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The Euler-Cauchy differential equation

A linear differential equation of the form,

anx
n d

ny

dxn
+ an−1x

n−1 d
n−1y

dxn−1
+ · · ·+ a1x

dy

dx
+ a0y = 0 , (1)

with a0, a1, . . . , an constants is called the homogeneous Euler-Cauchy equation of order n.1

As shown in Appendices A and C, by introducing a new variable,

z = ln |x| , (2)

we may convert eq. (1) into an nth order linear differential equation with constant coeffi-
cients. Solutions of the latter are well known. Nevertheless, in these notes, we will show
how to directly obtain the solutions to the Euler-Cauchy differential equation without
introducing the change of variables indicated in eq. (2).

One can also solve the inhomogeneous Euler-Cauchy differential equation, where the
right hand side of eq. (1) is replaced by a known function of x,

anx
n d

ny

dxn
+ an−1x

n−1 d
n−1y

dxn−1
+ · · ·+ a1x

dy

dx
+ a0y = f(x) . (3)

As in the case of a linear differential equation with constant coefficients, the method of
undetermined coefficients is especially useful for certain cases of f(x) that may appear on
the right hand side of eq. (3).

For simplicity, these notes will focus primarily on the second order Euler-Cauchy
differential equation. Generalizing to the case of the nth order Euler-Cauchy differential
equation is straightforward (see Appendix C).

1. The second order homogeneous Euler-Cauchy differential equation

In this section, we examine the solutions to

ax2y′′ + bxy′ + cy = 0 , (4)

where y′ ≡ dy/dx, y′′ ≡ d2y/dx2 and a, b, and c are constants. The general solution
to eq. (4) consists of a linear combination of two linearly independent solutions. In
Appendix B, we provide a formal derivation of the solutions to eq. (4). However, in light
of eq. (2), we generically expect solutions of the form epz = ep ln |x| = |x|p.

Thus, we take as an ansatz,2

y(x) = |x|p , assuming x 6= 0 (5)

1Most books simply refer to this equation as the Euler differential equation.
2The behavior of the solution at x = 0 must be separately assessed.
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for a solution to eq. (4). Note that using the chain rule,

d

dx
|x|p = p|x|p−1 d

dx
|x| .

Since the slope of the line y = |x| is +1 for x > 0 and −1 for x < 0, it follows that

d

dx
|x| = sgn x ≡

{

+1 , for x > 0,

−1 , for x < 0.
(6)

Since we are excluding x = 0 in eq. (5), we do not need to worry that eq. (6) is not defined
at x = 0. Finally, note that

x = |x| sgn x , for all x 6= 0. (7)

Hence, it follows that

x
d

dx
|x|p = p|x|p .

Likewise,

x2 d

dx
|x|p = p(p− 1)|x|p .

Hence, plugging eq. (5) into eq. (4) results in,

[

ap(p− 1) + bp + c
]

|x|p = 0 .

Thus, eq. (5) is a solution to eq. (4) if p is a solution to the following quadratic equation,

ap(p− 1) + bp+ c = 0 . (8)

Eq. (5) is called the indicial equation. It is the analog of the auxiliary equation that arises
in solving the second order linear differential equation with constant coefficients.

Eq. (5) is equivalent to,
ap2 + (b− a)p + c = 0 , (9)

and its solutions are given by,

p = p± ≡ 1

2a

[

a− b±
√

(a− b)2 − 4ac
]

. (10)

If p+ 6= p−, the we can conclude that the most general solution to eq. (4) is3

y(x) = A|x|p+ +B|x|p− , (11)

where A and B are arbitrary constants.

3Note that if we require good behavior at x = 0, then we can only accept solutions of the form |x|p in
which Re p > 0.
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If a, b and c are real constants4 and |a − b| < 2
√
ac, then p+ and p− are complex

numbers and p− = (p+)
∗. In this case,

p± ≡ 1

2a

[

a− b± i
√

4ac− (a− b)2
]

.

If we denote,

β ≡ 1

2a

√

4ac− (a− b)2 ,

then

|x|p± = |x|(a−b)/(2a)|x|iβ = |x|(a−b)/(2a)eiβ ln |x| = |x|(a−b)/(2a)
[

cos(β ln |x|)± i sin(β ln |x|)
]

.
(12)

In this case, one may write the most general solution to eq. (4) as,

y(x) = |x|(a−b)/(2a)
[

A sin(β ln |x|) +B cos(β ln |x|)
]

.

Finally, we must address the degenerate case, where p+ = p−. This case arises when
(a− b)2 = 4ac, which implies that

p+ = p− =
a− b

2a
. (13)

In this case, the above analysis succeeds only in finding one of the two solutions to eq. (4),
namely,

y1(x) = |x|(a−b)/(2a) .

The second solution is derived in Appendix B. However, here we shall follow an alternate
procedure that makes use of eqs. (9) and (10) of the class handout entitled, Applications
of the Wronskian to linear differential equations. First, we divide eq. (4) by ax2 and
evaluate the Wronskian of eq. (4),

W (x) = C exp

{

− b

a

∫

dx

x

}

= C exp

{

− b

a
ln |x|

}

= C|x|−b/a .

