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Ordinary Differential Equations
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Chapter 14

First Order Differential Equations

Don’t show me your technique. Show me your heart.

-Tetsuyasu Uekuma

14.1 Notation

A differential equation is an equation involving a function, it’s derivatives, and independent variables. If there is only
one independent variable, then it is an ordinary differential equation. Identities such as

d

dx

(
f 2(x)

)
= 2f(x)f ′(x), and

dy

dx

dx

dy
= 1

are not differential equations.
The order of a differential equation is the order of the highest derivative. The following equations for y(x) are

first, second and third order, respectively.

• y′ = xy2
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• y′′ + 3xy′ + 2y = x2

• y′′′ = y′′y

The degree of a differential equation is the highest power of the highest derivative in the equation. The following
equations are first, second and third degree, respectively.

• y′ − 3y2 = sinx

• (y′′)2 + 2x cos y = ex

• (y′)3 + y5 = 0

An equation is said to be linear if it is linear in the dependent variable.

• y′′ cosx+ x2y = 0 is a linear differential equation.

• y′ + xy2 = 0 is a nonlinear differential equation.

A differential equation is homogeneous if it has no terms that are functions of the independent variable alone. Thus
an inhomogeneous equation is one in which there are terms that are functions of the independent variables alone.

• y′′ + xy + y = 0 is a homogeneous equation.

• y′ + y + x2 = 0 is an inhomogeneous equation.

A first order differential equation may be written in terms of differentials. Recall that for the function y(x) the
differential dy is defined dy = y′(x) dx. Thus the differential equations

y′ = x2y and y′ + xy2 = sin(x)

can be denoted:

dy = x2y dx and dy + xy2 dx = sin(x) dx.
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A solution of a differential equation is a function which when substituted into the equation yields an identity. For
example, y = x ln |x| is a solution of

y′ − y

x
= 1.

We verify this by substituting it into the differential equation.

ln |x|+ 1− ln |x| = 1

We can also verify that y = c ex is a solution of y′′ − y = 0 for any value of the parameter c.

c ex−c ex = 0

14.2 Example Problems

In this section we will discuss physical and geometrical problems that lead to first order differential equations.

14.2.1 Growth and Decay

Example 14.2.1 Consider a culture of bacteria in which each bacterium divides once per hour. Let n(t) ∈ N denote
the population, let t denote the time in hours and let n0 be the population at time t = 0. The population doubles every
hour. Thus for integer t, the population is n02

t. Figure 14.1 shows two possible populations when there is initially a
single bacterium. In the first plot, each of the bacteria divide at times t = m for m ∈ N . In the second plot, they
divide at times t = m− 1/2. For both plots the population is 2t for integer t.

We model this problem by considering a continuous population y(t) ∈ R which approximates the discrete population.
In Figure 14.2 we first show the population when there is initially 8 bacteria. The divisions of bacteria is spread out
over each one second interval. For integer t, the populations is 8 · 2t. Next we show the population with a plot of the
continuous function y(t) = 8 · 2t. We see that y(t) is a reasonable approximation of the discrete population.

In the discrete problem, the growth of the population is proportional to its number; the population doubles every
hour. For the continuous problem, we assume that this is true for y(t). We write this as an equation:

y′(t) = αy(t).
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Figure 14.1: The population of bacteria.
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Figure 14.2: The discrete population of bacteria and a continuous population approximation.

That is, the rate of change y′(t) in the population is proportional to the population y(t), (with constant of proportionality
α). We specify the population at time t = 0 with the initial condition: y(0) = n0. Note that y(t) = n0 eαt satisfies the
problem:

y′(t) = αy(t), y(0) = n0.

For our bacteria example, α = ln 2.

Result 14.2.1 A quantity y(t) whose growth or decay is proportional to y(t) is modelled by
the problem:

y′(t) = αy(t), y(t0) = y0.

Here we assume that the quantity is known at time t = t0. eα is the factor by which the
quantity grows/decays in unit time. The solution of this problem is y(t) = y0 eα(t−t0).
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14.3 One Parameter Families of Functions

Consider the equation:
F (x, y(x), c) = 0, (14.1)

which implicitly defines a one-parameter family of functions y(x; c). Here y is a function of the variable x and the
parameter c. For simplicity, we will write y(x) and not explicitly show the parameter dependence.

Example 14.3.1 The equation y = cx defines family of lines with slope c, passing through the origin. The equation
x2 + y2 = c2 defines circles of radius c, centered at the origin.

Consider a chicken dropped from a height h. The elevation y of the chicken at time t after its release is y(t) = h−gt2,
where g is the acceleration due to gravity. This is family of functions for the parameter h.

It turns out that the general solution of any first order differential equation is a one-parameter family of functions.
This is not easy to prove. However, it is easy to verify the converse. We differentiate Equation 14.1 with respect to x.

Fx + Fyy
′ = 0

(We assume that F has a non-trivial dependence on y, that is Fy 6= 0.) This gives us two equations involving the
independent variable x, the dependent variable y(x) and its derivative and the parameter c. If we algebraically eliminate
c between the two equations, the eliminant will be a first order differential equation for y(x). Thus we see that every
one-parameter family of functions y(x) satisfies a first order differential equation. This y(x) is the primitive of the
differential equation. Later we will discuss why y(x) is the general solution of the differential equation.

Example 14.3.2 Consider the family of circles of radius c centered about the origin.

x2 + y2 = c2

Differentiating this yields:
2x+ 2yy′ = 0.

It is trivial to eliminate the parameter and obtain a differential equation for the family of circles.

x+ yy′ = 0
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y’ = −x/y

Figure 14.3: A circle and its tangent.

We can see the geometric meaning in this equation by writing it in the form:

y′ = −x
y
.

For a point on the circle, the slope of the tangent y′ is the negative of the cotangent of the angle x/y. (See Figure 14.3.)

Example 14.3.3 Consider the one-parameter family of functions:

y(x) = f(x) + cg(x),

where f(x) and g(x) are known functions. The derivative is

y′ = f ′ + cg′.

778



We eliminate the parameter.

gy′ − g′y = gf ′ − g′f

y′ − g′

g
y = f ′ − g′f

g

Thus we see that y(x) = f(x)+cg(x) satisfies a first order linear differential equation. Later we will prove the converse:
the general solution of a first order linear differential equation has the form: y(x) = f(x) + cg(x).

We have shown that every one-parameter family of functions satisfies a first order differential equation. We do not
prove it here, but the converse is true as well.

Result 14.3.1 Every first order differential equation has a one-parameter family of solutions
y(x) defined by an equation of the form:

F (x, y(x); c) = 0.

This y(x) is called the general solution. If the equation is linear then the general solution
expresses the totality of solutions of the differential equation. If the equation is nonlinear,
there may be other special singular solutions, which do not depend on a parameter.

This is strictly an existence result. It does not say that the general solution of a first order differential equation
can be determined by some method, it just says that it exists. There is no method for solving the general first order
differential equation. However, there are some special forms that are soluble. We will devote the rest of this chapter to
studying these forms.

14.4 Integrable Forms

In this section we will introduce a few forms of differential equations that we may solve through integration.
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14.4.1 Separable Equations

Any differential equation that can written in the form

P (x) +Q(y)y′ = 0

is a separable equation, (because the dependent and independent variables are separated). We can obtain an implicit
solution by integrating with respect to x.

∫
P (x) dx+

∫
Q(y)

dy

dx
dx = c∫

P (x) dx+

∫
Q(y) dy = c

Result 14.4.1 The separable equation P (x)+Q(y)y′ = 0 may be solved by integrating with
respect to x. The general solution is∫

P (x) dx+

∫
Q(y) dy = c.

Example 14.4.1 Consider the differential equation y′ = xy2. We separate the dependent and independent variables
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and integrate to find the solution.

dy

dx
= xy2

y−2 dy = x dx∫
y−2 dy =

∫
x dx+ c

−y−1 =
x2

2
+ c

y = − 1

x2/2 + c

Example 14.4.2 The equation y′ = y − y2 is separable.

y′

y − y2
= 1

We expand in partial fractions and integrate.

(
1

y
− 1

y − 1

)
y′ = 1

ln |y| − ln |y − 1| = x+ c
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We have an implicit equation for y(x). Now we solve for y(x).

ln

∣∣∣∣ y

y − 1

∣∣∣∣ = x+ c∣∣∣∣ y

y − 1

∣∣∣∣ = ex+c

y

y − 1
= ± ex+c

y

y − 1
= c ex 1

y =
c ex

c ex−1

y =
1

1 + c ex

14.4.2 Exact Equations

Any first order ordinary differential equation of the first degree can be written as the total differential equation,

P (x, y) dx+Q(x, y) dy = 0.

If this equation can be integrated directly, that is if there is a primitive, u(x, y), such that

du = P dx+Q dy,

then this equation is called exact. The (implicit) solution of the differential equation is

u(x, y) = c,

where c is an arbitrary constant. Since the differential of a function, u(x, y), is

du ≡ ∂u

∂x
dx+

∂u

∂y
dy,

782



P and Q are the partial derivatives of u:

P (x, y) =
∂u

∂x
, Q(x, y) =

∂u

∂y
.

In an alternate notation, the differential equation

P (x, y) +Q(x, y)
dy

dx
= 0, (14.2)

is exact if there is a primitive u(x, y) such that

du

dx
≡ ∂u

∂x
+
∂u

∂y

dy

dx
= P (x, y) +Q(x, y)

dy

dx
.

The solution of the differential equation is u(x, y) = c.

Example 14.4.3

x+ y
dy

dx
= 0

is an exact differential equation since
d

dx

(
1

2
(x2 + y2)

)
= x+ y

dy

dx

The solution of the differential equation is
1

2
(x2 + y2) = c.

Example 14.4.4 , Let f(x) and g(x) be known functions.

g(x)y′ + g′(x)y = f(x)

is an exact differential equation since
d

dx
(g(x)y(x)) = gy′ + g′y.
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The solution of the differential equation is

g(x)y(x) =

∫
f(x) dx+ c

y(x) =
1

g(x)

∫
f(x) dx+

c

g(x)
.

A necessary condition for exactness. The solution of the exact equation P + Qy′ = 0 is u = c where u is
the primitive of the equation, du

dx
= P + Qy′. At present the only method we have for determining the primitive is

guessing. This is fine for simple equations, but for more difficult cases we would like a method more concrete than
divine inspiration. As a first step toward this goal we determine a criterion for determining if an equation is exact.

Consider the exact equation,
P +Qy′ = 0,

with primitive u, where we assume that the functions P and Q are continuously differentiable. Since the mixed partial
derivatives of u are equal,

∂2u

∂x∂y
=

∂2u

∂y∂x
,

a necessary condition for exactness is
∂P

∂y
=
∂Q

∂x
.

A sufficient condition for exactness. This necessary condition for exactness is also a sufficient condition. We
demonstrate this by deriving the general solution of (14.2). Assume that P + Qy′ = 0 is not necessarily exact, but
satisfies the condition Py = Qx. If the equation has a primitive,

du

dx
≡ ∂u

∂x
+
∂u

∂y

dy

dx
= P (x, y) +Q(x, y)

dy

dx
,

then it satisfies
∂u

∂x
= P,

∂u

∂y
= Q. (14.3)
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Integrating the first equation of (14.3), we see that the primitive has the form

u(x, y) =

∫ x

x0

P (ξ, y) dξ + f(y),

for some f(y). Now we substitute this form into the second equation of (14.3).

∂u

∂y
= Q(x, y)∫ x

x0

Py(ξ, y) dξ + f ′(y) = Q(x, y)

Now we use the condition Py = Qx. ∫ x

x0

Qx(ξ, y) dξ + f ′(y) = Q(x, y)

Q(x, y)−Q(x0, y) + f ′(y) = Q(x, y)

f ′(y) = Q(x0, y)

f(y) =

∫ y

y0

Q(x0, ψ) dψ

Thus we see that

u =

∫ x

x0

P (ξ, y) dξ +

∫ y

y0

Q(x0, ψ) dψ

is a primitive of the derivative; the equation is exact. The solution of the differential equation is∫ x

x0

P (ξ, y) dξ +

∫ y

y0

Q(x0, ψ) dψ = c.

Even though there are three arbitrary constants: x0, y0 and c, the solution is a one-parameter family. This is because
changing x0 or y0 only changes the left side by an additive constant.
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Result 14.4.2 Any first order differential equation of the first degree can be written in the
form

P (x, y) +Q(x, y)
dy

dx
= 0.

This equation is exact if and only if
Py = Qx.

In this case the solution of the differential equation is given by∫ x

x0

P (ξ, y) dξ +

∫ y

y0

Q(x0, ψ) dψ = c.

Exercise 14.1
Solve the following differential equations by inspection. That is, group terms into exact derivatives and then integrate.
f(x) and g(x) are known functions.

1. y′(x)
y(x)

= f(x)

2. yα(x)y′(x) = f(x)

3. y′

cosx
+ y tanx

cosx
= cos x

Hint, Solution

14.4.3 Homogeneous Coefficient Equations

Homogeneous coefficient, first order differential equations form another class of soluble equations. We will find that
a change of dependent variable will make such equations separable or we can determine an integrating factor that will
make such equations exact. First we define homogeneous functions.
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Euler’s Theorem on Homogeneous Functions. The function F (x, y) is homogeneous of degree n if

F (λx, λy) = λnF (x, y).

From this definition we see that
F (x, y) = xnF

(
1,
y

x

)
.

(Just formally substitute 1/x for λ.) For example,

xy2,
x2y + 2y3

x+ y
, x cos(y/x)

are homogeneous functions of orders 3, 2 and 1, respectively.
Euler’s theorem for a homogeneous function of order n is:

xFx + yFy = nF.

To prove this, we define ξ = λx, ψ = λy. From the definition of homogeneous functions, we have

F (ξ, ψ) = λnF (x, y).

We differentiate this equation with respect to λ.

∂F (ξ, ψ)

∂ξ

∂ξ

∂λ
+
∂F (ξ, ψ)

∂ψ

∂ψ

∂λ
= nλn−1F (x, y)

xFξ + yFψ = nλn−1F (x, y)

Setting λ = 1, (and hence ξ = x, ψ = y), proves Euler’s theorem.

Result 14.4.3 Euler’s Theorem on Homogeneous Functions. If F (x, y) is a homoge-
neous function of degree n, then

xFx + yFy = nF.
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Homogeneous Coefficient Differential Equations. If the coefficient functions P (x, y) and Q(x, y) are homo-
geneous of degree n then the differential equation,

P (x, y) +Q(x, y)
dy

dx
= 0, (14.4)

is called a homogeneous coefficient equation. They are often referred to simply as homogeneous equations.

