

Overview

LHC commissioning progress at 7 TeV

- I'm not an accelerator physicist! Observing from ATLAS...

ATLAS commissioning at 7 TeV

LHC plans for the rest of 2010
LHC plans for 2011

- (or ask the Farmers Almanac !)

My comments and conclusions

* A lot stolen from LHCC meetings:
http://indico.cern.ch/conferenceDisplay.py?confId=92525

Hardware Commissioning

- New QPS fully deployed and tested
- Massive job, limited resources, very tight schedule
- All magnet circuits qualified for 3.5 TeV
- Main bends and quads to 6000 A
- Outstanding problem - discovered in final stages of HWC
- Multiple induced quenches during power off - related to power converter switch off at same time as a fast discharge
- new QPS - problem solved by a change of thresholds
- old QPS - problem still there
- Solution involves delaying one of the transients - requires modification of cards in tunnel
- Solution will be fully tested and deployed after initial beam operation
- Temporary fix: di/dt of MB limited to $2 \mathrm{~A} / \mathrm{s}$ (normally 10A/s)
- This fix has been used for all beam operation so far

Overall Progress with Beam

- Successful ramps with beam to 1.18 TeV .
- Injection and capture of both beams \& beam dump set up for safe beam.
- Machine tunes adjusted and controlled to nominal values routinely.
- Chromaticity measured and adjusted. Optics verified and corrected.
- Closed orbit adjusted to an rms of $\sim 0.45 \mathrm{~mm}$ (about +-2 mm peak to peak) \rightarrow factor 2 better than design orbit.
- Dispersion measured and verified (in vertical plane: 3 cm rms).
- Spectrometer and compensators set up and corrected with beam.
- Nominal separation bumps set up and included to corrected closed orbit.
- Golden reference orbit defined for collimation and machine protection.
- Collimation system (all ring collimators) set up. Efficiency: > 99.9\%.
- Beam feedback commissioning partially completed, still ongoing.
- Luminosity separation knobs tested.
- Grazing events to ATLAS and CMS. Splash events to all experiments.

Chapter 1e27

- $2 \times 2,1$ coll. pair, $\sim 1.1 \mathrm{e} 10 \mathrm{p} / \mathrm{bch}$
- b* $=11-10-11-10 \mathrm{~m}$
- 1022: record fill of Chapter 1e27
- long lumi lifetime
- 20 hours stable beams
- $\sim 100 / \mathrm{ub}$

Collision xs $\boldsymbol{\sim} \mathbf{8 0} \mathbf{~ m b}$

Collision rate $\boldsymbol{\sim} \mathbf{1 0 0 ~ H z}$

Record every collision to tape!

time from 4.4 17:26 CET (h)

time from 4.4 17:26 CET (h)

Transverse growth, fill 1022

Lumi region PRELIMINARY

 time from Apr 4-17:26 CET (h) O

time from stable beams (h)

- Reconstructed from b^{*} and emittances
vtx resolution unfolded

Squeeze

IP1\&5 lumi vs squeeze

- Raw (online) lumi plots on 10 apr 2010, during the squeeze to 2 m in IP1 and IP5
- Factor gained (raw numbers):
- ~4.5 in Pt5 (after min scan)
- ~4 in Pt1
- Not corrected for lumi decay over the $\sim 5 h$ of squeeze and mini scans

Chapter 1e28

Fill 1058

- First physics fill with $b^{*}=2 \mathrm{~m}$ in all IPs
- 3 bunches on 3 bunches (2 collisions per IP)

IP1	(ATLAS)
IP2	(ALICE)
IP5	(CMS)
IP8	(LHCb)

LUMI 1058 PRELIMINARY

$$
\times 10^{-2} \text { LUMI } 1022 \text { PRELIMINARY }
$$

time from 4.4 17:26 CET (h)
Collision rate ~ $1 \mathbf{k H z}$
Prescale collision trigger!

time from 24.4 3:13 CET (h)

Overview

LHC commissioning progress at 7 TeV

- I'm not an accelerator physicist! Observing from ATLAS...

ATLAS commissioning at 7 TeV

LHC plans for the rest of 2010
LHC plans for 2011

- (or ask the Farmers Almanac !)