Then, the second solution is then given by,

y2(x) = y1(x)

∫

W (x) dx

[y1(x)]2
= C ′|x|(a−b)/(2a)

∫

dx

x
= C ′|x|(a−b)/(2a) ln |x| ,

where C ′ = C sgn(x) absorbs a minus sign if x < 0.
Thus, we conclude that the most general solution to eq. (4) in the case of degenerate

roots of the indicial equation [eq. (8)], where (a− b)2 = 4ac, is given by,

y(x) = |x|(a−b)/(2a)
(

A+B ln |x|
)

. (14)

4More generally, a, b and c can be complex numbers. In this case, p
+
and p

−
are generically complex

with p
−
6= (p

+
)∗. Of course, one can still employ eq. (11) by interpreting,

|x|p = |x|pR+ipI = |x|pR

[

cos(pI ln |x|) + i sin(pI ln |x|)
]

.

in the case of pR ≡ Re p and pI ≡ Im p.
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The results of Section 1 are easily summarized. To find the most general solution
of the homogeneous second order Euler-Cauchy differential equation [given by eq. (4)],
where the coefficients a, b, and c are real (a 6= 0), one first computes the two roots of
the corresponding indicial equation, ap(p− 1)2 + bp+ c = 0. Denoting these roots by p+
and p−, one can then immediately write down the two linearly independent solutions to
eq. (4), which are valid for all x 6= 0,

yh(x) =











A|x|p+ +B|x|p− , for real roots, p+ 6= p−,

|x|p(A+B ln |x|) , for degenerate (real) roots, p ≡ p+ = p−,

|x|α(A sin(β ln |x|)x+B cos(β ln |x|) , for complex roots, p± ≡ α± iβ,

(15)
where A and B are arbitrary constants.

2. The second order inhomogeneous Euler-Cauchy differential equation

In this section, we examine the solutions to

ax2y′′ + bxy′ + cy = f(x) . (16)

The general solution to eq. (16) is of the form

y(x) = yp(x) + yh(x) , (17)

where yh(x) is given by eq. (15), where the form of the solution depends on the values of
the roots of the indicial equation [eq. (8)].

2.1 The method of undetermined coefficients

We begin by considering unctions f(x) that mirror the choices of the functions exam-
ined in Section 6 of Chapter 8 on pp. 420–421 of Boas. Indeed, in light of eq. (2), the
exponential function epx in the case of Boas is transformed into the power function |x|p,
sines and cosines are transformed into |x|p cos(ln |x|) and |x|p sin(ln |x|), and polynomials
in x are transformed into polynomials of ln |x|.

In analogy with eq. (6.24) in Section 6 of Chapter 8 on p. 421 of Boas, if the function
f(x) in eq. (16) is taken to be

f(x) = |x|cPn(ln |x|) , (18)

where Pn is a polynomial that involves sums of powers of ln |x| of degree n, then by the
method of undetermined coefficients, the appropriate ansatz for particular solution yp(x)
is given by

yp(x) =











|x|cQn(ln |x|) , if c is not equal to either p+ or p−,

|x|c ln |x|Qn(ln |x|) , if c equals p+ or p− and p+ 6= p−,

|x|c ln2 |x|Qn(ln |x|) , if c = p+ = p−,

(19)
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where p± are the roots of the indicial equation and Qn is a polynomial of the same degree
as Pn with undetermined coefficients. By plugging in this ansatz back into eq. (16), the
undetermined coefficients are then fixed. If Pn = 1, then Qn simply become a single
undetermined coefficient to be determined. If c is a complex number, then we interpret
|x|c as indicated in footnote 4.

As an example, we shall solve problem 7–20 on page 436 of Boas,

x2y′′ − 3xy′ + 4y = 6x2 ln |x| , (20)

where I have written ln |x| (rather than ln x as Boas does) so that we can solve the
differential equation for both positive and negative values of x 6= 0.

We first solve the homogeneous equation,

x2y′′ − 3xy′ + 4y = 0 .

The corresponding indicial equation is

p(p− 1)− 3p+ 4 = (p− 2)2 = 0 .

Thus, there is a degenerate root, p± = 2, in which case the solution to the homogeneous
equation is given by,

yh(x) = x2(A+B ln |x|) ,
for x 6= 0, where A and B are arbitrary constants.

Next, the particular solution of eq. (20) is obtained by employing eq. (19), where we
identify P1(ln |x|) = ln |x|, which is a polynomial in ln |x| of degree 1. This suggests the
following ansatz in which we introduce a polynomial, Q1(ln |x|) = a0 + a1 ln |x|, with two
undetermined coefficients,

yp(x) = x2 ln2 |x|(a0 + a1 ln |x|) . (21)

It follows that5

y′p(x) = x
(

2a1 ln
3 |x|+ (2a0 + 3a1) ln

2 |x|+ 2a0 ln |x|
)

,

y′′p(x) = 2a1 ln
3 |x|+ (2a0 + 9a1) ln

2 |x|+ (6a0 + 6a1) ln |x|+ 2a0 .