Transformation to a Separable Equation. We can write the homogeneous equation in the form,

xnP
(
1,
y

x

)
+ xnQ

(
1,
y

x

) dy

dx
= 0,

P
(
1,
y

x

)
+Q

(
1,
y

x

) dy

dx
= 0.

This suggests the change of dependent variable u(x) = y(x)
x

.

P (1, u) +Q(1, u)

(
u+ x

du

dx

)
= 0

This equation is separable.

P (1, u) + uQ(1, u) + xQ(1, u)
du

dx
= 0

1

x
+

Q(1, u)

P (1, u) + uQ(1, u)

du

dx
= 0

ln |x|+
∫

1

u+ P (1, u)/Q(1, u)
du = c

By substituting ln |c| for c, we can write this in a simpler form.∫
1

u+ P (1, u)/Q(1, u)
du = ln

∣∣∣ c
x

∣∣∣ .
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Integrating Factor. One can show that

µ(x, y) =
1

xP (x, y) + yQ(x, y)

is an integrating factor for the Equation 14.4. The proof of this is left as an exercise for the reader. (See Exercise 14.2.)

Result 14.4.4 Homogeneous Coefficient Differential Equations. If P (x, y) andQ(x, y)
are homogeneous functions of degree n, then the equation

P (x, y) +Q(x, y)
dy

dx
= 0

is made separable by the change of independent variable u(x) = y(x)
x . The solution is deter-

mined by ∫
1

u+ P (1, u)/Q(1, u)
du = ln

∣∣∣ c
x

∣∣∣ .
Alternatively, the homogeneous equation can be made exact with the integrating factor

µ(x, y) =
1

xP (x, y) + yQ(x, y)
.

Example 14.4.5 Consider the homogeneous coefficient equation

x2 − y2 + xy
dy

dx
= 0.
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The solution for u(x) = y(x)/x is determined by∫
1

u+ 1−u2

u

du = ln
∣∣∣ c
x

∣∣∣∫
u du = ln

∣∣∣ c
x

∣∣∣
1

2
u2 = ln

∣∣∣ c
x

∣∣∣
u = ±

√
2 ln |c/x|

Thus the solution of the differential equation is

y = ±x
√

2 ln |c/x|

Exercise 14.2
Show that

µ(x, y) =
1

xP (x, y) + yQ(x, y)

is an integrating factor for the homogeneous equation,

P (x, y) +Q(x, y)
dy

dx
= 0.

Hint, Solution

Exercise 14.3 (mathematica/ode/first order/exact.nb)
Find the general solution of the equation

dy

dt
= 2

y

t
+
(y
t

)2

.

Hint, Solution
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14.5 The First Order, Linear Differential Equation

14.5.1 Homogeneous Equations

The first order, linear, homogeneous equation has the form

dy

dx
+ p(x)y = 0.

Note that if we can find one solution, then any constant times that solution also satisfies the equation. If fact, all the
solutions of this equation differ only by multiplicative constants. We can solve any equation of this type because it is
separable.

y′

y
= −p(x)

ln |y| = −
∫
p(x) dx+ c

y = ± e−
R
p(x) dx+c

y = c e−
R
p(x) dx

Result 14.5.1 First Order, Linear Homogeneous Differential Equations. The first
order, linear, homogeneous differential equation,

dy

dx
+ p(x)y = 0,

has the solution
y = c e−

∫
p(x) dx . (14.5)

The solutions differ by multiplicative constants.
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Example 14.5.1 Consider the equation
dy

dx
+

1

x
y = 0.

We use Equation 14.5 to determine the solution.

y(x) = c e−
R

1/x dx, for x 6= 0

y(x) = c e− ln |x|

y(x) =
c

|x|

y(x) =
c

x

14.5.2 Inhomogeneous Equations

The first order, linear, inhomogeneous differential equation has the form

dy

dx
+ p(x)y = f(x). (14.6)

This equation is not separable. Note that it is similar to the exact equation we solved in Example 14.4.4,

g(x)y′(x) + g′(x)y(x) = f(x).

To solve Equation 14.6, we multiply by an integrating factor. Multiplying a differential equation by its integrating factor
changes it to an exact equation. Multiplying Equation 14.6 by the function, I(x), yields,

I(x)
dy

dx
+ p(x)I(x)y = f(x)I(x).

In order that I(x) be an integrating factor, it must satisfy

d

dx
I(x) = p(x)I(x).
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This is a first order, linear, homogeneous equation with the solution

I(x) = c e
R
p(x) dx .

This is an integrating factor for any constant c. For simplicity we will choose c = 1.

To solve Equation 14.6 we multiply by the integrating factor and integrate. Let P (x) =
∫
p(x) dx.

eP (x) dy

dx
+ p(x) eP (x) y = eP (x) f(x)

d

dx

(
eP (x) y

)
= eP (x) f(x)

y = e−P (x)

∫
eP (x) f(x) dx+ c e−P (x)

y ≡ yp + c yh

Note that the general solution is the sum of a particular solution, yp, that satisfies y′ + p(x)y = f(x), and an arbitrary
constant times a homogeneous solution, yh, that satisfies y′ + p(x)y = 0.

Example 14.5.2 Consider the differential equation

y′ +
1

x
y = x2, x > 0.

First we find the integrating factor.

I(x) = exp

(∫
1

x
dx

)
= elnx = x
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Figure 14.4: Solutions to y′ + y/x = x2.

We multiply by the integrating factor and integrate.

d

dx
(xy) = x3

xy =
1

4
x4 + c

y =
1

4
x3 +

c

x
.

The particular and homogeneous solutions are

yp =
1

4
x3 and yh =

1

x
.

Note that the general solution to the differential equation is a one-parameter family of functions. The general solution
is plotted in Figure 14.4 for various values of c.
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Exercise 14.4 (mathematica/ode/first order/linear.nb)
Solve the differential equation

y′ − 1

x
y = xα, x > 0.

Hint, Solution

14.5.3 Variation of Parameters.

We could also have found the particular solution with the method of variation of parameters. Although we can
solve first order equations without this method, it will become important in the study of higher order inhomogeneous
equations. We begin by assuming that the particular solution has the form yp = u(x)yh(x) where u(x) is an unknown
function. We substitute this into the differential equation.

d

dx
yp + p(x)yp = f(x)

d

dx
(uyh) + p(x)uyh = f(x)

u′yh + u(y′h + p(x)yh) = f(x)

Since yh is a homogeneous solution, y′h + p(x)yh = 0.

u′ =
f(x)

yh

u =

∫
f(x)

yh(x)
dx

Recall that the homogeneous solution is yh = e−P (x).

u =

∫
eP (x) f(x) dx
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Thus the particular solution is

yp = e−P (x)

∫
eP (x) f(x) dx.

14.6 Initial Conditions

In physical problems involving first order differential equations, the solution satisfies both the differential equation
and a constraint which we call the initial condition. Consider a first order linear differential equation subject to the
initial condition y(x0) = y0. The general solution is

y = yp + cyh = e−P (x)

∫
eP (x) f(x) dx+ c e−P (x) .

For the moment, we will assume that this problem is well-posed. A problem is well-posed if there is a unique solution to
the differential equation that satisfies the constraint(s). Recall that

∫
eP (x) f(x) dx denotes any integral of eP (x) f(x).

For convenience, we choose
∫ x
x0

eP (ξ) f(ξ) dξ. The initial condition requires that

y(x0) = y0 = e−P (x0)

∫ x0

x0

eP (ξ) f(ξ) dξ + c e−P (x0) = c e−P (x0) .

Thus c = y0 eP (x0). The solution subject to the initial condition is

y = e−P (x)

∫ x

x0

eP (ξ) f(ξ) dξ + y0 eP (x0)−P (x) .

Example 14.6.1 Consider the problem

y′ + (cos x)y = x, y(0) = 2.

From Result 14.6.1, the solution subject to the initial condition is

y = e− sinx

∫ x

0

ξ esin ξ dξ + 2 e− sinx .
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14.6.1 Piecewise Continuous Coefficients and Inhomogeneities

If the coefficient function p(x) and the inhomogeneous term f(x) in the first order linear differential equation

dy

dx
+ p(x)y = f(x)

are continuous, then the solution is continuous and has a continuous first derivative. To see this, we note that the
solution

y = e−P (x)

∫
eP (x) f(x) dx+ c e−P (x)

is continuous since the integral of a piecewise continuous function is continuous. The first derivative of the solution
can be found directly from the differential equation.

y′ = −p(x)y + f(x)

Since p(x), y, and f(x) are continuous, y′ is continuous.
If p(x) or f(x) is only piecewise continuous, then the solution will be continuous since the integral of a piecewise

continuous function is continuous. The first derivative of the solution will be piecewise continuous.

Example 14.6.2 Consider the problem

y′ − y = H(x− 1), y(0) = 1,

where H(x) is the Heaviside function.

H(x) =

{
1 for x > 0,

0 for x < 0.

To solve this problem, we divide it into two equations on separate domains.

y′1 − y1 = 0, y1(0) = 1, for x < 1

y′2 − y2 = 1, y2(1) = y1(1), for x > 1
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Figure 14.5: Solution to y′ − y = H(x− 1).

With the condition y2(1) = y1(1) on the second equation, we demand that the solution be continuous. The solution
to the first equation is y = ex. The solution for the second equation is

y = ex
∫ x

1

e−ξ dξ + e1 ex−1 = −1 + ex−1 + ex .

Thus the solution over the whole domain is

y =

{
ex for x < 1,

(1 + e−1) ex−1 for x > 1.

The solution is graphed in Figure 14.5.

Example 14.6.3 Consider the problem,

y′ + sign(x)y = 0, y(1) = 1.
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Recall that

signx =


−1 for x < 0

0 for x = 0

1 for x > 0.

Since signx is piecewise defined, we solve the two problems,

y′+ + y+ = 0, y+(1) = 1, for x > 0

y′− − y− = 0, y−(0) = y+(0), for x < 0,

and define the solution, y, to be

y(x) =

{
y+(x), for x ≥ 0,

y−(x), for x ≤ 0.

The initial condition for y− demands that the solution be continuous.

Solving the two problems for positive and negative x, we obtain

y(x) =

{
e1−x, for x > 0,

e1+x, for x < 0.

This can be simplified to

y(x) = e1−|x| .

This solution is graphed in Figure 14.6.
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Figure 14.6: Solution to y′ + sign(x)y = 0.

Result 14.6.1 Existence, Uniqueness Theorem. Let p(x) and f(x) be piecewise contin-
uous on the interval [a, b] and let x0 ∈ [a, b]. Consider the problem,

dy

dx
+ p(x)y = f(x), y(x0) = y0.

The general solution of the differential equation is

y = e−P (x)
∫

eP (x) f(x) dx+ c e−P (x) .

The unique, continuous solution of the differential equation subject to the initial condition is

y = e−P (x)
∫ x

x0

eP (ξ) f(ξ) dξ + y0 eP (x0)−P (x),

where P (x) =
∫
p(x) dx.
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Exercise 14.5 (mathematica/ode/first order/exact.nb)
Find the solutions of the following differential equations which satisfy the given initial conditions:

1.
dy

dx
+ xy = x2n+1, y(1) = 1, n ∈ Z

2.
dy

dx
− 2xy = 1, y(0) = 1

Hint, Solution

Exercise 14.6 (mathematica/ode/first order/exact.nb)
Show that if α > 0 and λ > 0, then for any real β, every solution of

dy

dx
+ αy(x) = β e−λx

satisfies limx→+∞ y(x) = 0. (The case α = λ requires special treatment.) Find the solution for β = λ = 1 which
satisfies y(0) = 1. Sketch this solution for 0 ≤ x <∞ for several values of α. In particular, show what happens when
α→ 0 and α→∞.
Hint, Solution

14.7 Well-Posed Problems

Example 14.7.1 Consider the problem,

y′ − 1

x
y = 0, y(0) = 1.

The general solution is y = cx. Applying the initial condition demands that 1 = c · 0, which cannot be satisfied. The
general solution for various values of c is plotted in Figure 14.7.

Example 14.7.2 Consider the problem

y′ − 1

x
y = −1

x
, y(0) = 1.
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Figure 14.7: Solutions to y′ − y/x = 0.

The general solution is
y = 1 + cx.

The initial condition is satisfied for any value of c so there are an infinite number of solutions.

Example 14.7.3 Consider the problem

y′ +
1

x
y = 0, y(0) = 1.

The general solution is y = c
x
. Depending on whether c is nonzero, the solution is either singular or zero at the origin

and cannot satisfy the initial condition.

The above problems in which there were either no solutions or an infinite number of solutions are said to be ill-posed.
If there is a unique solution that satisfies the initial condition, the problem is said to be well-posed. We should have
suspected that we would run into trouble in the above examples as the initial condition was given at a singularity of
the coefficient function, p(x) = 1/x.
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Consider the problem,

y′ + p(x)y = f(x), y(x0) = y0.

We assume that f(x) bounded in a neighborhood of x = x0. The differential equation has the general solution,

y = e−P (x)

∫
eP (x) f(x) dx+ c e−P (x) .

If the homogeneous solution, e−P (x), is nonzero and finite at x = x0, then there is a unique value of c for which the
initial condition is satisfied. If the homogeneous solution vanishes at x = x0 then either the initial condition cannot be
satisfied or the initial condition is satisfied for all values of c. The homogeneous solution can vanish or be infinite only
if P (x) → ±∞ as x→ x0. This can occur only if the coefficient function, p(x), is unbounded at that point.

Result 14.7.1 If the initial condition is given where the homogeneous solution to a first
order, linear differential equation is zero or infinite then the problem may be ill-posed. This
may occur only if the coefficient function, p(x), is unbounded at that point.

14.8 Equations in the Complex Plane

14.8.1 Ordinary Points

Consider the first order homogeneous equation

dw

dz
+ p(z)w = 0,

where p(z), a function of a complex variable, is analytic in some domain D. The integrating factor,

I(z) = exp

(∫
p(z) dz

)
,
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is an analytic function in that domain. As with the case of real variables, multiplying by the integrating factor and
integrating yields the solution,

w(z) = c exp

(
−
∫
p(z) dz

)
.

We see that the solution is analytic in D.

Example 14.8.1 It does not make sense to pose the equation

dw

dz
+ |z|w = 0.

For the solution to exist, w and hence w′(z) must be analytic. Since p(z) = |z| is not analytic anywhere in the complex
plane, the equation has no solution.

