The Big-Oh Symbol and the behavior of $f(x)$

Suppose we wish to study the behavior of a function $f(x)$ for values of x in the neighborhood of $x=a$, where a is a real (or complex) number. The first step is to compute

$$
\lim _{x \rightarrow a} f(x)=f(a) .
$$

This provides a rather limited piece of information. It would be more informative if we knew how $f(x)$ approaches $f(a)$ as $x \rightarrow a$. This is what is meant by the behavior of $f(x)$ as $x \rightarrow a$. To be more specific, we first must introduce the concept of the big-Oh (or order) symbol.

1. The big-Oh (or order) symbol

We say that

$$
f(x)=\mathcal{O}(g(x)), \quad \text { as } x \rightarrow a,
$$

if there exist a finite positive real constant M such that $|f(x)| \leq M|g(x)|$ for all values of x in the neighborhood of $x=a$. This definition is more general than what is required in these notes. In practice, we will choose $g(x)=(x-a)^{n}$ in the case of $x \rightarrow a$ and $g(x)=x^{-n}$ in the case of $a=\infty$, where n is a non-negative integer. Note that the meaning of the big-Oh symbol depends on the value of a. In most applications, the value of a can be ascertained from the context. The most common case is $a=0$, in which case,

$$
\begin{equation*}
f(x)=\mathcal{O}\left(x^{n}\right), \quad \text { as } x \rightarrow 0 \quad \Longleftrightarrow \quad \lim _{x \rightarrow 0}\left|x^{-n} f(x)\right|=K \tag{1}
\end{equation*}
$$

where K is a finite non-negative constant. As an example, $f(x)=\mathcal{O}(1)$ [corresponding to $n=0]$ means that $|f(0)|$ is a finite non-negative number.

Our primary application of the big-Oh symbol is in specifying the size of the omitted terms in a Taylor series. For example, consider a Maclaurin series (which is defined to be a Taylor series about $x=0$). Then,

$$
\begin{equation*}
f(x)=\sum_{n=0}^{N} a_{n} x^{n}+\mathcal{O}\left(x^{N+1}\right), \quad a_{n}=\frac{1}{n!} f^{(n)}(0) \tag{2}
\end{equation*}
$$

where $f^{(n)}(0) \equiv\left(d^{n} f / d x^{n}\right)_{x=0}$. The $\mathcal{O}\left(x^{N+1}\right)$ term above represents higher order terms in the series that start with $a_{N+1} x^{N+1}$. The sum of the omitted terms is called the remainder term, $R_{N}(x)$, which satisfies $\lim _{x \rightarrow 0} x^{-(N+1)} R_{N}(x)=K$, which is consistent with eq. (1). In this case, the constant is simply $K=a_{N+1}$.

The following properties of the order symbol are noteworthy. Let m and n be non-negative integers. First, if c is any finite constant (either positive or negative), then

$$
\begin{equation*}
c \mathcal{O}\left(x^{n}\right)=\mathcal{O}\left(x^{n}\right) \tag{3}
\end{equation*}
$$

That is, multiplication by a non-zero constant does not alter the order. This follows from the basic definitions above which do not specify a specific value for the constant, $K=\lim _{x \rightarrow 0}\left|x^{-n} f(x)\right|$. Second,

$$
\begin{equation*}
\mathcal{O}\left(\mathcal{O}\left(x^{n}\right)\right)=\mathcal{O}\left(x^{n}\right), \tag{4}
\end{equation*}
$$

which is a consequence of eq. (3). Third, under multiplication,

$$
\begin{equation*}
\mathcal{O}\left(x^{n}\right) \mathcal{O}\left(x^{m}\right)=\mathcal{O}\left(x^{m+n}\right) \tag{5}
\end{equation*}
$$

Fourth, under addition,

$$
\begin{equation*}
\text { If } m \geq n \text {, then } \mathcal{O}\left(x^{n}\right)+\mathcal{O}\left(x^{m}\right)=\mathcal{O}\left(x^{n}\right), \quad \text { as } x \rightarrow 0 \tag{6}
\end{equation*}
$$

This result is a consequence of the fact that as $x \rightarrow 0, x^{m}$ approaches zero faster than x^{n} if $m>n$. Finally, we have the strange looking result

$$
\begin{equation*}
\text { If } m \geq n \text {, then } \mathcal{O}\left(x^{m}\right)=\mathcal{O}\left(x^{n}\right), \quad \text { as } x \rightarrow 0 \tag{7}
\end{equation*}
$$

