Step size 50 GeV)
- NLO X-section uncertainty (scale dependence) $\pm 10\%$
- PDF uncertainty $\pm 5\%$
- Assume overall theoretical uncertainty on X–section: $\pm 15\%$

• $\sqrt{s} = 10 \,\mathrm{TeV}$

Acceptance: Jet & Missing Energy Cuts

- Simple parton-level MC simulation
- Decayed all particles by phase space
- Ignored spin-correlations: averaging over charges in the final state \longrightarrow P. Richardson, hep-ph/0110108
- Furthermore: effects of intermediate decays from \tilde{q} to χ_1^0 tend to average out
- E_T -cut is well approx. as a function of the hard process (squark boosts) and the mass difference $m_{\tilde{q}} m_{\chi_1^0}$
- Accept. grid for each prod. process for [jets + E_T]: $(m_{\tilde{g}}, m_{\tilde{q}}, m_{\chi_1^0})$

Missing energy + jets acceptance for $m_{LSP} = 100 \text{ GeV}$

• AC(est.) = $\frac{\sigma_{\text{inclusive}}^{\text{cuts}}}{\sigma_{\text{inclusive}}}$

Acceptance: Leptons

- Compute analytical expressions for the distributions of near and far leptons in the squark rest frame
- Numerically estimate effect of the boost to the lab frame for generic lepton: store effect in grid
- Multiply the generic acceptance with the number of leptons at a given energy
- Multiply together all the acceptances (ignore correlations)

Acceptance: Compare with Herwig++

- Full parton-level simulation
- Including spin-correlations
- Random set of mSUGRA points (flat priors), with $m_{\tilde{q}} > m_{\tilde{q}}$
- Agree within $\pm 5\%$ or better \longrightarrow Uncertainty of Accept.
- Overall theoretical uncertainty on Xsection x Acceptance: $\pm 20\%$

$\longrightarrow \mathsf{RESULTS}$

Uncertainties on Input Observables

observable	nominal	statistical uncertainty				
	value	$for 7 \text{ TeV}/1 \text{ fb}^{-1}$	<u>for 14 TeV/1 fb⁻¹</u>	<u>for 14 TeV/10 fb⁻¹</u>		
group I						
$m_{\ell\ell}^{ m max}$	80.4	4.4	1.5	0.43		
$m_{q\ell\ell}^{ m max}$	452.1	36.0	12.0	3.6		
$m_{q\ell}^{ m low}$	318.6	19.7	6.5	3.0		
$m_{q\ell}^{ m high}$	396.0	13.5	4.5	3.9		
Event rate [fb]	$7 { m TeV}$		14 TeV			
	nominal value	uncertainty	nominal value	uncertainty		
R _{jjE}	4.6×10^3	9.1×10^2	4.8×10^4	9.5×10^{3}		
$R_{\ell\ell jj\not\!\!\!E_T}$	1.6×10^2	3.2×10^{1}	1.5×10^{3}	3.0×10^{2}		

SPS1a mSUGRA Fit

Figure 3: $\Delta \chi^2 = -2 \ln \mathcal{L} + 2 \ln \mathcal{L}_{\text{max}}$ contours showing M_0 against $M_{1/2}$ for 7 TeV/1 fb⁻¹ data. Fits are based on the four standard edges of group I without rates ("I, rates", left) and with rates ("I + rates", right). \mathcal{L} is the two-dimensional profile likelihood and \mathcal{L}_{max} the global maximum of the likelihood. The black dotted contours represent $\Delta \chi^2 = 1$ contours. See [15] for more details.

Quality of the Fit

	$M_0 \; [\text{GeV}]$	$M_{1/2} \; [\text{GeV}]$	aneta	$A_0 \; [\text{GeV}]$
SPS1a	100	250	10	-100
7 TeV and 1 fb^{-1}				
I + rates	$99.0 \ ^{+9.9}_{-9.1}$	$250.0 \ ^{+8.7}_{-6.5}$	$10.7 \ ^{+4.0}_{-8.8}$	$55.2 \begin{array}{c} +1048 \\ -254 \end{array}$

.

Non-Universal Gaugino Masses

Figure 6: $\Delta \chi^2$ contours showing M_0 against M_3 for 7 TeV/1 fb⁻¹ data. Fits are based on the four standard edges of group I without (left) and with rates (right).

Quality of the Fit

	M_0 [GeV]	M_1 [GeV]	M_2 [GeV]	M_3 [GeV]	aneta	$A_0 \; [\text{GeV}]$
SPS1a	100	250	250	250	10	-100
7 TeV and 1 fb^{-1}						
I + rates	91.1 $^{+27.3}_{-36.1}$	$236.5 \begin{array}{c} +67.1 \\ -57.9 \end{array}$	$242.6^{+51.6}_{-33.7}$	$251.0^{+9.5}_{-8.5}$	$10.5 \begin{array}{c} +7.4 \\ -7.3 \end{array}$	$-6.0 \begin{array}{c} +1088 \\ -582 \end{array}$

.

More (challenging) Kinematic Observables

Involving Third Generation

Group II:

- $-m_{q\ell\ell}^{\text{thr.}}$, the jet-dilepton threshold invariant mass edge,
- $-m_{T2}^{\tilde{q}}$, the squark stransverse mass,
- $m_{\tau\tau}^{\rm max}$, the di-tau invariant mass edge,
- $-m_{tb}^w$, the weighted top-bottom invariant mass edge,
- $-r_{\tilde{\ell}\tilde{\tau}\mathsf{BR}}$, the ratio of selectron- to stau-mediated $\tilde{\chi}_2^0$ decays.

Fit with Group II

I + rates

Figure 4: $\Delta \chi^2$ contours showing M_0 against $M_{1/2}$ for 14 TeV/1 fb⁻¹ data. Fits are based on the four standard edges of group I with rates (upper right), and on the observables of groups I and II with (lower right) and without rates (lower left).

Future: Using Rates

• Pure Kinematical Signatures suffer from problems

- Depending on SUSY point might not be sufficient for unambiguous and/or precise SUSY parameter determination
- Interpretation of mass endpoints assumes a mass hierarchy. Not necessarily distinct enough to resolve ambiguous hierarchies
- In split—SUSY scenario with heavy leptons, no cascade to leptons: usual approach breaks down
- Clearly the more information the better: include X-sections