Any point at which p(z) is analytic is called an ordinary point of the differential equation. Since the solution is
analytic we can expand it in a Taylor series about an ordinary point. The radius of convergence of the series will be at
least the distance to the nearest singularity of p(z) in the complex plane.

Example 14.8.2 Consider the equation
dw

dz
− 1

1− z
w = 0.

The general solution is w = c
1−z . Expanding this solution about the origin,

w =
c

1− z
= c

∞∑
n=0

zn.

The radius of convergence of the series is,

R = lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣ = 1,

which is the distance from the origin to the nearest singularity of p(z) = 1
1−z .
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We do not need to solve the differential equation to find the Taylor series expansion of the homogeneous solution.
We could substitute a general Taylor series expansion into the differential equation and solve for the coefficients. Since
we can always solve first order equations, this method is of limited usefulness. However, when we consider higher order
equations in which we cannot solve the equations exactly, this will become an important method.

Example 14.8.3 Again consider the equation

dw

dz
− 1

1− z
w = 0.

Since we know that the solution has a Taylor series expansion about z = 0, we substitute w =
∑∞

n=0 anz
n into the

differential equation.

(1− z)
d

dz

∞∑
n=0

anz
n −

∞∑
n=0

anz
n = 0

∞∑
n=1

nanz
n−1 −

∞∑
n=1

nanz
n −

∞∑
n=0

anz
n = 0

∞∑
n=0

(n+ 1)an+1z
n −

∞∑
n=0

nanz
n −

∞∑
n=0

anz
n = 0

∞∑
n=0

((n+ 1)an+1 − (n+ 1)an) z
n = 0.

Now we equate powers of z to zero. For zn, the equation is (n+ 1)an+1− (n+ 1)an = 0, or an+1 = an. Thus we have
that an = a0 for all n ≥ 1. The solution is then

w = a0

∞∑
n=0

zn,

which is the result we obtained by expanding the solution in Example 14.8.2.
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Result 14.8.1 Consider the equation

dw

dz
+ p(z)w = 0.

If p(z) is analytic at z = z0 then z0 is called an ordinary point of the differential equation. The
Taylor series expansion of the solution can be found by substituting w =

∑∞
n=0 an(z − z0)

n

into the equation and equating powers of (z− z0). The radius of convergence of the series is
at least the distance to the nearest singularity of p(z) in the complex plane.

Exercise 14.7
Find the Taylor series expansion about the origin of the solution to

dw

dz
+

1

1− z
w = 0

with the substitution w =
∑∞

n=0 anz
n. What is the radius of convergence of the series? What is the distance to the

nearest singularity of 1
1−z?

Hint, Solution

14.8.2 Regular Singular Points

If the coefficient function p(z) has a simple pole at z = z0 then z0 is a regular singular point of the first order
differential equation.

Example 14.8.4 Consider the equation
dw

dz
+
α

z
w = 0, α 6= 0.

This equation has a regular singular point at z = 0. The solution is w = cz−α. Depending on the value of α, the
solution can have three different kinds of behavior.
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α is a negative integer. The solution is analytic in the finite complex plane.

α is a positive integer The solution has a pole at the origin. w is analytic in the annulus, 0 < |z|.

α is not an integer. w has a branch point at z = 0. The solution is analytic in the cut annulus 0 < |z| < ∞,
θ0 < arg z < θ0 + 2π.

Consider the differential equation
dw

dz
+ p(z)w = 0,

where p(z) has a simple pole at the origin and is analytic in the annulus, 0 < |z| < r, for some positive r. Recall that
the solution is

w = c exp

(
−
∫
p(z) dz

)
= c exp

(
−
∫
b0
z

+ p(z)− b0
z

dz

)
= c exp

(
−b0 log z −

∫
zp(z)− b0

z
dz

)
= cz−b0 exp

(
−
∫
zp(z)− b0

z
dz

)
The exponential factor has a removable singularity at z = 0 and is analytic in |z| < r. We consider the following

cases for the z−b0 factor:

b0 is a negative integer. Since z−b0 is analytic at the origin, the solution to the differential equation is analytic in
the circle |z| < r.

b0 is a positive integer. The solution has a pole of order −b0 at the origin and is analytic in the annulus 0 < |z| < r.

b0 is not an integer. The solution has a branch point at the origin and thus is not single-valued. The solution is
analytic in the cut annulus 0 < |z| < r, θ0 < arg z < θ0 + 2π.
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Since the exponential factor has a convergent Taylor series in |z| < r, the solution can be expanded in a series of
the form

w = z−b0
∞∑
n=0

anz
n, where a0 6= 0 and b0 = lim

z→0
z p(z).

In the case of a regular singular point at z = z0, the series is

w = (z − z0)
−b0

∞∑
n=0

an(z − z0)
n, where a0 6= 0 and b0 = lim

z→z0
(z − z0) p(z).

Series of this form are known as Frobenius series. Since we can write the solution as

w = c(z − z0)
−b0 exp

(
−
∫ (

p(z)− b0
z − z0

)
dz

)
,

we see that the Frobenius expansion of the solution will have a radius of convergence at least the distance to the nearest
singularity of p(z).
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Result 14.8.2 Consider the equation,

dw

dz
+ p(z)w = 0,

where p(z) has a simple pole at z = z0, p(z) is analytic in some annulus, 0 < |z − z0| < r,
and limz→z0

(z− z0)p(z) = β. The solution to the differential equation has a Frobenius series
expansion of the form

w = (z − z0)
−β

∞∑
n=0

an(z − z0)
n, a0 6= 0.

The radius of convergence of the expansion will be at least the distance to the nearest
singularity of p(z).

Example 14.8.5 We will find the first two nonzero terms in the series solution about z = 0 of the differential equation,

dw

dz
+

1

sin z
w = 0.

First we note that the coefficient function has a simple pole at z = 0 and

lim
z→0

z

sin z
= lim

z→0

1

cos z
= 1.

Thus we look for a series solution of the form

w = z−1

∞∑
n=0

anz
n, a0 6= 0.

The nearest singularities of 1/ sin z in the complex plane are at z = ±π. Thus the radius of convergence of the series
will be at least π.
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Substituting the first three terms of the expansion into the differential equation,

d

dz
(a0z

−1 + a1 + a2z) +
1

sin z
(a0z

−1 + a1 + a2z) = O(z).

Recall that the Taylor expansion of sin z is sin z = z − 1
6
z3 +O(z5).(

z − z3

6
+O(z5)

)
(−a0z

−2 + a2) + (a0z
−1 + a1 + a2z) = O(z2)

−a0z
−1 +

(
a2 +

a0

6

)
z + a0z

−1 + a1 + a2z = O(z2)

a1 +
(
2a2 +

a0

6

)
z = O(z2)

a0 is arbitrary. Equating powers of z,

z0 : a1 = 0.

z1 : 2a2 +
a0

6
= 0.

Thus the solution has the expansion,

w = a0

(
z−1 − z

12

)
+O(z2).

In Figure 14.8 the exact solution is plotted in a solid line and the two term approximation is plotted in a dashed line.
The two term approximation is very good near the point x = 0.

Example 14.8.6 Find the first two nonzero terms in the series expansion about z = 0 of the solution to

w′ − i
cos z

z
w = 0.

Since cos z
z

has a simple pole at z = 0 and limz→0−i cos z = −i we see that the Frobenius series will have the form

w = zi
∞∑
n=0

anz
n, a0 6= 0.
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Figure 14.8: Plot of the exact solution and the two term approximation.

Recall that cos z has the Taylor expansion
∑∞

n=0
(−1)nz2n

(2n)!
. Substituting the Frobenius expansion into the differential

equation yields

z

(
izi−1

∞∑
n=0

anz
n + zi

∞∑
n=0

nanz
n−1

)
− i

(
∞∑
n=0

(−1)nz2n

(2n)!

)(
zi

∞∑
n=0

anz
n

)
= 0

∞∑
n=0

(n+ i)anz
n − i

(
∞∑
n=0

(−1)nz2n

(2n)!

)(
∞∑
n=0

anz
n

)
= 0.

Equating powers of z,

z0 : ia0 − ia0 = 0 → a0 is arbitrary

z1 : (1 + i)a1 − ia1 = 0 → a1 = 0

z2 : (2 + i)a2 − ia2 +
i

2
a0 = 0 → a2 = − i

4
a0.
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Thus the solution is

w = a0z
i

(
1− i

4
z2 +O(z3)

)
.

14.8.3 Irregular Singular Points

If a point is not an ordinary point or a regular singular point then it is called an irregular singular point. The following
equations have irregular singular points at the origin.

• w′ +
√
zw = 0

• w′ − z−2w = 0

• w′ + exp(1/z)w = 0

Example 14.8.7 Consider the differential equation

dw

dz
+ αzβw = 0, α 6= 0, β 6= −1, 0, 1, 2, . . .

This equation has an irregular singular point at the origin. Solving this equation,

d

dz

(
exp

(∫
αzβ dz

)
w

)
= 0

w = c exp

(
− α

β + 1
zβ+1

)
= c

∞∑
n=0

(−1)n

n!

(
α

β + 1

)n
z(β+1)n.

If β is not an integer, then the solution has a branch point at the origin. If β is an integer, β < −1, then the solution
has an essential singularity at the origin. The solution cannot be expanded in a Frobenius series, w = zλ

∑∞
n=0 anz

n.
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Although we will not show it, this result holds for any irregular singular point of the differential equation. We cannot
approximate the solution near an irregular singular point using a Frobenius expansion.

Now would be a good time to summarize what we have discovered about solutions of first order differential equations
in the complex plane.

Result 14.8.3 Consider the first order differential equation

dw

dz
+ p(z)w = 0.

Ordinary Points If p(z) is analytic at z = z0 then z0 is an ordinary point of the differential
equation. The solution can be expanded in the Taylor series w =

∑∞
n=0 an(z − z0)

n.
The radius of convergence of the series is at least the distance to the nearest singularity
of p(z) in the complex plane.

Regular Singular Points If p(z) has a simple pole at z = z0 and is analytic in some annulus
0 < |z − z0| < r then z0 is a regular singular point of the differential equation. The
solution at z0 will either be analytic, have a pole, or have a branch point. The solution
can be expanded in the Frobenius series w = (z− z0)

−β
∑∞

n=0 an(z− z0)
n where a0 6= 0

and β = limz→z0
(z − z0)p(z). The radius of convergence of the Frobenius series will be

at least the distance to the nearest singularity of p(z).

Irregular Singular Points If the point z = z0 is not an ordinary point or a regular singular
point, then it is an irregular singular point of the differential equation. The solution
cannot be expanded in a Frobenius series about that point.
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14.8.4 The Point at Infinity

Now we consider the behavior of first order linear differential equations at the point at infinity. Recall from complex
variables that the complex plane together with the point at infinity is called the extended complex plane. To study the
behavior of a function f(z) at infinity, we make the transformation z = 1

ζ
and study the behavior of f(1/ζ) at ζ = 0.

Example 14.8.8 Let’s examine the behavior of sin z at infinity. We make the substitution z = 1/ζ and find the
Laurent expansion about ζ = 0.

sin(1/ζ) =
∞∑
n=0

(−1)n

(2n+ 1)! ζ(2n+1)

Since sin(1/ζ) has an essential singularity at ζ = 0, sin z has an essential singularity at infinity.

We use the same approach if we want to examine the behavior at infinity of a differential equation. Starting with
the first order differential equation,

dw

dz
+ p(z)w = 0,

we make the substitution

z =
1

ζ
,

d

dz
= −ζ2 d

dζ
, w(z) = u(ζ)

to obtain

−ζ2 du

dζ
+ p(1/ζ)u = 0

du

dζ
− p(1/ζ)

ζ2
u = 0.
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Result 14.8.4 The behavior at infinity of

dw

dz
+ p(z)w = 0

is the same as the behavior at ζ = 0 of

du

dζ
− p(1/ζ)

ζ2 u = 0.

Example 14.8.9 We classify the singular points of the equation

dw

dz
+

1

z2 + 9
w = 0.

We factor the denominator of the fraction to see that z = ı3 and z = −ı3 are regular singular points.

dw

dz
+

1

(z − ı3)(z + ı3)
w = 0

We make the transformation z = 1/ζ to examine the point at infinity.

du

dζ
− 1

ζ2

1

(1/ζ)2 + 9
u = 0

du

dζ
− 1

9ζ2 + 1
u = 0

Since the equation for u has a ordinary point at ζ = 0, z = ∞ is a ordinary point of the equation for w.
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14.9 Additional Exercises

Exact Equations

Exercise 14.8 (mathematica/ode/first order/exact.nb)
Find the general solution y = y(x) of the equations

1.
dy

dx
=
x2 + xy + y2

x2
,

2. (4y − 3x) dx+ (y − 2x) dy = 0.

Hint, Solution

Exercise 14.9 (mathematica/ode/first order/exact.nb)
Determine whether or not the following equations can be made exact. If so find the corresponding general solution.

1. (3x2 − 2xy + 2) dx+ (6y2 − x2 + 3) dy = 0

2.
dy

dx
= −ax+ by

bx+ cy

Hint, Solution

Exercise 14.10 (mathematica/ode/first order/exact.nb)
Find the solutions of the following differential equations which satisfy the given initial condition. In each case determine
the interval in which the solution is defined.

1.
dy

dx
= (1− 2x)y2, y(0) = −1/6.

2. x dx+ y e−x dy = 0, y(0) = 1.

Hint, Solution
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Exercise 14.11
Are the following equations exact? If so, solve them.

1. (4y − x)y′ − (9x2 + y − 1) = 0

2. (2x− 2y)y′ + (2x+ 4y) = 0.

Hint, Solution

Exercise 14.12 (mathematica/ode/first order/exact.nb)
Find all functions f(t) such that the differential equation

y2 sin t+ yf(t)
dy

dt
= 0 (14.7)

is exact. Solve the differential equation for these f(t).
Hint, Solution

The First Order, Linear Differential Equation

Exercise 14.13 (mathematica/ode/first order/linear.nb)
Solve the differential equation

y′ +
y

sin x
= 0.

Hint, Solution

Initial Conditions
Well-Posed Problems

Exercise 14.14
Find the solutions of

t
dy

dt
+ Ay = 1 + t2, t > 0

which are bounded at t = 0. Consider all (real) values of A.
Hint, Solution
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Equations in the Complex Plane

Exercise 14.15
Classify the singular points of the following first order differential equations, (include the point at infinity).

1. w′ + sin z
z
w = 0

2. w′ + 1
z−3

w = 0

3. w′ + z1/2w = 0

Hint, Solution

Exercise 14.16
Consider the equation

w′ + z−2w = 0.