Plugging eq. (21) into eq. (20),

y′′p − 3xy′p + 4yp = x2

{

ln3 |x|
(

2a1 − 6a1 + 4a1) + ln2 |x|
(

2a0 − 9a1 − 6a0 − 9a1 + 4a0
)

+ ln |x|
(

6a0 + 6a1 − 6a0
)

+ 2a0

}

= 2x2
(

3a1 ln |x|+ a0
)

.

5Note that by the chain rule,

d

dx
lnp |x| = p lnp−1 |x|

(

d

dx
ln |x|

)

= p lnp−1 |x|
(

1

|x|
d

dx
|x|

)

=
sgnx

|x| p lnp−1 |x| = p

x
lnp−1 |x| .
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Hence, in light of eq. (20), it follows that

2x2
(

3a1 ln |x|+ a0
)

= 6x2 ln |x| .

We conclude that a1 = 1 and a0 = 0. That is,

yp(x) = x2 ln3 |x| . (22)

Hence, the most general solution to eq. (20) is (for x 6= 0),

y(x) = x2
(

A +B ln |x|+ ln3 |x|
)

.

One can use the method of undetermined coefficients presented above to solve problems
7–17 through 7–22 on p. 436 of Boas. Alternatively, one can employ the method outlined
in Appendix A, where one first changes variables as indicated in eq. (2) and converts
the second order inhomogeneous Euler-Cauchy differential equation into a second order
inhomogeneous linear differential equation with constant coefficients. The latter can be
solved using the methods outlined in Section 6 of Chapter 8 on pp. 417–422 of Boas. It
is instructive to solve eq. (20) using this alternative technique. This is an exercise that is
left for the student to complete.

2.2 An explicit formula for the particular solution of the inhomogeneous

second order Euler-Cauchy differential equation

Although the method of undetermined coefficients works well if f(x) is of the form
given in eq. (18), the calculations tend to be somewhat tedious. A more general method
was provided in eq. (12) of the class handout entitled, Applications of the Wronskian to

linear differential equations. Once the two linearly independent solutions of eq. (4), de-
noted by y1(x) and y2(x), are determined, one can compute the corresponding Wronskian,

W (x) = y1y
′
2 − y2y

′
1 . (23)

Then, a particular solution of eq. (16), denoted by yp(x), can be computed directly using
the following formula,6

yp(x) = −y1(x)

∫

y2(x)f(x)

ax2W (x)
dx+ y2(x)

∫

y1(x)f(x)

ax2W (x)
dx . (24)

We now consider separately the three cases exhibited in eq. (15).
First, consider the case of real and nondegenerate roots of the indicial equation. In

this case, y1(x) = |x|p+ and y2(x) = |x|p−. Using eq. (23), it follows that,

W (x) = (p− − p+)
|x|p++p−

x
. (25)

6Note that eq. (12) of the cited handout was derived assuming that the coefficient of y′′ in the
differential equation is 1. Thus, in the present application, one must replace f(x) by f(x)/(ax2).
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Eq. (24) then yields,

yp(x) =
1

a(p+ − p−)

{

|x|p+
∫

f(x)

|x|p+
dx

x
− |x|p−

∫

f(x)

|x|p−
dx

x

}

. (26)

Second, in the case of degenerate roots, y1(x) = |x|p and y2(x) = |x|p ln |x|, where
p = (a− b)/(2a) [cf. eq. (13)]. In this case, W (x) = |x|2p/x, and eq. (24) yields,

yp(x) =
|x|p
a

{

ln |x|
∫

xf(x)

|x|p
dx

x
−

∫

x ln |x|f(x)
|x|p

dx

x

}

. (27)

Finally, in the case of complex roots p± = α ± iβ, y1(x) = |x|α sin(β ln |x|) and
y2(x) = |x|α cos(β ln |x|). In this case, W (x) = −β|x|2α/x, and eq. (24) yields,

yp(x) =
β|x|α
a

{

sin(β ln |x|)
∫

cos(β ln |x|)f(x)
|x|α

dx

x
− cos(β ln |x|)

∫

sin(β ln |x|)f(x)
|x|α

dx

x

}

.

(28)
In summary, the solution to eq. (16) is given by eq. (17), where yh(x) is given by

eq. (15) in the three cases of real nondegenerate, real degenerate and complex roots of the
indicial equation, and yp(x) is given in the three corresponding cases by eqs. (26), (27)
and (28), respectively.

