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The Car and the Goats

Leonard Gillman

1. THE PROBLEM. A TV host shows you three numbered doors, one hiding a car
(all three equally likely) and the other two hiding goats. You get to pick a door,
winning whatever is behind it. You choose door #1, say. The host, who knows where
the car is, then opens one of the other two doors to reveal a goat, and invites you to
switch your choice if you so wish. Assume he opens door #3. Should you switch to
#2?

I'll call this Game I. It appeared in the Ask Marilyn column in Parade (a
Sunday supplement) [4(a)]. Marilyn asserted that you should switch, arguing that
the probability of winning, originally 1,/3, had now gone up to 2/3. (“Marilyn” is
standard terminology.) This led to an uproar featuring “thousands” of letters,
nine-tenths of them insisting that with door # 3 now eliminated, #1 and #2 were
equally likely; even the responses from college faculty voted her down two to one
[4(b, ©), 3]. There is no denying that the problem is tricky (even though, technically
speaking, it involves only undergraduate mathematics). The purpose of this article
is to unravel it all.

2. GAME II. Marilyn’s solution goes like this. The chance is 1/3 that the car is
actually at #1, and in that case you lose when you switch. The chance is 2 /3 that
the car is either at #2 (in which case the host perforce opens #3) or at #3 (in
which case he perforce opens #2)—and in these cases, the host’s revelation of a
goat shows you how to switch and win.

This is an elegant proof, but it does not address the problem posed, in which the
host has shown you a goat at #3. Instead it is still considering the possibility that
the car is at #3—whence the host cannot have already opened that door (much
less to reveal a goat). In this game—Game II—you have to announce before a
door has been opened whether you plan to switch.

3. GAME 1. Game I is more complicated: What is the probability P that you win if
you switch, given that the host has opened door #3? This is a conditional probabil-
ity, which takes account of this extra condition. When the car is actually at #2, the
host will open #3. But when it is at #1, he may open either #2 or #3. The answer
to the question just asked depends on his selection strategy when he has this choice
—on the probability q that he will then open door #3. (Marilyn did not address
this question.)

In any case, it still pays you to switch (except in one extreme case, where it’s
fifty-fifty). The host has opened #3. It was certain he would do that if the car is at
#2, but less than certain (except in the extreme case) if it is at #1. This gives the
edge to #2. This argument is well known in the game of bridge as the “principle of
restricted choice.” A player holding both Queen and Jack of a suit will play them
at random so as not to betray her holding. Hence when West plays the Queen, the
Jack is now more likely to be with East, since if West had it she could have played
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it. (This ignores other information that may have come to light in the course of the
play.)
We are interested in the following events:

C;: the car is at door i; H;: the host opens door j.

In this notation, the probability that you will win if you switch is the conditional
probability

P = P(C,|H;);
as noted, its value depends on the conditional probability
q= P(H3|C1).

It turns out that P can be any number between 1/2 and 1. (So the critics are still
quite wrong.)

4. EXAMPLES. In the extreme case g = 1, the host’s opening of #3 gives you no
information, and P = 1/2. At the other extreme, g = 0, the host opens #3 only
when the car is at #2, and P = 1.

When g = 1/2 the host is not differentiating between the two available doors,
and you are essentially playing Game II. In fact, when the car is at #1 he opens #3
one time in two, but if it is at #2 he opens it two times in two. So when he actually
does open #3, the car is at #2 two times out of three: P = 2/3. Similarly, if
q = m/n then P = n/(n + m); thus,

1
1+g¢g

(1

for any rational g. By Bayes’s rule (Section 6), (1) holds for all real ¢, 0 < g < 1.
Note that these inequalities imply 1 > P > 1/2.

To illustrate that the solution to Game I is consistent with that of Game II,
consider the extreme case g = 0. Here the host would actually open #3, giving you
the sure shot, only 1/3 of the time. The remaining 2 /3 of the time, when he opens
#2, your win probability is only 1/2. Your net probability is 1/3 in each case, for a
total of 2/3.

5. NOTATION AND TERMINOLOGY. Let
P(C;) = a priori probability that the car is at door i,

a priori referring to the state of our knowledge before any doors have been
opened. It is given that P(C;) = 1/3 (i = 1,2,3).

The host’s choice of which door to open is made in response to the actual
location of the car. We say, picturesquely, that the events C; (the car is at i) are
the causes that produce the effects H; (the host opens door ). The probabilities of
the effects given the causes we call the productive probabilities; these are the
conditional probabilities P(H;|C,). What we have called g is the productivity
probability P(H,|C,). We also let

P(Hj) = q priori probability that the host opens door j,

a priori meaning without knowledge of the location of the car. Finally, we wish to
know the probabilities of the causes given the effects—the a posteriori probabili-
ties. These are the conditional probabilities P(C;|H;). What we have called P is
the a posteriori probability P(C,|H).
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6. BAYES’S FORMULA. Bayes’s formula is the fundamental equation relating the
a posteriori to the productive probabilities:

P(Ha)P(Ci|H3) = P(Ci)P(H3|Ci)‘ (2)

(Technically, it is this equation solved for P(C;|H,).) It is an immediate conse-
quence of the law of compound probability, according to which each side is equal
to P(H; N C,). In its general setting, the probabilities P(C;) may be unequal for
some choices of i; but P(H,) is still independent of i. (We could write H instead
of H,). Therefore

P(C;|H;) ~ P(C,)P(H;|C;). (3)
When all the P(C,) are equal,
P(C)|H;) ~ P(H;IC;)  (P(C;) = const.) (4)

When the a priori probabilities are all equal, the a posteriori probabilities are
proportional to the productive probabilities. The proposition seems intuitively clear
(even when the hypothesis is not explicitly acknowledged). It underlies all the
examples in Section 4. (To hammer this home, assign unequal a priori probabilities
and rework an example using (3) instead of (4).)