The point z = 0 is an irregular singular point of the differential equation. Thus we know that we cannot expand the
solution about z = 0 in a Frobenius series. Try substituting the series solution

w = zλ
∞∑
n=0

anz
n, a0 6= 0

into the differential equation anyway. What happens?
Hint, Solution
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14.10 Hints
Hint 14.1

1. d
dx

ln |u| = 1
u

2. d
dx
uc = uc−1u′

Hint 14.2

Hint 14.3
The equation is homogeneous. Make the change of variables u = y/t.

Hint 14.4
Make sure you consider the case α = 0.

Hint 14.5

Hint 14.6

Hint 14.7
The radius of convergence of the series and the distance to the nearest singularity of 1

1−z are not the same.

Exact Equations

Hint 14.8
1.

2.

819



Hint 14.9
1. The equation is exact. Determine the primitive u by solving the equations ux = P , uy = Q.

2. The equation can be made exact.

Hint 14.10
1. This equation is separable. Integrate to get the general solution. Apply the initial condition to determine the

constant of integration.

2. Ditto. You will have to numerically solve an equation to determine where the solution is defined.

Hint 14.11

Hint 14.12

The First Order, Linear Differential Equation

Hint 14.13
Look in the appendix for the integral of csc x.

Initial Conditions
Well-Posed Problems

Hint 14.14

Equations in the Complex Plane

Hint 14.15
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Hint 14.16
Try to find the value of λ by substituting the series into the differential equation and equating powers of z.
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14.11 Solutions

Solution 14.1

1.

y′(x)

y(x)
= f(x)

d

dx
ln |y(x)| = f(x)

ln |y(x)| =
∫
f(x) dx+ c

y(x) = ± e
R
f(x) dx+c

y(x) = c e
R
f(x) dx

2.

yα(x)y′(x) = f(x)

yα+1(x)

α+ 1
=

∫
f(x) dx+ c

y(x) =

(
(α+ 1)

∫
f(x) dx+ a

)1/(α+1)
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3.

y′

cosx
+ y

tan x

cosx
= cos x

d

dx

( y

cosx

)
= cos x

y

cosx
= sinx+ c

y(x) = sin x cosx+ c cosx

Solution 14.2
We consider the homogeneous equation,

P (x, y) +Q(x, y)
dy

dx
= 0.

That is, both P and Q are homogeneous of degree n. We hypothesize that multiplying by

µ(x, y) =
1

xP (x, y) + yQ(x, y)

will make the equation exact. To prove this we use the result that

M(x, y) +N(x, y)
dy

dx
= 0

is exact if and only if My = Nx.

My =
∂

∂y

[
P

xP + yQ

]
=
Py(xP + yQ)− P (xPy +Q+ yQy)

(xP + yQ)2
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Nx =
∂

∂x

[
Q

xP + yQ

]
=
Qx(xP + yQ)−Q(P + xPx + yQx)

(xP + yQ)2

My = Nx

Py(xP + yQ)− P (xPy +Q+ yQy) = Qx(xP + yQ)−Q(P + xPx + yQx)

yPyQ− yPQy = xPQx − xPxQ

xPxQ+ yPyQ = xPQx + yPQy

(xPx + yPy)Q = P (xQx + yQy)

With Euler’s theorem, this reduces to an identity.

nPQ = PnQ

Thus the equation is exact. µ(x, y) is an integrating factor for the homogeneous equation.

Solution 14.3
We note that this is a homogeneous differential equation. The coefficient of dy/dt and the inhomogeneity are homo-
geneous of degree zero.

dy

dt
= 2

(y
t

)
+
(y
t

)2

.

We make the change of variables u = y/t to obtain a separable equation.

tu′ + u = 2u+ u2

u′

u2 + u
=

1

t
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Now we integrate to solve for u.

u′

u(u+ 1)
=

1

t

u′

u
− u′

u+ 1
=

1

t

ln |u| − ln |u+ 1| = ln |t|+ c

ln

∣∣∣∣ u

u+ 1

∣∣∣∣ = ln |ct|

u

u+ 1
= ±ct

u

u+ 1
= ct

u =
ct

1− ct

u =
t

c− t

y =
t2

c− t

Solution 14.4
We consider

y′ − 1

x
y = xα, x > 0.

First we find the integrating factor.

I(x) = exp

(∫
−1

x
dx

)
= exp (− lnx) =

1

x
.
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We multiply by the integrating factor and integrate.

1

x
y′ − 1

x2
y = xα−1

d

dx

(
1

x
y

)
= xα−1

1

x
y =

∫
xα−1 dx+ c

y = x

∫
xα−1 dx+ cx

y =

{
xα+1

α
+ cx for α 6= 0,

x lnx+ cx for α = 0.

Solution 14.5
1.

y′ + xy = x2n+1, y(1) = 1, n ∈ Z
We find the integrating factor.

I(x) = e
R
x dx = ex

2/2

We multiply by the integrating factor and integrate. Since the initial condition is given at x = 1, we will take the
lower bound of integration to be that point.

d

dx

(
ex

2/2 y
)

= x2n+1 ex
2/2

y = e−x
2/2

∫ x

1

ξ2n+1 eξ
2/2 dξ + c e−x

2/2

We choose the constant of integration to satisfy the initial condition.

y = e−x
2/2

∫ x

1

ξ2n+1 eξ
2/2 dξ + e(1−x2)/2
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If n ≥ 0 then we can use integration by parts to write the integral as a sum of terms. If n < 0 we can write the
integral in terms of the exponential integral function. However, the integral form above is as nice as any other
and we leave the answer in that form.

2.
dy

dx
− 2xy(x) = 1, y(0) = 1.

We determine the integrating factor and then integrate the equation.

I(x) = e
R
−2x dx = e−x

2

d

dx

(
e−x

2

y
)

= e−x
2

y = ex
2

∫ x

0

e−ξ
2

dξ + c ex
2

We choose the constant of integration to satisfy the initial condition.

y = ex
2

(
1 +

∫ x

0

e−ξ
2

dξ

)

We can write the answer in terms of the Error function,

erf(x) ≡ 2√
π

∫ x

0

e−ξ
2

dξ.

y = ex
2

(
1 +

√
π

2
erf(x)

)
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Solution 14.6
We determine the integrating factor and then integrate the equation.

I(x) = e
R
α dx = eαx

d

dx
(eαx y) = β e(α−λ)x

y = β e−αx
∫

e(α−λ)x dx+ c e−αx

First consider the case α 6= λ.

y = β e−αx
e(α−λ)x

α− λ
+ c e−αx

y =
β

α− λ
e−λx +c e−αx

Clearly the solution vanishes as x→∞.
Next consider α = λ.

y = β e−αx x+ c e−αx

y = (c+ βx) e−αx

We use L’Hospital’s rule to show that the solution vanishes as x→∞.

lim
x→∞

c+ βx

eαx
= lim

x→∞

β

α eαx
= 0

For β = λ = 1, the solution is

y =

{
1

α−1
e−x +c e−αx for α 6= 1,

(c+ x) e−x for α = 1.
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1

Figure 14.9: The Solution for a Range of α

The solution which satisfies the initial condition is

y =

{
1

α−1
(e−x +(α− 2) e−αx) for α 6= 1,

(1 + x) e−x for α = 1.

In Figure 14.9 the solution is plotted for α = 1/16, 1/8, . . . , 16.

Consider the solution in the limit as α→ 0.

lim
α→0

y(x) = lim
α→0

1

α− 1

(
e−x +(α− 2) e−αx

)
= 2− e−x
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Figure 14.10: The Solution as α→ 0 and α→∞

In the limit as α→∞ we have,

lim
α→∞

y(x) = lim
α→∞

1

α− 1

(
e−x +(α− 2) e−αx

)
= lim

α→∞

α− 2

α− 1
e−αx

=

{
1 for x = 0,

0 for x > 0.

This behavior is shown in Figure 14.10. The first graph plots the solutions for α = 1/128, 1/64, . . . , 1. The second
graph plots the solutions for α = 1, 2, . . . , 128.
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Solution 14.7
We substitute w =

∑∞
n=0 anz

n into the equation dw
dz

+ 1
1−zw = 0.

d

dz

∞∑
n=0

anz
n +

1

1− z

∞∑
n=0

anz
n = 0

(1− z)
∞∑
n=1

nanz
n−1 +

∞∑
n=0

anz
n = 0

∞∑
n=0

(n+ 1)an+1z
n −

∞∑
n=0

nanz
n +

∞∑
n=0

anz
n = 0

∞∑
n=0

((n+ 1)an+1 − (n− 1)an) z
n = 0

Equating powers of z to zero, we obtain the relation,

an+1 =
n− 1

n+ 1
an.

a0 is arbitrary. We can compute the rest of the coefficients from the recurrence relation.

a1 =
−1

1
a0 = −a0

a2 =
0

2
a1 = 0

We see that the coefficients are zero for n ≥ 2. Thus the Taylor series expansion, (and the exact solution), is

w = a0(1− z).

The radius of convergence of the series in infinite. The nearest singularity of 1
1−z is at z = 1. Thus we see the radius

of convergence can be greater than the distance to the nearest singularity of the coefficient function, p(z).

831



Exact Equations

Solution 14.8
1.

dy

dx
=
x2 + xy + y2

x2

Since the right side is a homogeneous function of order zero, this is a homogeneous differential equation. We
make the change of variables u = y/x and then solve the differential equation for u.

xu′ + u = 1 + u+ u2

du

1 + u2
=

dx

x

arctan(u) = ln |x|+ c

u = tan(ln(|cx|))

y = x tan(ln(|cx|))

2.

(4y − 3x) dx+ (y − 2x) dy = 0

Since the coefficients are homogeneous functions of order one, this is a homogeneous differential equation. We
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make the change of variables u = y/x and then solve the differential equation for u.(
4
y

x
− 3
)

dx+
(y
x
− 2
)

dy = 0

(4u− 3) dx+ (u− 2)(u dx+ x du) = 0

(u2 + 2u− 3) dx+ x(u− 2) du = 0

dx

x
+

u− 2

(u+ 3)(u− 1)
du = 0

dx

x
+

(
5/4

u+ 3
− 1/4

u− 1

)
du = 0

ln(x) +
5

4
ln(u+ 3)− 1

4
ln(u− 1) = c

x4(u+ 3)5

u− 1
= c

x4(y/x+ 3)5

y/x− 1
= c

(y + 3x)5

y − x
= c

Solution 14.9
1.

(3x2 − 2xy + 2) dx+ (6y2 − x2 + 3) dy = 0

We check if this form of the equation, P dx+Q dy = 0, is exact.

Py = −2x, Qx = −2x

Since Py = Qx, the equation is exact. Now we find the primitive u(x, y) which satisfies

du = (3x2 − 2xy + 2) dx+ (6y2 − x2 + 3) dy.
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The primitive satisfies the partial differential equations

ux = P, uy = Q. (14.8)

We integrate the first equation of 14.8 to determine u up to a function of integration.

ux = 3x2 − 2xy + 2

u = x3 − x2y + 2x+ f(y)

We substitute this into the second equation of 14.8 to determine the function of integration up to an additive
constant.

−x2 + f ′(y) = 6y2 − x2 + 3

f ′(y) = 6y2 + 3

f(y) = 2y3 + 3y

The solution of the differential equation is determined by the implicit equation u = c.

x3 − x2y + 2x+ 2y3 + 3y = c

2.

dy

dx
= −ax+ by

bx+ cy

(ax+ by) dx+ (bx+ cy) dy = 0

We check if this form of the equation, P dx+Q dy = 0, is exact.

Py = b, Qx = b

Since Py = Qx, the equation is exact. Now we find the primitive u(x, y) which satisfies

du = (ax+ by) dx+ (bx+ cy) dy
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The primitive satisfies the partial differential equations

ux = P, uy = Q. (14.9)

We integrate the first equation of 14.9 to determine u up to a function of integration.

ux = ax+ by

u =
1

2
ax2 + bxy + f(y)

We substitute this into the second equation of 14.9 to determine the function of integration up to an additive
constant.

bx+ f ′(y) = bx+ cy

f ′(y) = cy

f(y) =
1

2
cy2

The solution of the differential equation is determined by the implicit equation u = d.

ax2 + 2bxy + cy2 = d

Solution 14.10
Note that since these equations are nonlinear, we cannot predict where the solutions will be defined from the equation
alone.

1. This equation is separable. We integrate to get the general solution.

dy

dx
= (1− 2x)y2

dy

y2
= (1− 2x) dx

−1

y
= x− x2 + c

y =
1

x2 − x− c
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Now we apply the initial condition.

y(0) =
1

−c
= −1

6

y =
1

x2 − x− 6

y =
1

(x+ 2)(x− 3)

The solution is defined on the interval (−2 . . . 3).

2. This equation is separable. We integrate to get the general solution.

x dx+ y e−x dy = 0

x ex dx+ y dy = 0

(x− 1) ex +
1

2
y2 = c

y =
√

2(c+ (1− x) ex)

We apply the initial condition to determine the constant of integration.

y(0) =
√

2(c+ 1) = 1

c = −1

2

y =
√

2(1− x) ex−1

The function 2(1 − x) ex−1 is plotted in Figure 14.11. We see that the argument of the square root in the
solution is non-negative only on an interval about the origin. Because 2(1− x) ex−1 == 0 is a mixed algebraic
/ transcendental equation, we cannot solve it analytically. The solution of the differential equation is defined on
the interval (−1.67835 . . . 0.768039).
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Figure 14.11: The function 2(1− x) ex−1.

Solution 14.11
1. We consider the differential equation,

(4y − x)y′ − (9x2 + y − 1) = 0.

Py =
∂

∂y

(
1− y − 9x2

)
= −1

Qx =
∂

∂x
(4y − x) = −1

This equation is exact. It is simplest to solve the equation by rearranging terms to form exact derivatives.

4yy′ − xy′ − y + 1− 9x2 = 0

d

dx

[
2y2 − xy

]
+ 1− 9x2 = 0

2y2 − xy + x− 3x3 + c = 0

y =
1

4

(
x±

√
x2 − 8(c+ x− 3x3)

)
2. We consider the differential equation,

(2x− 2y)y′ + (2x+ 4y) = 0.
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Py =
∂

∂y
(2x+ 4y) = 4

Qx =
∂

∂x
(2x− 2y) = 2

Since Py 6= Qx, this is not an exact equation.