2.3 Examples

We now provide two examples from Boas that illustrate the results of the previous
subsection. First, consider problem 7–18 of Boas,

x2y′′ + xy′ − y = x− 1

x
. (29)

The indicial equation is p2 − 1 = 0, which has two roots, p+ = 1 and p− = −1. Hence,
y1(x) = |x| and y2(x) = |x|−1. From eq. (25), it follows that W (x) = −2/x. Then from
eq. (26), we find that for x 6= 0,

yp(x) =
1

2

{

x

∫

1

x2

(

x− 1

x

)

dx− 1

x

∫
(

x− 1

x

)

dx

}

=
1

2

{

x ln |x|+ 1

2x
− x

2
+

1

x
ln |x|

}

. (30)

Notice that there are terms in eq. (30) that are proportional to x and x−1, which are
solutions to the homogeneous equation, x2y′′ + xy′ − y = 0. Hence, we can drop these
terms since they already appear in yh(x) = A|x| + B|x|−1, where A and B are arbitrary
constants. That is,

yp(x) =
1
2
ln |x|

(

x+
1

x

)

,

is also a solution to eq. (29). Thus, the general solution to eq. (29) for x 6= 0 is then,

y(x) = A|x|+B|x|−1 + 1
2
ln |x|

(

x+
1

x

)

. (31)
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Second, let us apply eq. (27) to obtain the particular solution of eq. (20). In this
example, a = 1, f(x) = 6x2 ln |x| and the roots of the indicial equation are degenerate,
with p = 2. Then eq. (27) yields,

yp(x) = 6x2

{

ln |x|
∫

ln |x|
x

dx−
∫

ln2 |x|
x

dx

}

.

By writing x−1dx = d ln |x|, the integrals above are elementary, and we end up with,

yp(x) = 6x2 ln3 |x|
(

1
2
− 1

3

)

= x2 ln3 |x| ,
for x 6= 0, in agreement with the result previously obtained in eq. (22). At least in the
two examples above, the method based on eq. (24) is much faster than the method of
undetermined coefficients based on eq. (19). In principle, eq. (24) is applicable for any
function f(x) [in contrast to the method of undetermined coefficients employed in Section
2.1], although in some cases it may not be possible to evaluate the indefinite integrals
appearing in eq. (24) analytically.

APPENDIX A: Transforming the Euler-Cauchy differential equa-
tion into a linear differential equation with constant coefficients

In the grand tradition of mathematics, we will show how to solve a second order
Euler-Cauchy differential equation by transforming it into a differential equation that has
been previously solved. This is the strategy adopted by Boas in Section 7 of Chapter 8
of Boas [cf. Case (d) and eqs. (7.17)–(7.19) on p. 434 of Boas]. The treatment of Boas
implicitly assumes that x > 0. In this Appendix, the cases of x > 0 and x < 0 will be
treated simultaneously. As noted in footnote 2, the solution at x = 0 must be separately
assessed.

For simplicity, the derivation below is given for the second order Euler-Cauchy dif-
ferential equation, although the derivation is easily extended to the corresponding nth
order differential equation (see Appendix C). Consider the left hand side of the following
differential equation,

ax2 d
2y

dx2
+ bx

dy

dx
+ cy = f(x) . (32)

We introduce a new variable,
z = ln |x| , (33)

under the assumption that x 6= 0. Inverting this transformation yields,

|x| = ez . (34)

We wish to rewrite eq. (32) in terms of y as a function of z. To accomplish this, we employ
the chain rule. First, we make use of eq. (34) to obtain,

dx

dz
=

d|x|
dz

dx

d|x| = ez sgn x = |x| sgn x = x , (35)

after noting that dx/d|x| = (d|x|/dx)−1 = (sgn x)−1 = sgn x in light of eq. (6). In the
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final step above, we used x = |x| sgnx. Employing the chain rule again with the help of
eq. (35), it then follows that,

dy

dz
=

dx

dz

dy

dx
= x

dy

dx
, (36)

d2y

dz2
=

d

dz

(

dy

dz

)

=
dx

dz

d

dx

(

dy

dz

)

= x
d

dx

(

dy

dz

)

. (37)

Combining the results of eqs. (36) and (37),

d2y

dz2
= x

d

dx

(

x
dy

dx

)

= x2 d
2y

dx2
+ x

dy

dx
. (38)

After subtracting eq. (36) from eq. (38), we end up with

x2 d
2y

dx2
=

d2y

dz2
− dy

dz
, (39)

x
dy

dx
=

dy

dz
. (40)

Employing eqs. (39) and (40) in eq. (32), it follows that,

a
d2y

dz2
+ (b− a)

dy

dz
+ cy = f

(

ez sgn x
)

. (41)

We have succeeded in transforming the Euler-Cauchy differential equation into a linear
differential equation with constant coefficients. The sign of the argument of the function
on the right hand side of eq. (41) depends on whether x > 0 or x < 0.

The auxiliary equation corresponding to eq. (41) is

ar2 + (b− a)r + c = 0 ,

which precisely matches the indicial equation given in eq. (9). Hence, the roots of the
auxiliary equation are p+ and p− [cf. eq. (10)].