My comments and conclusions

* A lot stolen from LHCC meetings:
http://indico.cern.ch/conferenceDisplay.py?confId=92525

Overall Statistics for 7 TeV Collisions

- Consider period through beginning of technical stop (Apr 26) , 21 runs total.
- Instantaneous luminosity L derived from:
- MBTS (trigger scintillators at $\pm 3.5 \mathrm{~m}$ from IP) double-side coincidence trigger rate
- LAr offline event selection (coincidence of in-time end-cap energy deposits)
- Measurement from dedicated LUCID forward detectors, at $\pm 17 \mathrm{~m}$ from IP
- Present overall L scale uncertainty $\sim 30 \%$ from systematic uncertainties (MC cross-section)
- Total luminosity about $1 \mathrm{nb}^{-1}, 69 \mathrm{M}$ MinBias events (81 M total) recorded, 1.6 MB /evt
- 96.4% of luminosity delivered with Stable Beams was recorded by ATLAS

Collision Event at 7 TeV with 2 Pile Up Vertices

©ATLAS送EXPERIMEN

Run Number: 152166, Event Number: 46777 Date: 2010-03-30 13:31:46 CEST
http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

Tracking: Data vs Monte Carlo

Detailed comparisons of Data and Monte Carlo at 7 TeV

SCT Det.

Comparison of tracking variables: the number of hits on tracks in Pixels and SCT for 7 TeV MinBias data and Monte Carlo.

Critical to simulate missing modules and beamspot position/size very carefully. Excellent agreement !

Validate ingredients of MC-based tracking efficiency.

Compare TRT highthreshold response for MinBias tracks and for electrons from conversions in 900 GeV data/MC.

TRT Det.

Mass Peaks in MinBias Data

Ks decays are abundant (bottom left), and provide stringent tests of tracking, including sensitivity to material effects (see later).

Reconstruction of ϕ peak (bottom right) requires use of $\mathrm{dE} / \mathrm{dx}$ information from Pixel detector (right) to identify $\mathrm{K}^{ \pm}$up to ${ }^{\sim} 500 \mathrm{MeV}$.

Reconstructed K_{s} and ϕ masses are consistent with PDG values, and widths are well reproduced by Monte Carlo.

Material in the Inner Detector $\gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$Conversion Candidate

Material in the Inner Detector $\gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$Conversions

Distribution of conversion radius for identified conversions shown for 900 GeV MinBias data.

MC distributions for "true" conversions and conversion candidates are compared to observed conversions in data. MC Dalitz decays are also shown in yellow.

Beampipe and three pixel layers are visible, along with first SCT layer at 30 cm .

Expanded radial scale shows Dalitz decays, beampipe, and first Pixel layer at 5 cm .

With larger statistics, this comparison can provide an absolute normalization to cross-check the accurately known beam-pipe material map.

Calorimeter: Jets at 7 TeV

Observed jets with PT > 20 GeV using MinBias trigger and integrated luminosity ~ $350 \mu \mathrm{~b}^{-1}$
Jet energy defined at EM scale, jet definition uses AntiKt $R=0.6$, and jets are shown for $|y|<2.8$.

Specific criteria used to remove a few events with problematic detector behavior (no impact on jets).
Distributions normalized to area. Observation of two jets above 200 GeV is consistent with Pythia.
Highest PT jets from di-jet event (shown before). ${ }^{27}$

Jets are 310 GeV and 350 GeV at EM scale - highest PT di-jet event so far !

Run Number: 152166, Event Number: 810258 Date: 2010-03-30 14:56:29 CEST

Di-jet Event at 7 TeV

Calorimeter: Missing E_{T} at 7 TeV

Missing ET computed using noise-suppressed clusters at EM scale, integrated luminosity ~ $110 \mu \mathrm{~b}^{-1}$ Specific criteria used to remove a few events with problematic detector behavior.
Excellent description over 6 orders of magnitude!

Observation of $\mathrm{J} / \psi \rightarrow \mu \mu$

Gaussian-mean mass: $3.06 \pm 0.02 \mathrm{GeV}$
Resolution: $0.08 \pm 0.02 \mathrm{GeV}$
Number of signal events: 49 ± 12
Number of background events: 28 ± 4
Signal and background are computed in a mass range: $2.82-3.30 \mathrm{GeV}$ (3σ around the peak).