Solution 14.12
Recall that the differential equation

P (x, y) +Q(x, y)y′ = 0

is exact if and only if Py = Qx. For Equation 14.7, this criterion is

2y sin t = yf ′(t)

f ′(t) = 2 sin t

f(t) = 2(a− cos t).

In this case, the differential equation is
y2 sin t+ 2yy′(a− cos t) = 0.

We can integrate this exact equation by inspection.

d

dt

(
y2(a− cos t)

)
= 0

y2(a− cos t) = c

y = ± c√
a− cos t

The First Order, Linear Differential Equation

Solution 14.13
Consider the differential equation

y′ +
y

sin x
= 0.
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We use Equation 14.5 to determine the solution.

y = c e
R
−1/ sinx dx

y = c e− ln | tan(x/2)|

y = c
∣∣∣cot

(x
2

)∣∣∣
y = c cot

(x
2

)

Initial Conditions

Well-Posed Problems

Solution 14.14
First we write the differential equation in the standard form.

dy

dt
+
A

t
y =

1

t
+ t, t > 0

We determine the integrating factor.

I(t) = e
R
A/tdt = eA ln t = tA
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We multiply the differential equation by the integrating factor and integrate.

dy

dt
+
A

t
y =

1

t
+ t

d

dt

(
tAy
)

= tA−1 + tA+1

tAy =


tA

A
+ tA+2

A+2
+ c, A 6= 0,−2

ln t+ 1
2
t2 + c, A = 0

−1
2
t−2 + ln t+ c, A = −2

y =


1
A

+ t2

A+2
+ ct−A, A 6= −2

ln t+ 1
2
t2 + c, A = 0

−1
2

+ t2 ln t+ ct2, A = −2

For positive A, the solution is bounded at the origin only for c = 0. For A = 0, there are no bounded solutions. For
negative A, the solution is bounded there for any value of c and thus we have a one-parameter family of solutions.

In summary, the solutions which are bounded at the origin are:

y =


1
A

+ t2

A+2
, A > 0

1
A

+ t2

A+2
+ ct−A, A < 0, A 6= −2

−1
2

+ t2 ln t+ ct2, A = −2

Equations in the Complex Plane

Solution 14.15

1. Consider the equation w′ + sin z
z
w = 0. The point z = 0 is the only point we need to examine in the finite plane.

Since sin z
z

has a removable singularity at z = 0, there are no singular points in the finite plane. The substitution
z = 1

ζ
yields the equation

u′ − sin(1/ζ)

ζ
u = 0.
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Since sin(1/ζ)
ζ

has an essential singularity at ζ = 0, the point at infinity is an irregular singular point of the original
differential equation.

2. Consider the equation w′ + 1
z−3

w = 0. Since 1
z−3

has a simple pole at z = 3, the differential equation has a
regular singular point there. Making the substitution z = 1/ζ, w(z) = u(ζ)

u′ − 1

ζ2(1/ζ − 3)
u = 0

u′ − 1

ζ(1− 3ζ)
u = 0.

Since this equation has a simple pole at ζ = 0, the original equation has a regular singular point at infinity.

3. Consider the equation w′ + z1/2w = 0. There is an irregular singular point at z = 0. With the substitution
z = 1/ζ, w(z) = u(ζ),

u′ − ζ−1/2

ζ2
u = 0

u′ − ζ−5/2u = 0.

We see that the point at infinity is also an irregular singular point of the original differential equation.

Solution 14.16
We start with the equation

w′ + z−2w = 0.

Substituting w = zλ
∑∞

n=0 anz
n, a0 6= 0 yields

d

dz

(
zλ

∞∑
n=0

anz
n

)
+ z−2zλ

∞∑
n=0

anz
n = 0

λzλ−1

∞∑
n=0

anz
n + zλ

∞∑
n=1

nanz
n−1 + zλ

∞∑
n=0

anz
n−2 = 0
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The lowest power of z in the expansion is zλ−2. The coefficient of this term is a0. Equating powers of z demands that
a0 = 0 which contradicts our initial assumption that it was nonzero. Thus we cannot find a λ such that the solution
can be expanded in the form,

w = zλ
∞∑
n=0

anz
n, a0 6= 0.
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14.12 Quiz

Problem 14.1
What is the general solution of a first order differential equation?
Solution

Problem 14.2
Write a statement about the functions P and Q to make the following statement correct.

The first order differential equation

P (x, y) +Q(x, y)
dy

dx
= 0

is exact if and only if . It is separable if .
Solution

Problem 14.3
Derive the general solution of

dy

dx
+ p(x)y = f(x).

Solution

Problem 14.4
Solve y′ = y − y2.
Solution
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14.13 Quiz Solutions

Solution 14.1
The general solution of a first order differential equation is a one-parameter family of functions which satisfies the
equation.

Solution 14.2
The first order differential equation

P (x, y) +Q(x, y)
dy

dx
= 0

is exact if and only if Py = Qx. It is separable if P = P (x) and Q = Q(y).

Solution 14.3

dy

dx
+ p(x)y = f(x)

We multiply by the integrating factor µ(x) = exp(P (x)) = exp
(∫

p(x) dx
)
, and integrate.

dy

dx
eP (x) +p(x)y eP (x) = eP (x) f(x)

d

dx

(
y eP (x)

)
= eP (x) f(x)

y eP (x) =

∫
eP (x) f(x) dx+ c

y = e−P (x)

∫
eP (x) f(x) dx+ c e−P (x)
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Solution 14.4
y′ = y − y2 is separable.

y′ = y − y2

y′

y − y2
= 1

y′

y
− y′

y − 1
= 1

ln y − ln(y − 1) = x+ c

We do algebraic simplifications and rename the constant of integration to write the solution in a nice form.

y

y − 1
= c ex

y = (y − 1)c ex

y =
−c ex

1− c ex

y =
ex

ex−c

y =
1

1− c e−x
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Chapter 15

First Order Linear Systems of Differential
Equations

We all agree that your theory is crazy, but is it crazy enough?

- Niels Bohr

15.1 Introduction

In this chapter we consider first order linear systems of differential equations. That is, we consider equations of the
form,

x′(t) = Ax(t) + f(t),

x(t) =

x1(t)
...

xn(t)

 , A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 .

846



Initially we will consider the homogeneous problem, x′(t) = Ax(t). (Later we will find particular solutions with variation
of parameters.) The best way to solve these equations is through the use of the matrix exponential. Unfortunately,
using the matrix exponential requires knowledge of the Jordan canonical form and matrix functions. Fortunately, we
can solve a certain class of problems using only the concepts of eigenvalues and eigenvectors of a matrix. We present
this simple method in the next section. In the following section we will take a detour into matrix theory to cover Jordan
canonical form and its applications. Then we will be able to solve the general case.

15.2 Using Eigenvalues and Eigenvectors to find Homogeneous So-

lutions

If you have forgotten what eigenvalues and eigenvectors are and how to compute them, go find a book on linear
algebra and spend a few minutes re-aquainting yourself with the rudimentary material.

Recall that the single differential equation x′(t) = Ax has the general solution x = c eAt. Maybe the system of
differential equations

x′(t) = Ax(t) (15.1)

has similiar solutions. Perhaps it has a solution of the form x(t) = xi eλt for some constant vector xi and some value
λ. Let’s substitute this into the differential equation and see what happens.

x′(t) = Ax(t)

xiλ eλt = Axi eλt

Axi = λxi

We see that if λ is an eigenvalue of A with eigenvector xi then x(t) = xi eλt satisfies the differential equation. Since
the differential equation is linear, cxi eλt is a solution.

Suppose that the n×n matrix A has the eigenvalues {λk} with a complete set of linearly independent eigenvectors
{xik}. Then each of xik eλkt is a homogeneous solution of Equation 15.1. We note that each of these solutions is
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linearly independent. Without any kind of justification I will tell you that the general solution of the differential equation
is a linear combination of these n linearly independent solutions.

Result 15.2.1 Suppose that the n× n matrix A has the eigenvalues {λk} with a complete
set of linearly independent eigenvectors {xik}. The system of differential equations,

x′(t) = Ax(t),

has the general solution,

x(t) =
n∑

k=1

ckxik eλkt

Example 15.2.1 (mathematica/ode/systems/systems.nb) Find the solution of the following initial value problem.
Describe the behavior of the solution as t→∞.

x′ = Ax ≡
(
−2 1
−5 4

)
x, x(0) = x0 ≡

(
1
3

)

The matrix has the distinct eigenvalues λ1 = −1, λ2 = 3. The corresponding eigenvectors are

x1 =

(
1
1

)
, x2 =

(
1
5

)
.

The general solution of the system of differential equations is

x = c1

(
1
1

)
e−t +c2

(
1
5

)
e3t .
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We apply the initial condition to determine the constants.(
1 1
1 5

)(
c1
c2

)
=

(
1
3

)
c1 =

1

2
, c2 =

1

2

The solution subject to the initial condition is

x =
1

2

(
1
1

)
e−t +

1

2

(
1
5

)
e3t

For large t, the solution looks like

x ≈ 1

2

(
1
5

)
e3t .

Both coordinates tend to infinity.

Figure 15.1 shows some homogeneous solutions in the phase plane.

Example 15.2.2 (mathematica/ode/systems/systems.nb) Find the solution of the following initial value problem.
Describe the behavior of the solution as t→∞.

x′ = Ax ≡

 1 1 2
0 2 2
−1 1 3

x, x(0) = x0 ≡

2
0
1


The matrix has the distinct eigenvalues λ1 = 1, λ2 = 2, λ3 = 3. The corresponding eigenvectors are

x1 =

 0
−2
1

 , x2 =

1
1
0

 , x3 =

2
2
1

 .

849



-10 -7.5 -5 -2.5 2.5 5 7.5 10

-10

-7.5

-5

-2.5

2.5

5

7.5

10

Figure 15.1: Homogeneous solutions in the phase plane.

The general solution of the system of differential equations is

x = c1

 0
−2
1

 et +c2

1
1
0

 e2t +c3

2
2
1

 e3t .
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We apply the initial condition to determine the constants. 0 1 2
−2 1 2
1 0 1

c1c2
c3

 =

2
0
1


c1 = 1, c2 = 2, c3 = 0

The solution subject to the initial condition is

x =

 0
−2
1

 et +2

1
1
0

 e2t .

As t→∞, all coordinates tend to infinity.

Exercise 15.1 (mathematica/ode/systems/systems.nb)
Find the solution of the following initial value problem. Describe the behavior of the solution as t→∞.

x′ = Ax ≡
(

1 −5
1 −3

)
x, x(0) = x0 ≡

(
1
1

)
Hint, Solution

Exercise 15.2 (mathematica/ode/systems/systems.nb)
Find the solution of the following initial value problem. Describe the behavior of the solution as t→∞.

x′ = Ax ≡

−3 0 2
1 −1 0
−2 −1 0

x, x(0) = x0 ≡

1
0
0


Hint, Solution
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Exercise 15.3
Use the matrix form of the method of variation of parameters to find the general solution of

dx

dt
=

(
4 −2
8 −4

)
x +

(
t−3

−t−2

)
, t > 0.

Hint, Solution

15.3 Matrices and Jordan Canonical Form

Functions of Square Matrices. Consider a function f(x) with a Taylor series.

f(x) =
∞∑
n=0

f (n)(0)

n!
xn

We can define the function to take square matrices as arguments. The function of the square matrix A is defined in
terms of the Taylor series.

f(A) =
∞∑
n=0

f (n)(0)

n!
An

(Note that this definition is usually not the most convenient method for computing a function of a matrix. Use the
Jordan canonical form for that.)

Eigenvalues and Eigenvectors. Consider a square matrix A. A nonzero vector x is an eigenvector of the matrix
with eigenvalue λ if

Ax = λx.

Note that we can write this equation as

(A− λI)x = 0.
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This equation has solutions for nonzero x if and only if A − λI is singular, (det(A − λI) = 0). We define the
characteristic polynomial of the matrix χ(λ) as this determinant.

χ(λ) = det(A− λI)

The roots of the characteristic polynomial are the eigenvalues of the matrix. The eigenvectors of distinct eigenvalues
are linearly independent. Thus if a matrix has distinct eigenvalues, the eigenvectors form a basis.

If λ is a root of χ(λ) of multiplicity m then there are up to m linearly independent eigenvectors corresponding to
that eigenvalue. That is, it has from 1 to m eigenvectors.

Diagonalizing Matrices. Consider an n×nmatrix A that has a complete set of n linearly independent eigenvectors.
A may or may not have distinct eigenvalues. Consider the matrix S with eigenvectors as columns.

S =
(
x1 x2 · · · xn

)
A is diagonalized by the similarity transformation:

Λ = S−1AS.

Λ is a diagonal matrix with the eigenvalues of A as the diagonal elements. Furthermore, the kth diagonal element is
λk, the eigenvalue corresponding to the the eigenvector, xk.

Generalized Eigenvectors. A vector xk is a generalized eigenvector of rank k if

(A− λI)kxk = 0 but (A− λI)k−1xk 6= 0.

Eigenvectors are generalized eigenvectors of rank 1. An n×n matrix has n linearly independent generalized eigenvectors.
A chain of generalized eigenvectors generated by the rank m generalized eigenvector xm is the set: {x1,x2, . . . ,xm},
where

xk = (A− λI)xk+1, for k = m− 1, . . . , 1.
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Computing Generalized Eigenvectors. Let λ be an eigenvalue of multiplicity m. Let n be the smallest integer
such that

rank (nullspace ((A− λI)n)) = m.

Let Nk denote the number of eigenvalues of rank k. These have the value:

Nk = rank
(
nullspace

(
(A− λI)k

))
− rank

(
nullspace

(
(A− λI)k−1

))
.

One can compute the generalized eigenvectors of a matrix by looping through the following three steps until all the
the Nk are zero:

1. Select the largest k for which Nk is positive. Find a generalized eigenvector xk of rank k which is linearly
independent of all the generalized eigenvectors found thus far.

2. From xk generate the chain of eigenvectors {x1,x2, . . . ,xk}. Add this chain to the known generalized eigenvec-
tors.

3. Decrement each positive Nk by one.

Example 15.3.1 Consider the matrix

A =

 1 1 1
2 1 −1
−3 2 4

 .

The characteristic polynomial of the matrix is

χ(λ) =

∣∣∣∣∣∣
1− λ 1 1

2 1− λ −1
−3 2 4− λ

∣∣∣∣∣∣
= (1− λ)2(4− λ) + 3 + 4 + 3(1− λ)− 2(4− λ) + 2(1− λ)

= −(λ− 2)3.
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Thus we see that λ = 2 is an eigenvalue of multiplicity 3. A− 2I is

A− 2I =

−1 1 1
2 −1 −1
−3 2 2


The rank of the nullspace space of A− 2I is less than 3.