This is consistent with eq. (1) with $f(x)=x^{m}$ since $\lim _{x \rightarrow 0}\left|x^{m-n}\right|=0$ (which is certainly a finite constant) if $m>n$. Eq. (7) seems to contradict our interpretation of $\mathcal{O}\left(x^{N+1}\right)$ in eq. (2) as the power of the first neglected term of the Maclaurin series. Indeed, eq. (7) implies that $\mathcal{O}\left(x^{N+1}\right)=\mathcal{O}\left(x^{p}\right)$ for any non-negative integer $p<N+1$. Thus, it would be mathematically correct to replace $\mathcal{O}\left(x^{N+1}\right)$ with $\mathcal{O}\left(x^{p}\right)$ in eq. (2). However, the most useful form of such an equation is obtained by choosing p to be the largest possible power, which for the case of eq. (2) is $p=N+1$.

2. The behavior of $f(x)$ as $x \rightarrow 0$

Suppose that one can expand $f(x)$ in a Taylor series as $x \rightarrow 0$,

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
$$

Then, assuming that the coefficients a_{1} and a_{2} are non-vanishing, the behavior of $f(x)$ as $x \rightarrow 0$ is given by:

$$
f(x)=f(0)+a_{1} x+\mathcal{O}\left(x^{2}\right) .
$$

The term $a_{1} x$ indicates that the deviation of $f(x)$ from $f(0)$ as $x \rightarrow 0$ is linear, and the $\mathcal{O}\left(x^{2}\right)$ indicates the size of the first neglected term of the expansion. Of course, other possible behaviors are possible. More generally, the behavior of $f(x)$ as $x \rightarrow 0$ is given by:

$$
f(x)=f(0)+a_{M} x^{M}+\mathcal{O}\left(x^{N}\right),
$$

where M is the smallest positive integer for which $a_{M} \neq 0$ and $N>M$ indicates the index of the first nonzero coefficient in the series after a_{M}.

A few examples will illustrate the above concepts.
(a) Find the behavior of $f(x)=\cos ^{2} x$ as $x \rightarrow 0$.

Starting with the Taylor series for $\cos x$,

$$
\cos x=1-\frac{1}{2} x^{2}+\mathcal{O}\left(x^{4}\right)
$$

we square the above result to obtain:

$$
\cos ^{2} x=\left[1-\frac{1}{2} x^{2}+\mathcal{O}\left(x^{4}\right)\right]^{2}=1-x^{2}+\mathcal{O}\left(x^{4}\right)
$$

Note that $\left(1-\frac{1}{2} x^{2}\right)^{2}=1-x^{2}-\frac{1}{4} x^{4}$, but we do not have to explicitly exhibit the $\frac{1}{4} x^{4}$ term above since according to eq. (6),

$$
\frac{1}{4} x^{4}+\mathcal{O}\left(x^{4}\right)=\mathcal{O}\left(x^{4}\right)
$$

Similarly, eqs. (5) and (6) imply that*

$$
x^{2} \mathcal{O}\left(x^{4}\right)=\mathcal{O}\left(x^{6}\right)=\mathcal{O}\left(x^{4}\right)
$$

We conclude that the behavior of $\cos ^{2} x$ as $x \rightarrow 0$ is $\cos ^{2} x=1-x^{2}+\mathcal{O}\left(x^{4}\right)$.
(b) Find the behavior of $f(x)=\frac{1}{\cos ^{2} x}$ as $x \rightarrow 0$.

In this case, we can first use the results of (a) above to obtain:

$$
\begin{equation*}
\frac{1}{\cos ^{2} x}=\frac{1}{1-x^{2}+\mathcal{O}\left(x^{4}\right)} \tag{8}
\end{equation*}
$$

To complete the problem, we make use of the well known geometric series

$$
\begin{equation*}
\frac{1}{1-y}=\sum_{n=0}^{\infty} y^{n}=1+y+\mathcal{O}\left(y^{2}\right) \tag{9}
\end{equation*}
$$

We can evaluate eq. (8) by taking $y \equiv x^{2}-\mathcal{O}\left(x^{4}\right)$ in eq. (9). Hence,

$$
\frac{1}{\cos ^{2} x}=1+x^{2}-\mathcal{O}\left(x^{4}\right)+\mathcal{O}\left(\left[x^{2}-\mathcal{O}\left(x^{4}\right)\right]^{2}\right)=1+x^{2}+\mathcal{O}\left(x^{4}\right)
$$

In obtaining this result, we used the properties of the big-Oh symbol given at the end of Section 1. In particular, $\left[x^{2}-\mathcal{O}\left(x^{4}\right)\right]^{2}=\mathcal{O}\left(x^{4}\right)$ and $\mathcal{O}\left(x^{4}\right)=-\mathcal{O}\left(x^{4}\right)$ [the latter follows from eq. (3) with $c=-1$]. We conclude that the behavior of $1 / \cos ^{2} x$ as $x \rightarrow 0$ is $1 / \cos ^{2} x=1+x^{2}+\mathcal{O}\left(x^{4}\right)$.