First observation of $\mathrm{W} \rightarrow \mathrm{ev}, \mu v$ candidates

Show first 4 candidates, observed in integrated luminosity ~ $300 \mu \mathrm{~b}^{-1}$
atlas道 EXPERIMENT

Now have observed about one dozen candidate events.
This rate is consistent with SM expectations.

Properties of all events under intense study.
Optimization of event selection and background rejection are in progress.
Still too early to say anything quantitative.

Overview

LHC commissioning progress at 7 TeV

- I'm not an accelerator physicist! Observing from ATLAS...

ATLAS commissioning at 7 TeV

LHC plans for the rest of 2010
LHC plans for 2011

- (or ask the Farmers Almanac !)

My comments and conclusions

* A lot stolen from LHCC meetings:
http://indico.cern.ch/conferenceDisplay.py?confId=92525

Beyond the First $1 / \mathrm{nb}$

In the last 2 weeks:
Up to 6 filled bunches/beam
$\rightarrow 3$ colliding bunches/turn
Up to $2 e 10$ protons/bunch
~10/nb delivered!

PROTON PHYSICS: RAMP

Energy:	3500 GeV	$\mathrm{I}(\mathrm{B} 1):$	$1.23 \mathrm{e}+11$	$\mathrm{I}(\mathrm{B} 2):$	$1.30 \mathrm{e}+11$

FBCT Intensity and Beam Energy
Updated: 04:19:42

Comments 17-05-2010 03:35:55 : ramping for physics

6 bunches per beam in

BIS status and SMP flags
Link Status of Beam Permits Global Beam Permit Setup Beam Beam Presence
Moveable Devices Allowed In

Stable Beams

B1	B2
true	true
true	true
false	false
true	true
false	false
false	false
B2	ENABLED

Rest of 2010 Plan

- Increase number of bunches, and slowly the bunch charge
- Constraints: total current (safety), beam stability

Stage	lb (protons)	Nb	Stored E (kJ)	Stored E step	Peak L (Hz cm-2)
4 pilots	$5.00 \mathrm{E}+09$	4	11.2	1.00	$4.77 \mathrm{E}+27 \times 0.5$
4 bunches	$2.00 \mathrm{E}+10$	4	44.8	4.00	$7.63 \mathrm{E}+28 \times 0.5$
4 bunches	$5.00 \mathrm{E}+10$	4	112.0	2.50	$4.77 \mathrm{E}+29 \times 0.5$
8 bunches	$5.00 \mathrm{E}+10$	8	224.0	2.00	$9.54 \mathrm{E}+29 \times 0.5$
4×4 bunches	$5.00 \mathrm{E}+10$	16	448.0	2.00	$1.91 \mathrm{E}+30 \times 0.5$
8×4 bunches	$5.00 \mathrm{E}+10$	32	896.0	2.00	$3.81 \mathrm{E}+30$
43×43	$5.00 \mathrm{E}+10$	43	1204.0	1.34	$5.13 \mathrm{E}+30$
8 trains of 6 b	$8.00 \mathrm{E}+10$	48	2150.4	1.79	$1.33 \mathrm{E}+31$
50 ns trains	$8.00 \mathrm{E}+10$	96	4300.8	2.00	$2.67 \mathrm{E}+31$

$\beta^{\star}=2 \mathrm{~m}$, nominal emittance

Rest of 2010 Plan

- Increase number of bunches, and slowly the bunch charge
- Constraints: total current (safety), beam stability

$\beta^{\star}=2 \mathrm{~m}$, nominal emittance

Instantaneous Luminosity

$$
L=\frac{N^{2} k_{b} f}{4 \pi \sigma_{x} \sigma_{y}} F=\frac{N^{2} k_{b}^{\prime} \cdot f}{4 \pi \varepsilon_{n} \beta^{*}} F
$$

- Nearly all the parameters are variable (and not independent)
- Number of particles per bunch
- Number of bunches per beam
- Relativistic factor ($\mathrm{E} / \mathrm{m}_{0}$)
- Normalised emittance
- Beta function at the IP
- Crossing angle factor
- Full crossing angle
- Bunch length
- Transverse beam size at the IP