(A− 2I)2 =

 0 0 0
−1 1 1
1 −1 −1


The rank of nullspace((A− 2I)2) is less than 3 as well, so we have to take one more step.

(A− 2I)3 =

0 0 0
0 0 0
0 0 0


The rank of nullspace((A − 2I)3) is 3. Thus there are generalized eigenvectors of ranks 1, 2 and 3. The generalized
eigenvector of rank 3 satisfies:

(A− 2I)3x3 = 00 0 0
0 0 0
0 0 0

x3 = 0

We choose the solution

x3 =

1
0
0

 .
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Now to compute the chain generated by x3.

x2 = (A− 2I)x3 =

−1
2
−3


x1 = (A− 2I)x2 =

 0
−1
1



Thus a set of generalized eigenvectors corresponding to the eigenvalue λ = 2 are

x1 =

 0
−1
1

 , x2 =

−1
2
−3

 , x3 =

1
0
0

 .

Jordan Block. A Jordan block is a square matrix which has the constant, λ, on the diagonal and ones on the first
super-diagonal: 

λ 1 0 · · · 0 0
0 λ 1 · · · 0 0

0 0 λ
. . . 0 0

...
...

. . . . . . . . .
...

0 0 0
. . . λ 1

0 0 0 · · · 0 λ
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Jordan Canonical Form. A matrix J is in Jordan canonical form if all the elements are zero except for Jordan
blocks Jk along the diagonal.

J =


J1 0 · · · 0 0

0 J2
. . . 0 0

...
. . . . . . . . .

...

0 0
. . . Jn−1 0

0 0 · · · 0 Jn


The Jordan canonical form of a matrix is obtained with the similarity transformation:

J = S−1AS,

where S is the matrix of the generalized eigenvectors of A and the generalized eigenvectors are grouped in chains.

Example 15.3.2 Again consider the matrix

A =

 1 1 1
2 1 −1
−3 2 4

 .

Since λ = 2 is an eigenvalue of multiplicity 3, the Jordan canonical form of the matrix is

J =

2 1 0
0 2 1
0 0 2

 .

In Example 15.3.1 we found the generalized eigenvectors of A. We define the matrix with generalized eigenvectors as
columns:

S =

 0 −1 1
−1 2 0
1 −3 0

 .
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We can verify that J = S−1AS.

J = S−1AS

=

0 −3 −2
0 −1 −1
1 −1 −1

 1 1 1
2 1 −1
−3 2 4

 0 −1 1
−1 2 0
1 −3 0


=

2 1 0
0 2 1
0 0 2


Functions of Matrices in Jordan Canonical Form. The function of an n × n Jordan block is the upper-
triangular matrix:

f(Jk) =



f(λ) f ′(λ)
1!

f ′′(λ)
2!

· · · f (n−2)(λ)
(n−2)!

f (n−1)(λ)
(n−1)!

0 f(λ) f ′(λ)
1!

· · · f (n−3)(λ)
(n−3)!

f (n−2)(λ)
(n−2)!

0 0 f(λ)
. . . f (n−4)(λ)

(n−4)!
f (n−3)(λ)

(n−3)!
...

...
. . . . . . . . .

...

0 0 0
. . . f(λ) f ′(λ)

1!

0 0 0 · · · 0 f(λ)


The function of a matrix in Jordan canonical form is

f(J) =


f(J1) 0 · · · 0 0

0 f(J2)
. . . 0 0

...
. . . . . . . . .

...

0 0
. . . f(Jn−1) 0

0 0 · · · 0 f(Jn)


The Jordan canonical form of a matrix satisfies:

f(J) = S−1f(A)S,
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where S is the matrix of the generalized eigenvectors of A. This gives us a convenient method for computing functions
of matrices.

Example 15.3.3 Consider the matrix exponential function eA for our old friend:

A =

 1 1 1
2 1 −1
−3 2 4

 .

In Example 15.3.2 we showed that the Jordan canonical form of the matrix is

J =

2 1 0
0 2 1
0 0 2

 .

Since all the derivatives of eλ are just eλ, it is especially easy to compute eJ.

eJ =

e2 e2 e2 /2
0 e2 e2

0 0 e2


We find eA with a similarity transformation of eJ. We use the matrix of generalized eigenvectors found in Example 15.3.2.

eA = S eJ S−1

eA =

 0 −1 1
−1 2 0
1 −3 0

e2 e2 e2 /2
0 e2 e2

0 0 e2

0 −3 −2
0 −1 −1
1 −1 −1


eA =

 0 2 2
3 1 −1
−5 3 5

 e2

2
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15.4 Using the Matrix Exponential

The homogeneous differential equation
x′(t) = Ax(t)

has the solution
x(t) = eAt c

where c is a vector of constants. The solution subject to the initial condition, x(t0) = x0 is

x(t) = eA(t−t0) x0.

The homogeneous differential equation

x′(t) =
1

t
Ax(t)

has the solution
x(t) = tAc ≡ eALog t c,

where c is a vector of constants. The solution subject to the initial condition, x(t0) = x0 is

x(t) =

(
t

t0

)A

x0 ≡ eALog(t/t0) x0.

The inhomogeneous problem
x′(t) = Ax(t) + f(t), x(t0) = x0

has the solution

x(t) = eA(t−t0) x0 + eAt

∫ t

t0

e−Aτ f(τ) dτ.

Example 15.4.1 Consider the system

dx

dt
=

 1 1 1
2 1 −1
−3 2 4

x.
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The general solution of the system of differential equations is

x(t) = eAt c.

In Example 15.3.3 we found eA. At is just a constant times A. The eigenvalues of At are {λkt} where {λk} are the
eigenvalues of A. The generalized eigenvectors of At are the same as those of A.

Consider eJt. The derivatives of f(λ) = eλt are f ′(λ) = t eλt and f ′′(λ) = t2 eλt. Thus we have

eJt =

e2t t e2t t2 e2t /2
0 e2t t e2t

0 0 e2t


eJt =

1 t t2/2
0 1 t
0 0 1

 e2t

We find eAt with a similarity transformation.

eAt = S eJt S−1

eAt =

 0 −1 1
−1 2 0
1 −3 0

1 t t2/2
0 1 t
0 0 1

 e2t

0 −3 −2
0 −1 −1
1 −1 −1


eAt =

 1− t t t
2t− t2/2 1− t+ t2/2 −t+ t2/2
−3t+ t2/2 2t− t2/2 1 + 2t− t2/2

 e2t

The solution of the system of differential equations is

x(t) =

c1
 1− t

2t− t2/2
−3t+ t2/2

+ c2

 t
1− t+ t2/2
2t− t2/2

+ c3

 t
−t+ t2/2

1 + 2t− t2/2

 e2t
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Example 15.4.2 Consider the Euler equation system

dx

dt
=

1

t
Ax ≡ 1

t

(
1 0
1 1

)
x.

The solution is x(t) = tAc. Note that A is almost in Jordan canonical form. It has a one on the sub-diagonal instead
of the super-diagonal. It is clear that a function of A is defined

f(A) =

(
f(1) 0
f ′(1) f(1)

)
.

The function f(λ) = tλ has the derivative f ′(λ) = tλ log t. Thus the solution of the system is

x(t) =

(
t 0

t log t t

)(
c1
c2

)
= c1

(
t

t log t

)
+ c2

(
0
t

)
Example 15.4.3 Consider an inhomogeneous system of differential equations.

dx

dt
= Ax + f(t) ≡

(
4 −2
8 −4

)
x +

(
t−3

−t−2

)
, t > 0.

The general solution is

x(t) = eAt c + eAt

∫
e−At f(t) dt.

First we find homogeneous solutions. The characteristic equation for the matrix is

χ(λ) =

∣∣∣∣4− λ −2
8 −4− λ

∣∣∣∣ = λ2 = 0

λ = 0 is an eigenvalue of multiplicity 2. Thus the Jordan canonical form of the matrix is

J =

(
0 1
0 0

)
.
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Since rank(nullspace(A− 0I)) = 1 there is only one eigenvector. A generalized eigenvector of rank 2 satisfies

(A− 0I)2x2 = 0(
0 0
0 0

)
x2 = 0

We choose

x2 =

(
1
0

)
Now we generate the chain from x2.

x1 = (A− 0I)x2 =

(
4
8

)
We define the matrix of generalized eigenvectors S.

S =

(
4 1
8 0

)
The derivative of f(λ) = eλt is f ′(λ) = t eλt. Thus

eJt =

(
1 t
0 1

)
The homogeneous solution of the differential equation system is xh = eAt c where

eAt = S eJt S−1

eAt =

(
4 1
8 0

)
.

(
1 t
0 1

)(
0 1/8
1 −1/2

)
eAt =

(
1 + 4t −2t

8t 1− 4t

)
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The general solution of the inhomogeneous system of equations is

x(t) = eAt c + eAt

∫
e−At f(t) dt

x(t) =

(
1 + 4t −2t

8t 1− 4t

)
c +

(
1 + 4t −2t

8t 1− 4t

)∫ (
1− 4t 2t
−8t 1 + 4t

)(
t−3

−t−2

)
dt

x(t) = c1

(
1 + 4t

8t

)
+ c2

(
−2t

1− 4t

)
+

(
2− 2 Log t+ 6

t
− 1

2t2

4− 4 Log t+ 13
t

)
We can tidy up the answer a little bit. First we take linear combinations of the homogeneous solutions to obtain a
simpler form.

x(t) = c1

(
1
2

)
+ c2

(
2t

4t− 1

)
+

(
2− 2 Log t+ 6

t
− 1

2t2

4− 4 Log t+ 13
t

)
Then we subtract 2 times the first homogeneous solution from the particular solution.

x(t) = c1

(
1
2

)
+ c2

(
2t

4t− 1

)
+

(
−2 Log t+ 6

t
− 1

2t2

−4 Log t+ 13
t

)
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15.5 Exercises

Exercise 15.4 (mathematica/ode/systems/systems.nb)
Find the solution of the following initial value problem.

x′ = Ax ≡
(
−2 1
−5 4

)
x, x(0) = x0 ≡

(
1
3

)
Hint, Solution

Exercise 15.5 (mathematica/ode/systems/systems.nb)
Find the solution of the following initial value problem.

x′ = Ax ≡

 1 1 2
0 2 2
−1 1 3

x, x(0) = x0 ≡

2
0
1


Hint, Solution

Exercise 15.6 (mathematica/ode/systems/systems.nb)
Find the solution of the following initial value problem. Describe the behavior of the solution as t→∞.

x′ = Ax ≡
(

1 −5
1 −3

)
x, x(0) = x0 ≡

(
1
1

)
Hint, Solution

Exercise 15.7 (mathematica/ode/systems/systems.nb)
Find the solution of the following initial value problem. Describe the behavior of the solution as t→∞.

x′ = Ax ≡

−3 0 2
1 −1 0
−2 −1 0

x, x(0) = x0 ≡

1
0
0


Hint, Solution
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Exercise 15.8 (mathematica/ode/systems/systems.nb)
Find the solution of the following initial value problem. Describe the behavior of the solution as t→∞.

x′ = Ax ≡
(

1 −4
4 −7

)
x, x(0) = x0 ≡

(
3
2

)
Hint, Solution

Exercise 15.9 (mathematica/ode/systems/systems.nb)
Find the solution of the following initial value problem. Describe the behavior of the solution as t→∞.

x′ = Ax ≡

−1 0 0
−4 1 0
3 6 2

x, x(0) = x0 ≡

 −1
2
−30


Hint, Solution

Exercise 15.10
1. Consider the system

x′ = Ax =

 1 1 1
2 1 −1
−3 2 4

x. (15.2)

(a) Show that λ = 2 is an eigenvalue of multiplicity 3 of the coefficient matrix A, and that there is only one
corresponding eigenvector, namely

xi(1) =

 0
1
−1

 .

(b) Using the information in part (i), write down one solution x(1)(t) of the system (15.2). There is no other
solution of a purely exponential form x = xi eλt.

(c) To find a second solution use the form x = xit e2t +η e2t, and find appropriate vectors xi and η. This gives
a solution of the system (15.2) which is independent of the one obtained in part (ii).
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(d) To find a third linearly independent solution use the form x = xi(t2/2) e2t +ηt e2t +ζ e2t. Show that xi, η
and ζ satisfy the equations

(A− 2I)xi = 0, (A− 2I)η = xi, (A− 2I)ζ = η.

The first two equations can be taken to coincide with those obtained in part (iii). Solve the third equation,
and write down a third independent solution of the system (15.2).

2. Consider the system

x′ = Ax =

 5 −3 −2
8 −5 −4
−4 3 3

x. (15.3)

(a) Show that λ = 1 is an eigenvalue of multiplicity 3 of the coefficient matrix A, and that there are only two
linearly independent eigenvectors, which we may take as

xi(1) =

1
0
2

 , xi(2) =

 0
2
−3


Find two independent solutions of equation (15.3).

(b) To find a third solution use the form x = xit et +ηet; then show that xi and η must satisfy

(A− I)xi = 0, (A− I)η = xi.

Show that the most general solution of the first of these equations is xi = c1xi1 + c2xi2, where c1 and c2
are arbitrary constants. Show that, in order to solve the second of these equations it is necessary to take
c1 = c2. Obtain such a vector η, and use it to obtain a third independent solution of the system (15.3).

Hint, Solution
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Exercise 15.11 (mathematica/ode/systems/systems.nb)
Consider the system of ODE’s

dx

dt
= Ax, x(0) = x0

where A is the constant 3× 3 matrix

A =

 1 1 1
2 1 −1
−8 −5 −3


1. Find the eigenvalues and associated eigenvectors of A. [HINT: notice that λ = −1 is a root of the characteristic

polynomial of A.]

2. Use the results from part (a) to construct eAt and therefore the solution to the initial value problem above.

3. Use the results of part (a) to find the general solution to

dx

dt
=

1

t
Ax.

Hint, Solution

Exercise 15.12 (mathematica/ode/systems/systems.nb)
1. Find the general solution to

dx

dt
= Ax

where

A =

2 0 1
0 2 0
0 1 3


2. Solve

dx

dt
= Ax + g(t), x(0) = 0
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using A from part (a).
Hint, Solution

Exercise 15.13
Let A be an n× n matrix of constants. The system

dx

dt
=

1

t
Ax, (15.4)

is analogous to the Euler equation.

1. Verify that when A is a 2 × 2 constant matrix, elimination of (15.4) yields a second order Euler differential
equation.

