

SUSY Parameter Determination at the LHC Using Kinematic Edges and Cross Sections

Herbi Dreiner

Collaboration with:	Michael Krämer (Aachen) Jonas Lindert (Aachen) Ben O'Leary
(Aachen)	

Paper: JHEP 1004:109,2010

Main Idea

- Extend Fittino to include total cross sections at the LHC
-How do the fits improve?
- Substantial improvement at low energy and luminosity: $7 \mathrm{TeV}, 1 \mathrm{fb}^{-1}$; not so much at high energy and lumi
- Our extension will be included in next release of Fittino

FITTINO

- Numerical fitting program to SUSY Lagrangian parameters
- Fittino, a program for determining MSSM parameters from collider observables using an iterative method

Philip Bechtle, Klaus Desch, Peter Wienemann, Comput.Phys.Commun.174:47-70,2006; hep-ph/0412012

- Constraining SUSY models with Fittino using measurements before, with and beyond the LHC

Philip Bechtle, Klaus Desch, Mathias Uhlenbrock, Peter Wienemann, Eur.Phys.J.C66:215-259,2010; arXiv:0907.2589 [hep-ph]

Basics of Fittino

- Start from pMSSM: $19 \mathcal{L}_{\text {SUSY }}$ parameters, P_{j}
(CP conservation, MFV, degen. 1st \& 2nd generation, only $A_{\tau, b, t}$)
- Define set of observables O_{i} which depend through loops on all P_{j}

$$
O_{i}=f\left(\text { all parameters } P_{j}\right)
$$

- Unbiased starting point
- Move in parameter space with various techniques
- Simulated Annealing
- Markov Chain
- χ^{2} minimization via MINIMIZE in MINUIT
- Find best fit

Possible LHC Observables in Fittino

(•Low energy observables)

- Masses, limits on masses of unobserved particles
- Widths \& branching fractions
- Edges in mass spectra
- Products of cross-sections and branching fractions
- Ratios of branching fractions

Extend to include total rates

Inclusive Cross Section

$\bullet p p \longrightarrow \tilde{g} \tilde{q}, \tilde{q} \tilde{q}, \tilde{g} \tilde{q}^{*}, \tilde{q} \tilde{q}, \tilde{q}^{*}, \tilde{q}^{*} \tilde{q}^{*}$

- Varies over about 5 orders of magnitude in the detectable range

Standard Cascade Chain

- Use the following observables in Fittino

Group I:

- $m_{\ell \ell}^{\max }$, the dilepton invariant mass edge,
- $m_{q \ell \ell}^{\max }$, the jet-dilepton invariant mass edge,
- $m_{q \ell}^{\text {low }}$, the jet-lepton low invariant mass edge,
- $m_{q \ell}^{\text {high }}$, the jet-lepton high invariant mass edge.
- Extend to more observables (Group II \& III) for high Lumi and energy

Cross Sections - Rates

-Why weren't they included before in Fittino? (ILC X-sections are)

- Theoretical uncertainties expected to be too large (NLO?)
- Computation of rate signatures is too time consuming to be efficiently used in fit algorithms: HERWIG/PYTHIA with cuts
- Note: "Determining SUSY model parameters and masses at the LHC using crosssections, kinematic edges and other observables"; C. G. Lester, M. A. Parker, M. J. White, JHEP 0601 (2006) 080; hep-ph/0508143
- Also problematical: supercomputer, small number of points, nonreproducable results, "only" LO
\bullet What is our proposal for implementation?

Consider Two Signatures

1. Inclusive signal of $n_{\text {jet }} \geq 2$ with $p_{T, \text { jet }}>50 \mathrm{GeV},\left|\eta_{\mathrm{jet}}\right|<2.5$ plus $E_{T}>100 \mathrm{GeV}$
2. Exclusive signal: 2 OSSF leptons (e or μ) with $p_{T, \ell}>10 \mathrm{GeV}$ and $\left|\eta_{\ell}\right|<2.5$ plus signature 1 .

- Rate:

$$
\frac{N}{\text { Lumi }}=\sigma_{\text {theor }} \times \mathrm{BR} \times \text { Acceptance }
$$

- BR easily calculated with SPheno in Fittino
- Assume narrow-width approx. to factorize production and decay

Cross-Section: Look-up Tables

\bullet Compute LO cross section $p p \longrightarrow \tilde{g} \tilde{g}, \tilde{g} \tilde{q}, \tilde{g} \tilde{q}^{*}, \tilde{q} \tilde{q}, \tilde{q} \widetilde{q}^{*}, \tilde{q}^{*} \widetilde{q}^{*}$

- Store in $\left(m_{\tilde{g}}, m_{\tilde{q}}\right)$-grid: Masses $200-2000 \mathrm{GeV}$ (Step size 20 GeV)
- Compute NLO K-factors (Prospino) and store in ($m_{\tilde{g}}, m_{\tilde{q}}$)-grid. Averaged over \tilde{q}, \tilde{q}^{*} and $\tilde{q}_{L}, \tilde{q}_{R}$ (Step size 50 GeV)
- NLO X-section uncertainty (scale dependence) $\pm 10 \%$
- PDF uncertainty $\pm 5 \%$
- Assume overall theoretical uncertainty on X-section: $\pm 15 \%$

K factors for pp > gluino gluino (using Prospino2.1, MSTW08)