If p+ and p− are nondegenerate, then the solution to the homogeneous equation cor-
responding to eq. (41) is [cf. eq. (5.11) on p. 440 of Boas] is given by,

yh = Aezp+ +Bezp− = A|x|p+ +B|x|p− ,

after employing |x| = ez [eq. (34)]. Thus, we have confirmed eq. (11).
If p ≡ p+ = p− = (a− b)/(2a) are degenerate roots, then the solution to the homoge-

neous equation corresponding to eq. (41) is [cf. eq. (5.15) on p. 440 of Boas],

yh = (A+Bz)ezp = |x|p(A+B ln |x|) ,
after using eqs. (33) and (34). Thus, we have confirmed eq. (14).

As an example, we shall find the solution of,

x2y′′ + xy′ − y = x− 1

x
. (42)

which was previously obtained in Section 2.3.
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First, we consider the case of x > 0. Then, eq. (41) yields,

d2y

dz2
− z = ez − e−z . (43)

The auxiliary equation, r2 − 1 = 0, yields two nondegenerate roots, p± = ±1. Hence,

yh(z) = Aez +Be−z ,

where A and B are arbitrary constants. To obtain the particular solution yp(x), we employ
the method of undetermined coefficients [cf. eq. (6.18) on p. 420 of Boas] and the principle
of superposition [discussed on p. 425 of Boas], which yields the following ansatz,

yp(z) = z(c1e
z + c2e

−z) , (44)

where the coefficients c1 and c2 are to be determined. Differentiating eq. (44) yields,

dyp
dz

= c1e
z(1 + z)− c2e

−z(z − 1) ,

d2yp
dz2

= c1e
z(2 + z)− c2e

−z(2− z) .

Inserting the above results into eq. (43) yields c1 = c2 =
1
2
. Hence, it follows that,

yp(z) =
1
2
z(ez + e−z) ,

and the most general solution to eq. (43) in the case of x > 0 is given by,

y(z) = (A+ 1
2
z)ez + (B + 1

2
z)e−z .

Finally, putting z = ln x yields,

y(x) = x(A+ 1
2
ln x) +

1

x
(B + 1

2
ln x)x , for x > 0. (45)

Second, we consider the case of x < 0. Then, eq. (41) yields,

d2y

dz2
− z = −ez + e−z . (46)

The rest of the calculation is nearly identical. Inserting eq. (44) into eq. (46) yields
c1 = c2 = −1

2
. Hence, the particular solution is given by,

yp(z) = −1
2
z(ez + e−z) ,

and the most general solution to eq. (43) in the case of x < 0 is given by,

y(z) = (A− 1
2
z)ez + (B − 1

2
z)e−z .

Finally, putting z = ln(−x) yields,

y(x) = −x
[

A− 1
2
ln(−x)

]

− 1

x

[

B − 1
2
ln(−x)

]

, for x < 0. (47)

The solutions in two cases, x > 0 and x < 0 given by eqs. (45) and (47), respectively,
can be expressed by the following single equation,

y(x) = A|x|+B|x|−1 + 1
2
ln |x|

(

x+
1

x

)

, for x 6= 0,

in agreement with our previous result obtained in eq. (31).
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APPENDIX B: Differential operators and the Euler-Cauchy dif-
ferential equation

Consider the homogeneous second order Euler-Cauchy equation,7

ax2 d
2y

dx2
+ bx

dy

dx
+ cy = 0 , with a 6= 0, (48)

which we can rewritten in operator form,

(ax2D2 + bxD + c)y = 0 . (49)

where

D ≡ d

dx
.

The corresponding indicial equation was given in eq. (9),

ap2 + (b− a)p+ c = a(p− p+)(p− p−) = 0 , (50)

whose roots, p±, are given by eq. (10)

p± ≡ 1

2a

[

a− b±
√

(a− b)2 − 4ac
]

. (51)

By multiplying out the two factors (p − p+)(p − p−) in eq. (50), it immediately follows
that

p+ + p− = 1− b

a
, p+p− =

c

a
, (52)

which can also be confirmed using the explicit form for p± given in eq. (51).
I now claim that the following operator identity holds,

ax2D2 + bxD + c = a

(

x
d

dx
− p+

)(

x
d

dx
− p−

)

. (53)

To derive eq. (53), we operate with the right hand side of eq. (53) on an arbitrary well-
behaved function f(x). Then it follows that,

a

(

x
d

dx
− p+

)(

x
d

dx
− p−

)

f(x) = a

(

x
d

dx
− p+

)(

x
df

dx
− p−f

)

= a

[

x
d

dx

(

x
df

dx

)

− x(p+ + p−)x
df

dx
+ p+p−f

]

= a

[

x2d
2f

dx2
+ (1− p+ − p−)x

df

dx
+ p+p−f

]

= ax2d
2f

dx2
+ bx

df

dx
+ cf ,

= (ax2D2 + bxD + c)f(x) . (54)

where we have used eq. (52) in the penultimate step above. Since eq. (54) is valid for
any well-behaved function f(x), eq. (54) is equivalent to the operator equation given in
eq. (53), and our proof is complete.