2. Now assume that A is an n× n matrix of constants. Show that this system, in analogy with the Euler equation
has solutions of the form x = atλ where a is a constant vector provided a and λ satisfy certain conditions.

3. Based on your experience with the treatment of multiple roots in the solution of constant coefficient systems,
what form will the general solution of (15.4) take if λ is a multiple eigenvalue in the eigenvalue problem derived
in part (b)?

4. Verify your prediction by deriving the general solution for the system

dx

dt
=

1

t

(
1 0
1 1

)
x.

Hint, Solution
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15.6 Hints

Hint 15.1

Hint 15.2

Hint 15.3

Hint 15.4

Hint 15.5

Hint 15.6

Hint 15.7

Hint 15.8

Hint 15.9

Hint 15.10
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Hint 15.11

Hint 15.12

Hint 15.13
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15.7 Solutions
Solution 15.1
We consider an initial value problem.

x′ = Ax ≡
(

1 −5
1 −3

)
x, x(0) = x0 ≡

(
1
1

)
The matrix has the distinct eigenvalues λ1 = −1− ı, λ2 = −1 + ı. The corresponding eigenvectors are

x1 =

(
2− ı

1

)
, x2 =

(
2 + ı

1

)
.

The general solution of the system of differential equations is

x = c1

(
2− ı

1

)
e(−1−ı)t +c2

(
2 + ı

1

)
e(−1+ı)t .

We can take the real and imaginary parts of either of these solution to obtain real-valued solutions.(
2 + ı

1

)
e(−1+ı)t =

(
2 cos(t)− sin(t)

cos(t)

)
e−t +ı

(
cos(t) + 2 sin(t)

sin(t)

)
e−t

x = c1

(
2 cos(t)− sin(t)

cos(t)

)
e−t +c2

(
cos(t) + 2 sin(t)

sin(t)

)
e−t

We apply the initial condition to determine the constants.(
2 1
1 0

)(
c1
c2

)
=

(
1
1

)
c1 = 1, c2 = −1

The solution subject to the initial condition is

x =

(
cos(t)− 3 sin(t)
cos(t)− sin(t)

)
e−t .

Plotted in the phase plane, the solution spirals in to the origin as t increases. Both coordinates tend to zero as t→∞.
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Solution 15.2
We consider an initial value problem.

x′ = Ax ≡

−3 0 2
1 −1 0
−2 −1 0

x, x(0) = x0 ≡

1
0
0


The matrix has the distinct eigenvalues λ1 = −2, λ2 = −1− ı

√
2, λ3 = −1+ ı

√
2. The corresponding eigenvectors

are

x1 =

 2
−2
1

 , x2 =

 2 + ı
√

2

−1 + ı
√

2
3

 , x3 =

 2− ı
√

2

−1− ı
√

2
3

 .

The general solution of the system of differential equations is

x = c1

 2
−2
1

 e−2t +c2

 2 + ı
√

2

−1 + ı
√

2
3

 e(−1−ı
√

2)t +c3

 2− ı
√

2

−1− ı
√

2
3

 e(−1+ı
√

2)t .

We can take the real and imaginary parts of the second or third solution to obtain two real-valued solutions.

 2 + ı
√

2

−1 + ı
√

2
3

 e(−1−ı
√

2)t =

2 cos(
√

2t) +
√

2 sin(
√

2t)

− cos(
√

2t) +
√

2 sin(
√

2t)

3 cos(
√

2t)

 e−t +ı

√2 cos(
√

2t)− 2 sin(
√

2t)√
2 cos(

√
2t) + sin(

√
2t)

−3 sin(
√

2t)

 e−t

x = c1

 2
−2
1

 e−2t +c2

2 cos(
√

2t) +
√

2 sin(
√

2t)

− cos(
√

2t) +
√

2 sin(
√

2t)

3 cos(
√

2t)

 e−t +c3

√2 cos(
√

2t)− 2 sin(
√

2t)√
2 cos(

√
2t) + sin(

√
2t)

−3 sin(
√

2t)

 e−t
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We apply the initial condition to determine the constants. 2 2
√

2

−2 −1
√

2
1 3 0

c1c2
c3

 =

1
0
0


c1 =

1

3
, c2 = −1

9
, c3 =

5

9
√

2

The solution subject to the initial condition is

x =
1

3

 2
−2
1

 e−2t +
1

6

 2 cos(
√

2t)− 4
√

2 sin(
√

2t)

4 cos(
√

2t) +
√

2 sin(
√

2t)

−2 cos(
√

2t)− 5
√

2 sin(
√

2t)

 e−t .

As t→∞, all coordinates tend to infinity. Plotted in the phase plane, the solution would spiral in to the origin.

Solution 15.3
Homogeneous Solution, Method 1. We designate the inhomogeneous system of differential equations

x′ = Ax + g(t).

First we find homogeneous solutions. The characteristic equation for the matrix is

χ(λ) =

∣∣∣∣4− λ −2
8 −4− λ

∣∣∣∣ = λ2 = 0

λ = 0 is an eigenvalue of multiplicity 2. The eigenvectors satisfy(
4 −2
8 −4

)(
ξ1
ξ2

)
=

(
0
0

)
.

Thus we see that there is only one linearly independent eigenvector. We choose

xi =

(
1
2

)
.
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One homogeneous solution is then

x1 =

(
1
2

)
e0t =

(
1
2

)
.

We look for a second homogeneous solution of the form

x2 = xit+ η.

We substitute this into the homogeneous equation.

x′2 = Ax2

xi = A(xit+ η)

We see that xi and η satisfy
Axi = 0, Aη = xi.

We choose xi to be the eigenvector that we found previously. The equation for η is then(
4 −2
8 −4

)(
η1

η2

)
=

(
1
2

)
.

η is determined up to an additive multiple of xi. We choose

η =

(
0

−1/2

)
.

Thus a second homogeneous solution is

x2 =

(
1
2

)
t+

(
0

−1/2

)
.

The general homogeneous solution of the system is

xh = c1

(
1
2

)
+ c2

(
t

2t− 1/2

)
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We can write this in matrix notation using the fundamental matrix Ψ(t).

xh = Ψ(t)c =

(
1 t
2 2t− 1/2

)(
c1
c2

)
Homogeneous Solution, Method 2. The similarity transform c−1Ac with

c =

(
1 0
2 −1/2

)
will convert the matrix

A =

(
4 −2
8 −4

)
to Jordan canonical form. We make the change of variables,

y =

(
1 0
2 −1/2

)
x.

The homogeneous system becomes

dy

dt
=

(
1 0
4 −2

)(
4 −2
8 −4

)(
1 0
2 −1/2

)
y(

y′1
y′2

)
=

(
0 1
0 0

)(
y1

y2

)
The equation for y2 is

y′2 = 0.

y2 = c2

The equation for y1 becomes

y′1 = c2.

y1 = c1 + c2t

876



The solution for y is then

y = c1

(
1
0

)
+ c2

(
t
1

)
.

We multiply this by c to obtain the homogeneous solution for x.

xh = c1

(
1
2

)
+ c2

(
t

2t− 1/2

)
Inhomogeneous Solution. By the method of variation of parameters, a particular solution is

xp = Ψ(t)

∫
Ψ−1(t)g(t) dt.

xp =

(
1 t
2 2t− 1/2

)∫ (
1− 4t 2t

4 −2

)(
t−3

−t−2

)
dt

xp =

(
1 t
2 2t− 1/2

)∫ (
−2t−1 − 4t−2 + t−3

2t−2 + 4t−3

)
dt

xp =

(
1 t
2 2t− 1/2

)(
−2 log t+ 4t−1 − 1

2
t−2

−2t−1 − 2t−2

)
xp =

(
−2− 2 log t+ 2t−1 − 1

2
t−2

−4− 4 log t+ 5t−1

)
By adding 2 times our first homogeneous solution, we obtain

xp =

(
−2 log t+ 2t−1 − 1

2
t−2

−4 log t+ 5t−1

)
The general solution of the system of differential equations is

x = c1

(
1
2

)
+ c2

(
t

2t− 1/2

)
+

(
−2 log t+ 2t−1 − 1

2
t−2

−4 log t+ 5t−1

)
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Solution 15.4
We consider an initial value problem.

x′ = Ax ≡
(
−2 1
−5 4

)
x, x(0) = x0 ≡

(
1
3

)
The Jordan canonical form of the matrix is

J =

(
−1 0
0 3

)
.

The solution of the initial value problem is x = eAt x0.

x = eAt x0

= S eJt S−1x0

=

(
1 1
1 5

)(
e−t 0
0 e3t

)
1

4

(
5 −1
−1 1

)(
1
3

)
=

1

2

(
e−t + e3t

e−t +5 e3t

)

x =
1

2

(
1
1

)
e−t +

1

2

(
1
5

)
e3t

Solution 15.5
We consider an initial value problem.

x′ = Ax ≡

 1 1 2
0 2 2
−1 1 3

x, x(0) = x0 ≡

2
0
1


The Jordan canonical form of the matrix is

J =

1 0 0
0 2 0
0 0 3

 .
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The solution of the initial value problem is x = eAt x0.

x = eAt x0

= S eJt S−1x0

=

 0 1 2
−2 1 2
1 0 1

et 0 0
0 e2t 0
0 0 e3t

 1

2

 1 −1 0
4 −2 −4
−1 1 2

2
0
1


=

 2 e2t

−2 et +2 e2t

et



x =

 0
−2
1

 et +

2
2
0

 e2t .

Solution 15.6
We consider an initial value problem.

x′ = Ax ≡
(

1 −5
1 −3

)
x, x(0) = x0 ≡

(
1
1

)

The Jordan canonical form of the matrix is

J =

(
−1− ı 0

0 −1 + ı

)
.
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The solution of the initial value problem is x = eAt x0.

x = eAt x0

= S eJt S−1x0

=

(
2− ı 2 + ı

1 1

)(
e(−1−ı)t 0

0 e(−1+ı)t

)
1

2

(
ı 1− ı2
−ı 1 + ı2

)(
1
1

)
=

(
(cos(t)− 3 sin(t)) e−t

(cos(t)− sin(t)) e−t

)

x =

(
1
1

)
e−t cos(t)−

(
3
1

)
e−t sin(t)

Solution 15.7
We consider an initial value problem.

x′ = Ax ≡

−3 0 2
1 −1 0
−2 −1 0

x, x(0) = x0 ≡

1
0
0



The Jordan canonical form of the matrix is

J =

−2 0 0

0 −1− ı
√

2 0

0 0 −1 + ı
√

2

 .
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The solution of the initial value problem is x = eAt x0.

x = eAt x0

= S eJt S−1x0

=
1

3

 6 2 + ı
√

2 2− ı
√

2

−6 −1 + ı
√

2 −1− ı
√

2
3 3 3

e−2t 0 0

0 e(−1−ı
√

2)t 0

0 0 e(−1+ı
√

2)t


1

6

 2 −2 −2

−1− ı5
√

2/2 1− ı2
√

2 4 + ı
√

2

−1 + ı5
√

2/2 1 + ı2
√

2 4− ı
√

2

1
0
0



x =
1

3

 2
−2
1

 e−2t +
1

6

 2 cos(
√

2t)− 4
√

2 sin(
√

2t)

4 cos(
√

2t) +
√

2 sin(
√

2t)

−2 cos(
√

2t)− 5
√

2 sin(
√

2t)

 e−t .

Solution 15.8
We consider an initial value problem.

x′ = Ax ≡
(

1 −4
4 −7

)
x, x(0) = x0 ≡

(
3
2

)

Method 1. Find Homogeneous Solutions. The matrix has the double eigenvalue λ1 = λ2 = −3. There is only
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one corresponding eigenvector. We compute a chain of generalized eigenvectors.

(A + 3I)2x2 = 0

0x2 = 0

x2 =

(
1
0

)
(A + 3I)x2 = x1

x1 =

(
4
4

)
The general solution of the system of differential equations is

x = c1

(
1
1

)
e−3t +c2

((
4
4

)
t+

(
1
0

))
e−3t .

We apply the initial condition to determine the constants.(
1 1
1 0

)(
c1
c2

)
=

(
3
2

)
c1 = 2, c2 = 1

The solution subject to the initial condition is

x =

(
3 + 4t
2 + 4t

)
e−3t .

Both coordinates tend to zero as t→∞.
Method 2. Use the Exponential Matrix. The Jordan canonical form of the matrix is

J =

(
−3 1
0 −3

)
.
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The solution of the initial value problem is x = eAt x0.

x = eAt x0

= S eJt S−1x0

=

(
1 1/4
1 0

)(
e−3t t e−3t

0 e−3t

)(
0 1
4 −4

)(
3
2

)

x =

(
3 + 4t
2 + 4t

)
e−3t .

Solution 15.9
We consider an initial value problem.

x′ = Ax ≡

−1 0 0
−4 1 0
3 6 2

x, x(0) = x0 ≡

 −1
2
−30


Method 1. Find Homogeneous Solutions. The matrix has the distinct eigenvalues λ1 = −1, λ2 = 1, λ3 = 2.

The corresponding eigenvectors are

x1 =

−1
−2
5

 , x2 =

 0
−1
6

 , x3 =

0
0
1

 .

The general solution of the system of differential equations is

x = c1

−1
−2
5

 e−t +c2

 0
−1
6

 et +c3

0
0
1

 e2t .
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We apply the initial condition to determine the constants.−1 0 0
−2 −1 0
5 6 1

c1c2
c3

 =

 −1
2
−30


c1 = 1, c2 = −4, c3 = −11

The solution subject to the initial condition is

x =

−1
−2
5

 e−t−4

 0
−1
6

 et−11

0
0
1

 e2t .

As t→∞, the first coordinate vanishes, the second coordinate tends to ∞ and the third coordinate tends to −∞
Method 2. Use the Exponential Matrix. The Jordan canonical form of the matrix is

J =

−1 0 0
0 1 0
0 0 2

 .

The solution of the initial value problem is x = eAt x0.

x = eAt x0

= S eJt S−1x0

=

−1 0 0
−2 −1 0
5 6 1

e−t 0 0
0 et 0
0 0 e2t

 1

2

−1 0 0
2 −1 0
−7 6 1

 −1
2
−30



x =

−1
−2
5

 e−t−4

 0
−1
6

 et−11

0
0
1

 e2t .
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Solution 15.10
1. (a) We compute the eigenvalues of the matrix.