- $\sqrt{s}=10 \mathrm{TeV}$

Acceptance: Jet \& Missing Energy Cuts

- Simple parton-level MC simulation
- Decayed all particles by phase space
- Ignored spin-correlations: averaging over charges in the final state \longrightarrow P. Richardson, hep-ph/0110108
- Furthermore: effects of intermediate decays from \tilde{q} to χ_{1}^{0} tend to average out
- \ddot{Z}_{T}-cut is well approx. as a function of the hard process (squark boosts) and the mass difference $m_{\tilde{q}}-m_{\chi_{1}^{0}}$
- Accept. grid for each prod. process for [jets $\left.+E_{T}\right]: \quad\left(m_{\tilde{g}}, m_{\tilde{q}}, m_{\chi_{1}^{0}}\right)$

- $\mathrm{AC}($ est. $)=\frac{\sigma_{\text {inclusive }}^{\text {cuts }}}{\sigma_{\text {inclusive }}}$

Acceptance: Leptons

- Compute analytical expressions for the distributions of near and far leptons in the squark rest frame
- Numerically estimate effect of the boost to the lab frame for generic lepton: store effect in grid
- Multiply the generic acceptance with the number of leptons at a given energy
- Multiply together all the acceptances (ignore correlations)

Acceptance: Compare with Herwig++

- Full parton-level simulation
- Including spin-correlations
- Random set of mSUGRA points (flat priors), with $m_{\tilde{g}}>m_{\tilde{q}}$
- Agree within $\pm 5 \%$ or better \longrightarrow Uncertainty of Accept.
- Overall theoretical uncertainty on Xsection \times Acceptance: $\pm 20 \%$

Uncertainties on Input Observables

observable	nominal value	for $7 \mathrm{TeV} / 1_{\mathrm{fb}}{ }^{-1}$	statistical uncertainty for $14 \mathrm{TeV} / 1 \mathrm{fb}^{-1}$	for $14 \mathrm{TeV} / 10 \mathrm{fb}^{-1}$
group I				
$m_{\ell \ell}^{\max }$	80.4	4.4	1.5	0.43
$m_{q \ell \ell}^{\max }$	452.1	36.0	12.0	3.6
$m_{q \ell}^{\text {low }}$	318.6	19.7	6.5	3.0
$m_{q \ell}^{\text {high }}$	396.0	13.5	4.5	3.9

Event rate [fb]
14 TeV

nominal value	uncertainty	nominal value	uncertainty
4.6×10^{3}	9.1×10^{2}	4.8×10^{4}	9.5×10^{3}
1.6×10^{2}	3.2×10^{1}	1.5×10^{3}	3.0×10^{2}

SPS1a mSUGRA Fit

Figure 3: $\quad \Delta \chi^{2}=-2 \ln \mathcal{L}+2 \ln \mathcal{L}_{\text {max }}$ contours showing M_{0} against $M_{1 / 2}$ for $7 \mathrm{TeV} / 1 \mathrm{fb}^{-1}$ data. Fits are based on the four standard edges of group I without rates ("I, rattes", left) and with rates ("I + rates", right). \mathcal{L} is the two-dimensional profile likelihood and $\mathcal{L}_{\text {max }}$ the global maximum of the likelihood. The black dotted contours represent $\Delta \chi^{2}=1$ contours. See [15] for more details.

Quality of the Fit

$\frac{\text { SPS1a }}{\text { and } 1 \mathrm{fb}^{-1}}$

$$
\text { I + rates } \quad 99.0_{-9.1}^{+9.9} \quad 250.0_{-6.5}^{+8.7} \quad 10.7_{-8.8}^{+4.0} \quad 55.2_{-254}^{+1048}
$$

Non-Universal Gaugino Masses

Figure 6: $\quad \Delta \chi^{2}$ contours showing M_{0} against M_{3} for $7 \mathrm{TeV} / 1 \mathrm{fb}^{-1}$ data. Fits are based on the four standard edges of group I without (left) and with rates (right).

Quality of the Fit

SPS1a
100
250
250
200
10
-100
7 TeV and $1 \mathrm{fb}^{-1}$

More (challenging) Kinematic Observables

Involving Third Generation

Group II:

- $m_{q \ell \ell}^{\text {thr. }}$, the jet-dilepton threshold invariant mass edge,
- $m_{T 2}^{\tilde{q}}$, the squark stransverse mass,
- $m_{\tau \tau}^{\max }$, the di-tau invariant mass edge,
- $m_{t b}^{w}$, the weighted top-bottom invariant mass edge,
$-r_{\tilde{\ell} \tilde{\tau} \mathrm{BR}}$, the ratio of selectron- to stau-mediated $\tilde{\chi}_{2}^{0}$ decays.

Fit with Group II

$$
\mathrm{I}+\text { rates }
$$

I + II, rates

Figure 4: $\Delta \chi^{2}$ contours showing M_{0} against $M_{1 / 2}$ for $14 \mathrm{TeV} / 1 \mathrm{fb}^{-1}$ data. Fits are based on the four standard edges of group I with rates (upper right), and on the observables of groups I and II with (lower right) and without rates (lower left).

Future: Using Rates

- Pure Kinematical Signatures suffer from problems
- Depending on SUSY point might not be sufficient for unambiguous and/or precise SUSY parameter determination
- Interpretation of mass endpoints assumes a mass hierarchy. Not necessarily distinct enough to resolve ambiguous hierarchies
- In split-SUSY scenario with heavy leptons, no cascade to leptons: usual approach breaks down
- Clearly the more information the better: include X-sections