7See Appendix C for the generalization to the nth order Euler-Cauchy differential equation.
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Moreover, the third line of eq. (54) demonstrates that the same result would be ob-
tained if p+ and p− are interchanged. This means that the following result holds as a
operator equation,

(

x
d

dx
− p+

)(

x
d

dx
− p−

)

=

(

x
d

dx
− p−

)(

x
d

dx
− p+

)

. (55)

That is, the two first order differential operators above commute.
Note that the above results, which are relevant for the Euler-Cauchy differential equa-

tion, are the analogues of the operator relation,

aD2 + bD + c = a(D − r1)(D − r2) = a(D − r2)(D − r1) , (56)

where r1 and r2 are the roots of the auxiliary equation, ar2 + br + c = 0, of a second
order linear differential operator with constant coefficients. Eq. (56) was used by Boas in
Section 5 of Chapter 8 on pp. 408–411 in deriving the solution of a general second order
linear differential equation with constant coefficients.

We may use eq. (53) to solve the homogeneous second order Euler-Cauchy differential
equation given in eq. (48). Simply rewrite eq. (49) as,

(

x
d

dx
− p+

)(

x
d

dx
− p−

)

y = 0 . (57)

One possible solution of eq. (57) is,

(

x
d

dx
− p−

)

y = 0 . (58)

This is a separable first order differential equation, which can be rewritten as

dy

y
= p−

(

dx

x

)

.

Integrating this equation yields

ln |y| = p− ln |x|+ lnC ,

where lnC is an integration constant. Hence, integrating the above equation yields,

|y| = C|x|p− .

By writing |y′| = y sgn y and defining B ≡ C sgn y, we end up with

y(x) = B|x|p− . (59)

Alternatively, we can interchange the order of the two commuting operators in eq. (57),
which yields

(

x
d

dx
− p−

)(

x
d

dx
− p+

)

y = 0 . (60)
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Here, another possible solution of eq. (60) is
(

x
d

dx
− p+

)

y = 0 .

Following the previous analysis that resulted in eq. (59), we find a solution,

y(x) = A|x|p+ . (61)

If p+ 6= p−, then the the most general solution of eq. (48) is an arbitrary linear combination
of eqs. (59) and (61),

y(x) = A|x|p+ +B|x|p− ,

where A and B are arbitrary constants, in agreement with the result of eq. (11).

In the case of p ≡ p+ = p−, eq. (51) implies that (a− b)2 = 4ac and

p ≡ a− b

2a
. (62)

In this case eq. (57) reduces to,
(

x
d

dx
− p

)

2

y = 0 , (63)

Here, we follow the method used by Boas on p. 410 in the case of degenerate roots of the
auxiliary equation. We define,

u =

(

x
d

dx
− p

)

y . (64)

Then, eq. (63) becomes,
(

x
d

dx
− p

)

u = 0 . (65)

We have already solved this equation above [see eqs. (58) and (59)]. Thus, the solution
to eq. (65) is

u(x) = B|x|p .
Plugging this result back into eq. (64),

(

x
d

dx
− p

)

y = B|x|p . (66)

This is a first order linear differential equation that can be solved by using eq. (3.9)
on p. 401 of Boas. Rewriting eq. (66) in the form, y′ + P (x)y = Q(x), we can identify
P (x) = −p/x and Q(x) = B|x|p/x. Hence,

I ≡
∫

P (x) dx = −p

∫

dx

x
= −p ln |x| = ln |x|−p ,

and the solution to eq. (66) is,

y(x) = B|x|p
∫

dx

x
+ A|x|p = |x|p

(

A+B ln |x|
)

, (67)

where p is given by eq. (62), in agreement with eq. (14).
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APPENDIX C: The nth order Euler-Cauchy differential equation

The generalization of the results of Appendices A and B to the nth order homogeneous
Euler-Cauchy differential equation is straightforward. As in eq. (5), we take as an ansatz,

y(x) = |x|p , assuming x 6= 0 (68)

for a solution to eq. (1). Plugging in eq. (68) into eq. (1) yields,

[

anp(p−1)(p−2) · · · (p−n+1)+an−1p(p−1)(p−2) · · · (p−n+2)+ · · ·+a1p+a0
]

|x|p = 0 .

Thus, eq. (68) is a solution to eq. (1) if p is a solution to the following nth order polynomial
equation called the indicial equation,

anp(p− 1)(p− 2) · · · (p− n+ 1) + an−1p(p− 1)(p− 2) · · · (p− n+ 2) + · · ·+ a1p+ a0

= an(p− p1)(p− p2) · · · (p− pn) = 0 , (69)

where the n roots of the indicial equation [some of which may be degenerate] have been
denoted by p1, p2, . . . , pn. As expected, eq. (69) reduces to eq. (8) in the case of n = 2.

The general solution of eq. (1) is a linear combination of the |x|pi if no degeneracies
are present. If there is a k-fold degenerate set of roots, e.g. p = p1 = p2, · · · = pk (with
k ≥ 2), then the corresponding functions that can appear in the general solution of eq. (1)
are linear combinations of the following functions,

{

|x|p , |x|p ln |x| , . . . , |x|p lnk−1 |x|
}

.