A somewhat pleasant surprise

- Go to "nominal" (that means high, 1e11) bunch charge now ?!

$$
\begin{aligned}
& L \sim\left(b i 1^{\star} b i 2\right)^{\star} n b \\
& I \sim(b i 1+b i 2)^{\star} n b
\end{aligned}
$$

- If you want low I and high L, increase bi, keep nb low! Of course, there's a limit to how high you can make bi, so eventually you have to increase nb
- Just 2 colliding bunches / turn : <0.1\% of bunches filled!
- But big bunches!
- Upside: more luminosity in the short term (this summer)
- Downside: multiple interactions, ~2 per (filled) crossing!

BEAM SETUP: RAMP

As I'm writing this talk...

Comments 17-05-2010 20:18:33: RAMPING

1 high intensity bunch in both rings

BIS status and SMP flags
Link Status of Beam Permits
Global Beam Permit Setup Beam Beam Presence
Moveable Devices Allowed In Stable Beams

B1	B2
false	false
true	true
false	false
true	true
false	false
false	false

"Old Predictions" 2011

3.5 TeV : run flat out at ${ }^{\sim} 100 \mathrm{pb}^{-1}$ per month

	No. bunches	ppb	Total Intensity	Beam Stored Energy (MJ)	beta*	Peak Lumi	Int Lumi per month [pb^{-1}]
50 ns	432	7 e 10	3 e 13	17	2	1.3 e32	~85
Pushing intensity limit	720	7 e10	5.1 e13	28.2	2	2.2 e32	~140
Pushing bunch current limit	432	$\begin{gathered} 11 \\ \mathrm{e} 10 \end{gathered}$	4.8 e13		2	3.3 e32	~209

And the Farmer's Almanac...

Conclusions

LHC is performing great at 7 TeV !

Now on track, steady improvements
Good machine availability / uptime
$\sim 50 / \mathrm{nb}$ by the end of May

- That's a Z peak
$\sim 1 / \mathrm{pb}$ by end of June
- Start to see top
~100/pb by end of October
- Discover SUSY!
~1/fb in 2011
- Measure SUSY masses!

Conclusions

- ATLAS (and CMS) working as designed
- Years of delays not wasted time...
- ATLAS data is well understood after just ~6 months of data!

- Incredible data/MC agreement
- Testbeam, G4, detector description
- Puts pressure on accurate calculations!
- Not just "Tevatron at $3.5 x$ the energy"
- Granularity, improved particle ID
- Much lower fake rates
- Much larger detector acceptance
- Timing, timing, timing!

Conclusions

- ATLAS (and CMS) working as designed
- Years of delays not wasted time...
- ATLAS data is well understood after just ~6 months of data!

Thank you!

Enjoy the data!!

- Ivorjusi revairomai v.in ricecricigy
- Granularity, improved particle ID
- Much lower fake rates
- Much larger detector acceptance
- Timing, timing, timing!

Backup...

Trigger

Rates...

Physics Cross Sections:

- Inelastic: $10^{9} \mathrm{~Hz}$
- $\mathrm{W} \rightarrow \mathrm{lv}: 10^{2} \mathrm{~Hz}$
- t t production: 10 Hz
- Higgs (100 GeV/c2): 0.1 Hz
- Higgs (600 GeV/c2): $10^{-2} \mathrm{~Hz}$

Rejection needed - 10 ${ }^{10 / 1}{ }^{\mathrm{pb}}$

- $250 \mathrm{GeV} \mathrm{E}_{\mathrm{T}}$ Jets -1 kHz

Data Processing for 7 TeV Data

- Synchronized TierO and Data/MC re-processing releases in April.
- Reprocessing of 2009/2010 data and MC (about 500M events) ~ complete.
- Started 36-hour calibration Ioop at Tier0:
- immediately reconstruct 10% "express stream",
- derive conditions (beamspot, TRT RT/T0, Pixel/SCT noisy channels, LAr dead channels),
- After 36 hour delay, reconstruct bulk data with correct conditions.
- Next re-processing campaign for Summer conferences, with major code improvements, to be completed by early June.