[^0](c) Find the behavior of $\frac{1}{x}-\frac{1}{e^{x}-1}$, as $x \rightarrow 0$.

In order to find the behavior, we must make sure that we keep enough explicit terms in our expansions. First, we write:

$$
\frac{1}{x}-\frac{1}{e^{x}-1}=\frac{1}{x}\left[1-\frac{x}{e^{x}-1}\right] .
$$

Next, we note that

$$
e^{x}-1=\sum_{n=1}^{\infty} \frac{x^{n}}{n!}=x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\mathcal{O}\left(x^{4}\right)=x\left[1+\frac{1}{2} x+\frac{1}{6} x^{2}+\mathcal{O}\left(x^{3}\right)\right]
$$

It then follows that

$$
\frac{x}{e^{x}-1}=\frac{1}{1+\frac{1}{2} x+\frac{1}{6} x^{2}+\mathcal{O}\left(x^{3}\right)}
$$

To evaluate this expression, we make use of the geometric series,

$$
\frac{1}{1+y}=\sum_{n=0}^{\infty}(-1)^{n} y^{n}=1-y+y^{2}+\mathcal{O}\left(y^{3}\right)
$$

By choosing $y=\frac{1}{2} x+\frac{1}{6} x^{2}+\mathcal{O}\left(x^{3}\right)$, and making use of the properties of the big-Oh symbol, it follows that $\mathcal{O}\left(y^{3}\right)=\mathcal{O}\left(x^{3}\right)$, and

$$
\begin{aligned}
\frac{x}{e^{x}-1} & =1-\frac{1}{2} x-\frac{1}{6} x^{2}-\mathcal{O}\left(x^{3}\right)+\left[\frac{1}{2} x+\frac{1}{6} x^{2}+\mathcal{O}\left(x^{3}\right)\right]^{2}+\mathcal{O}\left(x^{3}\right) \\
& =1-\frac{1}{2} x+\left(\frac{1}{4}-\frac{1}{6}\right) x^{2}+\mathcal{O}\left(x^{3}\right) \\
& =1-\frac{1}{2} x+\frac{1}{12} x^{2}+\mathcal{O}\left(x^{3}\right)
\end{aligned}
$$

Thus,

$$
\frac{1}{x}-\frac{1}{e^{x}-1}=\frac{1}{x}\left[\frac{1}{2} x-\frac{1}{12} x^{2}+\mathcal{O}\left(x^{3}\right)\right]=\frac{1}{2}-\frac{1}{12} x+\mathcal{O}\left(x^{2}\right)
$$

3. The behavior of $f(x)$ as $x \rightarrow \infty$

One can also consider Taylor series about the point of infinity. In this case, we simply replace x with $1 / x$ and 0 with ∞ in eq. (1). That is,

$$
\begin{equation*}
f(x)=\mathcal{O}\left(\frac{1}{x^{n}}\right), \quad \text { as } x \rightarrow \infty \quad \Longleftrightarrow \quad \lim _{x \rightarrow \infty}\left|x^{n} f(x)\right|=K \tag{10}
\end{equation*}
$$

where K is a non-negative finite constant. As a simple example, the behavior of $e^{-1 / x^{2}}$ as $x \rightarrow \infty$ is given by

$$
e^{-1 / x^{2}}=\sum_{n=0}^{\infty} \frac{1}{n!}\left(-\frac{1}{x^{2}}\right)^{n}=1-\frac{1}{2 x^{2}}+\mathcal{O}\left(\frac{1}{x^{4}}\right) .
$$

[^0]: ${ }^{*}$ Equivalently, one can cay that as $x \rightarrow 0$, any $\mathcal{O}\left(x^{6}\right)$ term is negligible as compared to an $\mathcal{O}\left(x^{4}\right)$ term and can simply be neglected.