One can easily establish this result by generalizing the derivation in the case of k = 2
given by eqs. (63)–(67). For example, the final step will involve solving the equation,

(

x
d

dx
− p

)

y = C|x|p lnk−2 |x| ,

where C is an arbitrary constant. This will yield,

y(x) = C|x|p
∫

lnk−2 |x|dx
x

= C|x|p
∫

lnk−2 |x| d
(

ln |x|
)

= C ′|x|p lnk−1 |x| ,

where C ′ = C/(k − 1). The student is encouraged to fill in the details.
Returning to eq. (1), we can rewrite this equation in operator form as

(anx
nDn + an−1x

n−1Dn−1 + · · ·+ a1xD1 + a0)y = 0 , (70)

where D ≡ d/dx. Following Appendix A, we can again introduce a new variable, z = ln |x|
or equivalently, |x| = ez. Then, eqs. (39) and (40) imply that

xD = Dz , x2D2 = D2
z −Dz = Dz (Dz − 1) , (71)
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where Dz ≡ d/dz. The generalization of eq. (71) to the nth derivative involves the Stirling
numbers of the first kind, s(n, k), which appear as the absolute values of the coefficients
of the expansion of the quantity, p(p− 1)(p− 2) · · · (p− n + 1), in powers of p,

p(p− 1)(p− 2) · · · (p− n+ 1) =
n

∑

k=1

(−1)n−ks(n, k)pk , for n = 1, 2, 3, . . .. (72)

In particular, eq. (72) yields simple expressions for the s(n, k) in three cases: s(n, n) = 1,
s(n, n − 1) = 1 + 2 + . . . + (n − 1) = 1

2
n(n − 1) and s(n, 1) = (n − 1)! for all positive

integers n. The rest of the Stirling numbers of the first kind can be obtained by employing
the recursion relation,8

s(n, k) = (n− 1)s(n− 1, k) + s(n− 1, k − 1) , for n ≥ k ≥ 1, (73)

subject to the initial conditions, s(0, 0) ≡ 1 and s(n, 0) = 0, for all positive integers n.
To derive the general result that relates xnDn to powers of Dz, one first notes the

following two identities,

xn
(

Dnxp
)

= p(p− 1)(p− 2) · · · (p− n+ 1)xp , (74)

(xD)n xp = pnxp . (75)

In light of eq. (72), it immediately follows from eqs. (74) and (75) that

xn
(

Dnxp
)

=

n
∑

k=1

(−1)n−ks(n, k)(xD)kxp , for n = 1, 2, 3, . . . (76)

Since {xp}, for p = 0, 1, 2, 3, . . ., constitutes a linearly independent set of functions, it
follows that

xnDn =

n
∑

k=1

(−1)n−ks(n, k)(xD)k , for n = 1, 2, 3, . . . (77)

holds as an operator identity.9 Finally, using xD = Dz [cf. eq. (71)] and replacing p with
Dz in eq. (72), one sees that eq. (77) is equivalent to the operator identity,

xnDn =

n
∑

k=1

(−1)n−ks(n, k)Dk
z = Dz(Dz−1)(Dz−2) · · · (Dz−n+1) , for n = 1, 2, 3, . . .

(78)
Indeed, eq. (78) is the generalization of eq. (71) that we were seeking. Hence,

anx
nDn+an−1x

n−1Dn−1+· · ·+a1xD1+a0 = bnD
n
z +bn−1x

n−1Dn−1
z +· · ·+b1Dz+b0 , (79)

where the bk can be expressed as linear combinations of the ak. Thus, we have succeeded
in transforming the nth order Euler-Cauchy differential equation into an nth order linear
differential equation with constant coefficients.

8For further details, see Chapter 6, Section 1 of Ronald L. Graham, Donald E. Knuth and Oren
Patashnik, Concrete Mathematics, 2nd edition (Addison-Wesley, Reading, MA, 1994). My notation
for the Stirling numbers of the first kind follows Chapter 5 of Louis Comtet, Advanced Combinatorics

(D. Reidel Publishing Company, Dordrecht, Holland, 1974).
9Eq. (77) is the subject of exercise 13 on p. 310 of Concrete Mathematics, op. cit. (see footnote 8).
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Employing eqs. (78) and (79), the bk are expressed in terms of the ak as follows,

bn = an ,

bn−1 = an−1 − s(n, n− 1)an ,

bn−2 = an−2 − s(n− 1, n− 2)an−1 + s(n, n− 2)an ,

...

b2 = a2 − s(3, 2)a3 + s(4, 2)a4 − · · ·+ (−1)n−2s(n, 2)an ,

b1 = a1 − s(2, 1)a2 + s(3, 1)a3 − · · ·+ (−1)n−1s(n, 1)an ,

b0 = a0 , (80)

after noting that s(k, k) = 1 for k = 1, 2, . . . n.
It is instructive to check the above expressions in the cases of n = 2 and n = 3,

respectively. In the case of n = 2, it follows that b2 = a2, b1 = a1 − a2 and b0 = a0, which
corresponds to the result previously obtained in eq. (41). In the case of n = 3,

a3x
3D3 + a2x

2D2 + a1xD + a0 = a3D
3
z + (a2 − 3a3)D

2
z + (a1 − a2 + 2a3)Dz + a0 ,

where we have used s(3, 2) = 3, s(3, 1) = 2 and s(2, 1) = 1 [these values were obtained
from either eq. (72) or eq. (73)].