In the example with g = 1/2, P(H,|C,) = 1 and P(H;|C,) = g = 1/2. So the
host is twice as likely to open #3 when the car is at #2 as when it is at #1. By (4)
when the host does open #3, the car is twice as likely to be at #2 as at #1;
therefore P = P(C,|H;) = 2/3. In general, for any g,

P(C,|H,): P(C|H;) = 1:4,

and we get P = 1/(1 + q).
We gave an example in Section 4 to illustrate that the solution of Game I is
consistent with that of Game II. Here is a general proof:

P(You win Game II if you switch)

P(C,)P(H;|C,) + P(C3)P(H,|C3)
1 1 2

3 X1+ 3 X1 3
7. THE PARADOX OF THE SECOND ACE. My interest in problems of condi-
tional probability was sparked, many years ago, by a passage in Mathematical
Recreations and Essays, by W. W. Rouse Ball (now Ball and Coxeter [1, p. 44]).
When a bridge hand is dealt from a deck of cards (13 cards from 52), the
probability that it contains at least two aces turns out to be .26. Question: What is
the probability that it contains at least two aces given that it contains (a) an ace,
(b) the ace of hearts? We expect the answers to be the same and of course greater
than .26. We are half right: they turn out to be (a) .37, (b) .56. I was able to wade
through the binomial coefficients, but I still wondered why (b) should be greater
than (a).

Here is a way to see why without computation. In terms of the complementary
events, we wish to show that the probability of exactly one ace, given that the hand
contains an ace, is greater than the probability of exactly one ace given that the
hand contains the ace of hearts. This means we want

N(14) N(14p)
N(4) ~ N(A4,)’
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where N(!A4) is the number of hands containing exactly one ace, N(!4,) is the
number of such hands whose unique ace is the ace of hearts, and N(4) and N(A )
are the numbers of hands containing an ace or the ace of hearts, respectively. A
slightly more convenient form is

N(!A4) N(A)
> .

N(14y)  N(4p)
Since a unique ace in a hand must be one of the four specific aces, the numerator
of the first fraction is exactly four times the denominator, and the fraction is equal
to four. But in the second fraction the numerator is less than four times the

denominator, because of overlaps—e.g., a hand containing the aces of both hearts
and spades should be counted only once. This establishes (5).

(%)

8. EXAMPLES. The situation may be clarified further by considering a deck of
four cards, two aces and two jacks, from which you are dealt a hand of two cards.
There are six possible hands, one of them consisting of the two aces, so the
probability you have both aces is 1/6. If it is given that the hand contains an ace
we have eliminated the two jacks, and the probability for both aces goes up to 1/5.
But if it is given that you have the ace of hearts, then your other card is either the
ace of spades or one of the jacks, and the probability that you are holding both
aces is now 1/3.

Carrying this to the extreme, consider a two-card hand from a deck of three
cards, two aces and a jack. There are three possible hands, and the probability that
you have the two aces is 1/3. If you state that the hand contains an ace, I smirk.
But if we are given that the hand contains the ace of hearts, the probability for
both aces goes up to 1/2. At this point (if not long since) your friend enters the
picture with a “proof” that the probability of both aces is 1,/2, with or without any
condition: “You have an ace. Either it is the ace of hearts or the ace of spades. If
it is the ace of hearts, then as we have just proved, the probability of both aces is
1/2. If it is the ace of spades, then, similarly, the probability for both aces is 1/2.
So in either case it is 1/2. So it is 1/2.” It is easier to detect the flaw in this
reasoning than to get your friend to understand it. A suggested response (guaran-
teed not to help) is printed upside down at the end of the article.

9. OTHER PROBLEMS. While preparing this article I looked through a number
of books for related material but found very little other than the classic gold and
silver coins distributed in three two-drawer boxes (Bertrand’s box paradox), and
the family with two children of whom one is a girl. I felt that the car-and-goats
problem must surely have aﬁpeared somewhere. Eventually I was steered to a 1959
column of Martin Gardner [2], who presents the problem in terms of three
prisoners, one of whom is to be paroled. It is noteworthy that he states explicitly,
as part of the hypothesis, that the warden is to flip a coin when he has a choice
between two prisoners to name (corresponding to the host’s picking Door 3 with
probability g = 1/2). Gardner mentions in his column that the problem “is now
making the rounds”; but he told me recently he has no recollection of how he
came to hear about it.

I deliberately misquoted Ball’s problem when I asked for the probability “given
that” your hand contains an ace (or the ace of hearts). Ball says you assert that the
hand contains an ace. In such a case I would want to know how you decide what
statement to assert. My present rule is that you are to state whether your hand
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contains an ace. Instead, suppose the rule in the four-card problem is that you are
to pick a random card from your hand and tell whether it is an ace or a jack. Now
when you pick an ace, the probability for both aces is higher than before, since if
you had a jack you could have picked it. In fact the productive probabilities for
picking an ace are in the proportions 2:1:1:1:1, and the a posteriori probability
that you have both aces, originally 1/5, is now 1/3.
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Mathematics not only demands straight
thinking, it grants the student the satis-
faction of knowing when he is thinking
straight,

—D. Juckson
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