One can also use eq. (78) to obtain an alternate form of eqs. (79) and (80),

anx
nDn + an−1x

n−1Dn−1 + · · ·+ a1xD1 + a0

= anDz(Dz − 1)(Dz − 2) · · · (Dz − n+ 1) + an−1Dz(Dz − 1)(Dz − 2) · · · (Dz − n + 2)

+ · · ·+ a2Dz(Dz − 1) + a1Dz + a0 (81)

If we now employ eq. (69) with p replaced by the operator Dz, then eq. (81) yields

anx
nDn + an−1x

n−1Dn−1 + · · ·+ a1xD + a0 = an(Dz − p1)(Dz − p2) · · · (Dz − pn) , (82)

where p1, p2, . . . , pn are the roots of the indicial equation. Consequently, the auxiliary
equation corresponding to an(Dz − p1)(Dz − p2) · · · (Dz − pn) is precisely the same as the
indicial equation of the corresponding Euler-Cauchy differential equation.

Comparing eqs. (79) and (82) leads to alternative expressions for the bk,

bn = an ,

bn−1 = −an(p1 + p2 + . . .+ pn) ,

bn−2 = an(p1p2 + p1p3 + . . .+ pn−1pn) ,

...

b0 = a0 = an(−1)np1p2 · · ·pn . (83)

The various coefficients of an on the right hand sides of eq. (83) involving the roots of the
indicial equation are simply related to the coefficients of the indicial polynomial given in
eq. (69). Working out these relations will ultimately yield the results given in eq. (80).
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Since Dz = xD, the operator identity obtained in eq. (82) is equivalent to

anx
nDn + an−1x

n−1Dn−1 + · · ·+ a1xD+ a0 = an(xD− p1)(xD− p2) · · · (xD− pn) , (84)

which generalizes eq. (53). In light of eq. (55), all the operators, xD − pi, on the right
hand side of eq. (84) commute.

A proof of eq. (84) in the case of n = 2 was given in eq. (54). It is instructive to
provide an explicit proof in the case of n = 3 that follows the method used to derive
eq. (54).

a3

(

x
d

dx
− p3

)(

x
d

dx
− p2

)(

x
d

dx
− p1

)

f(x) = a3

(

x
d

dx
− p3

)(

x
d

dx
− p2

)(

x
df

dx
− p1f

)

= a3

(

x
d

dx
− p3

)[

x
d

dx

(

x
df

dx

)

− x(p1 + p2)x
df

dx
+ p1p2f

]

= a3

(

x
d

dx
− p3

)[

x2d
2f

dx2
+ (1− p1 − p2)x

df

dx
+ p1p2f

]

= a3

[

x
d

dx

(

x2d
2f

dx2

)

+ (1− p1 − p2)x
d

dx

(

x
df

dx

)

+ p1p2x
df

dx
− p3x

2d
2f

dx2

−p3(1− p1 − p2)x
df

dx
− p1p2p3f

]

= a3

[

x3d
3f

dx3
+ 2x2d

2f

dx2
+ (1− p1 − p2)

[

x2d
2f

dx2
+ x

df

dx

]

+p1p2x
df

dx
− p3x

2d
2f

dx2
− p3(1− p1 − p2)x

df

dx
− p1p2p3f

]

= a3

[

x3d
3f

dx3
+ x2(3− p1 − p2 − p3)

d2f

dx2

+x(1− p1 − p2 − p3 + p1p2 + p1p3 + p2p3)
df

dx
− p1p2p3f

]

. (85)

Next, we consider the indicial polynomial [cf. eq. (69)] in the case of n = 3,

a3p(p− 1)(p− 2) + a2p(p− 1) + a1p+ a0 = a3(p− p1)(p− p2)(p− p3) . (86)

Comparing like powers of p on both sides of eq. (86) yields,

a2−3a3 = −a3(p1+p2+p3) , a1−a2+2a3 = a3(p1p2+p1p3+p2p3) , a0 = −a3p1p2p3 .

Plugging these results back into eq. (85) yields,

a3

(

x
d

dx
− p3

)(

x
d

dx
− p2

)(

x
d

dx
− p1

)

f(x) = a3x
3d

3f

dx3
+ a2x

2d
2f

dx2
+ a1

df

dx
+ a0 ,

which completes the proof.
Repeating such a proof for larger values of n is not practical. You should be impressed

with the simplicity of the general proof of eq. (84) previously given, which follows almost
immediately from eqs. (69), (74) and (75).
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