χ(λ) =

∣∣∣∣∣∣
1− λ 1 1

2 1− λ −1
−3 2 4− λ

∣∣∣∣∣∣ = −λ3 + 6λ2 − 12λ+ 8 = −(λ− 2)3

λ = 2 is an eigenvalue of multiplicity 3. The rank of the null space of A− 2I is 1. (The first two rows are
linearly independent, but the third is a linear combination of the first two.)

A− 2I =

−1 1 1
2 −1 −1
−3 2 2


Thus there is only one eigenvector. −1 1 1

2 −1 −1
−3 2 2

ξ1ξ2
ξ3

 = 0

xi(1) =

 0
1
−1


(b) One solution of the system of differential equations is

x(1) =

 0
1
−1

 e2t .

(c) We substitute the form x = xit e2t +η e2t into the differential equation.

x′ = Ax

xi e2t +2xit e2t +2η e2t = Axit e2t +Aη e2t

(A− 2I)xi = 0, (A− 2I)η = xi
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We already have a solution of the first equation, we need the generalized eigenvector η. Note that η is only
determined up to a constant times xi. Thus we look for the solution whose second component vanishes to
simplify the algebra.

(A− 2I)η = xi−1 1 1
2 −1 −1
−3 2 2

η1

0
η3

 =

 0
1
−1


−η1 + η3 = 0, 2η1 − η3 = 1, −3η1 + 2η3 = −1

η =

1
0
1


A second linearly independent solution is

x(2) =

 0
1
−1

 t e2t +

1
0
1

 e2t .

(d) To find a third solution we substutite the form x = xi(t2/2) e2t +ηt e2t +ζ e2t into the differential equation.

x′ = Ax

2xi(t2/2) e2t +(xi+ 2η)t e2t +(η + 2ζ) e2t = Axi(t2/2) e2t +Aηt e2t +Aζ e2t

(A− 2I)xi = 0, (A− 2I)η = xi, (A− 2I)ζ = η

We have already solved the first two equations, we need the generalized eigenvector ζ. Note that ζ is only
determined up to a constant times xi. Thus we look for the solution whose second component vanishes to
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simplify the algebra.

(A− 2I)ζ = η−1 1 1
2 −1 −1
−3 2 2

ζ10
ζ3

 =

1
0
1


−ζ1 + ζ3 = 1, 2ζ1 − ζ3 = 0, −3ζ1 + 2ζ3 = 1

ζ =

1
0
2


A third linearly independent solution is

x(3) =

 0
1
−1

 (t2/2) e2t +

1
0
1

 t e2t +

1
0
2

 e2t

2. (a) We compute the eigenvalues of the matrix.

χ(λ) =

∣∣∣∣∣∣
5− λ −3 −2

8 −5− λ −4
−4 3 3− λ

∣∣∣∣∣∣ = −λ3 + 3λ2 − 3λ+ 1 = −(λ− 1)3

λ = 1 is an eigenvalue of multiplicity 3. The rank of the null space of A − I is 2. (The second and third
rows are multiples of the first.)

A− I =

 4 −3 −2
8 −6 −4
−4 3 2
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Thus there are two eigenvectors.  4 −3 −2
8 −6 −4
−4 3 2

ξ1ξ2
ξ3

 = 0

xi(1) =

1
0
2

 , xi(2) =

 0
2
−3


Two linearly independent solutions of the differential equation are

x(1) =

1
0
2

 et, x(2) =

 0
2
−3

 et .

(b) We substitute the form x = xit et +η et into the differential equation.

x′ = Ax

xi et +xit et +η et = Axit et +Aη et

(A− I)xi = 0, (A− I)η = xi

The general solution of the first equation is a linear combination of the two solutions we found in the previous
part.

xi = c1xi1 + c2xi2

Now we find the generalized eigenvector, η. Note that η is only determined up to a linear combination of
xi1 and xi2. Thus we can take the first two components of η to be zero. 4 −3 −2

8 −6 −4
−4 3 2

 0
0
η3

 = c1

1
0
2

+ c2

 0
2
−3


−2η3 = c1, −4η3 = 2c2, 2η3 = 2c1 − 3c2

c1 = c2, η3 = −c1
2
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We see that we must take c1 = c2 in order to obtain a solution. We choose c1 = c2 = 2 A third linearly
independent solution of the differential equation is

x(3) =

 2
4
−2

 t et +

 0
0
−1

 et .

Solution 15.11
1. The characteristic polynomial of the matrix is

χ(λ) =

∣∣∣∣∣∣
1− λ 1 1

2 1− λ −1
−8 −5 −3− λ

∣∣∣∣∣∣
= (1− λ)2(−3− λ) + 8− 10− 5(1− λ)− 2(−3− λ)− 8(1− λ)

= −λ3 − λ2 + 4λ+ 4

= −(λ+ 2)(λ+ 1)(λ− 2)

Thus we see that the eigenvalues are λ = −2,−1, 2. The eigenvectors xi satisfy

(A− λI)xi = 0.

For λ = −2, we have

(A + 2I)xi = 0. 3 1 1
2 3 −1
−8 −5 −1

ξ1ξ2
ξ3

 =

0
0
0


If we take ξ3 = 1 then the first two rows give us the system,(

3 1
2 3

)(
ξ1
ξ2

)
=

(
−1
1

)
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which has the solution ξ1 = −4/7, ξ2 = 5/7. For the first eigenvector we choose:

xi =

−4
5
7


For λ = −1, we have

(A + I)xi = 0. 2 1 1
2 2 −1
−8 −5 −2

ξ1ξ2
ξ3

 =

0
0
0


If we take ξ3 = 1 then the first two rows give us the system,(

2 1
2 2

)(
ξ1
ξ2

)
=

(
−1
1

)
which has the solution ξ1 = −3/2, ξ2 = 2. For the second eigenvector we choose:

xi =

−3
4
2


For λ = 2, we have

(A + I)xi = 0.−1 1 1
2 −1 −1
−8 −5 −5

ξ1ξ2
ξ3

 =

0
0
0
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If we take ξ3 = 1 then the first two rows give us the system,(
−1 1
2 −1

)(
ξ1
ξ2

)
=

(
−1
1

)
which has the solution ξ1 = 0, ξ2 = −1. For the third eigenvector we choose:

xi =

 0
−1
1


In summary, the eigenvalues and eigenvectors are

λ = {−2,−1, 2}, xi =


−4

5
7

 ,

−3
4
2

 ,

 0
−1
1


2. The matrix is diagonalized with the similarity transformation

J = S−1AS,

where S is the matrix with eigenvectors as columns:

S =

−4 −3 0
5 4 −1
7 2 1


The matrix exponential, eAt is given by

eA = S eJ S−1.

eA =

−4 −3 0
5 4 −1
7 2 1

e−2t 0 0
0 e−t 0
0 0 e2t

 1

12

 6 3 3
−12 −4 −4
−18 −13 −1

 .
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eAt =

−2 e−2t +3 e−t − e−2t + e−t − e−2t + e−t

5 e−2t −8 e−t +3 et

2
15 e−2t −16 e−t +13 et

12
15 e−2t −16 e−t + et

12
7 e−2t −4 e−t −3 et

2
21 e−2t −8 e−t −13 et

12
21 e−2t −8 e−t − et

12


The solution of the initial value problem is eAt x0.

3. The general solution of the Euler equation is

c1

−4
5
7

 t−2 + c2

−3
4
2

 t−1 + c3

 0
−1
1

 t2.

We could also write the solution as

x = tAc ≡ eA log t c,

Solution 15.12
1. The characteristic polynomial of the matrix is

χ(λ) =

∣∣∣∣∣∣
2− λ 0 1

0 2− λ 0
0 1 3− λ

∣∣∣∣∣∣
= (2− λ)2(3− λ)

Thus we see that the eigenvalues are λ = 2, 2, 3. Consider

A− 2I =

0 0 1
0 0 0
0 1 3

 .

Since rank(nullspace(A − 2I)) = 1 there is one eigenvector and one generalized eigenvector of rank two for
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λ = 2. The generalized eigenvector of rank two satisfies

(A− 2I)2xi2 = 00 1 1
0 0 0
0 1 1

xi2 = 0

We choose the solution

xi2 =

 0
−1
1

 .

The eigenvector for λ = 2 is

xi1 = (A− 2I)xi2 =

1
0
0

 .

The eigenvector for λ = 3 satisfies

(A− 3I)2xi = 0−1 0 1
0 −1 0
0 1 0

xi = 0

We choose the solution

xi =

1
0
1

 .

The eigenvalues and generalized eigenvectors are

λ = {2, 2, 3}, xi =


1

0
0

 ,

 0
−1
1

 ,

1
0
1

 .
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The matrix of eigenvectors and its inverse is

S =

1 0 1
0 −1 0
0 1 1

 , S−1 =

1 −1 −1
0 −1 0
0 1 1

 .

The Jordan canonical form of the matrix, which satisfies J = S−1AS is

J =

2 1 0
0 2 0
0 0 3


Recall that the function of a Jordan block is:

f



λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ


 =


f(λ) f ′(λ)

1!
f ′′(λ)

2!
f ′′′(λ)

3!

0 f(λ) f ′(λ)
1!

f ′′(λ)
2!

0 0 f(λ) f ′(λ)
1!

0 0 0 f(λ)

 ,

and that the function of a matrix in Jordan canonical form is

f




J1 0 0 0
0 J2 0 0
0 0 J3 0
0 0 0 J4


 =


f(J1) 0 0 0

0 f(J2) 0 0
0 0 f(J3) 0
0 0 0 f(J4)

 .

We want to compute eJt so we consider the function f(λ) = eλt, which has the derivative f ′(λ) = t eλt. Thus
we see that

eJt =

e2t t e2t 0
0 e2t 0
0 0 e3t
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The exponential matrix is

eAt = S eJt S−1,

eAt =

e2t −(1 + t) e2t + e3t − e2t + e3t

0 e2t 0
0 − e2t + e3t e3t

 .

The general solution of the homogeneous differential equation is

x = eAt c.

2. The solution of the inhomogeneous differential equation subject to the initial condition is

x = eAt 0 + eAt

∫ t

0

e−Aτ g(τ) dτ

x = eAt

∫ t

0

e−Aτ g(τ) dτ

Solution 15.13
1.

dx

dt
=

1

t
Ax

t

(
x′1
x′2

)
=

(
a b
c d

)(
x1

x2

)
The first component of this equation is

tx′1 = ax1 + bx2.
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We differentiate and multiply by t to obtain a second order coupled equation for x1. We use (15.4) to eliminate
the dependence on x2.

t2x′′1 + tx′1 = atx′1 + btx′2
t2x′′1 + (1− a)tx′1 = b(cx1 + dx2)

t2x′′1 + (1− a)tx′1 − bcx1 = d(tx′1 − ax1)

t2x′′1 + (1− a− d)tx′1 + (ad− bc)x1 = 0

Thus we see that x1 satisfies a second order, Euler equation. By symmetry we see that x2 satisfies,

t2x′′2 + (1− b− c)tx′2 + (bc− ad)x2 = 0.

2. We substitute x = atλ into (15.4).

λatλ−1 =
1

t
Aatλ

Aa = λa

Thus we see that x = atλ is a solution if λ is an eigenvalue of A with eigenvector a.

3. Suppose that λ = α is an eigenvalue of multiplicity 2. If λ = α has two linearly independent eigenvectors, a and
b then atα and btα are linearly independent solutions. If λ = α has only one linearly independent eigenvector,
a, then atα is a solution. We look for a second solution of the form

x = xitα log t+ ηtα.

Substituting this into the differential equation yields

αxitα−1 log t+ xitα−1 + αηtα−1 = Axitα−1 log t+ Aηtα−1

We equate coefficients of tα−1 log t and tα−1 to determine xi and η.

(A− αI)xi = 0, (A− αI)η = xi
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These equations have solutions because λ = α has generalized eigenvectors of first and second order.

Note that the change of independent variable τ = log t, y(τ) = x(t), will transform (15.4) into a constant
coefficient system.

dy

dτ
= Ay

Thus all the methods for solving constant coefficient systems carry over directly to solving (15.4). In the case of
eigenvalues with multiplicity greater than one, we will have solutions of the form,

xitα, xitα log t+ ηtα, xitα (log t)2 + ηtα log t+ ζtα, . . . ,

analogous to the form of the solutions for a constant coefficient system,

xi eατ , xiτ eατ +η eατ , xiτ 2 eατ +ητ eατ +ζ eατ , . . . .

4. Method 1. Now we consider
dx

dt
=

1

t

(
1 0
1 1

)
x.

The characteristic polynomial of the matrix is

χ(λ) =

∣∣∣∣1− λ 0
1 1− λ

∣∣∣∣ = (1− λ)2.

λ = 1 is an eigenvalue of multiplicity 2. The equation for the associated eigenvectors is(
0 0
1 0

)(
ξ1
ξ2

)
=

(
0
0

)
.

There is only one linearly independent eigenvector, which we choose to be

a =

(
0
1

)
.
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One solution of the differential equation is

x1 =

(
0
1

)
t.

We look for a second solution of the form
x2 = at log t+ ηt.

η satisfies the equation

(A− I)η =

(
0 0
1 0

)
η =

(
0
1

)
.

The solution is determined only up to an additive multiple of a. We choose

η =

(
1
0

)
.

Thus a second linearly independent solution is

x2 =

(
0
1

)
t log t+

(
1
0

)
t.

The general solution of the differential equation is

x = c1

(
0
1

)
t+ c2

((
0
1

)
t log t+

(
1
0

)
t

)
.

Method 2. Note that the matrix is lower triangular.(
x′1
x′2

)
=

1

t

(
1 0
1 1

)(
x1

x2

)
(15.5)

We have an uncoupled equation for x1.

x′1 =
1

t
x1

x1 = c1t
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By substituting the solution for x1 into (15.5), we obtain an uncoupled equation for x2.

x′2 =
1

t
(c1t+ x2)

x′2 −
1

t
x2 = c1(

1

t
x2

)′
=
c1
t

1

t
x2 = c1 log t+ c2

x2 = c1t log t+ c2t

Thus the solution of the system is

x =

(
c1t

c1t log t+ c2t

)
,

x = c1

(
t

t log t

)
+ c2

(
0
t

)
,

which is equivalent to the solution we obtained previously.
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Chapter 16

Theory of Linear Ordinary Differential
Equations

A little partyin’ is good for the soul.

-Matt Metz

16.1 Exact Equations

Exercise 16.1
Consider a second order, linear, homogeneous differential equation:

P (x)y′′ +Q(x)y′ +R(x)y = 0. (16.1)

Show that P ′′ −Q′ +R = 0 is a necessary and sufficient condition for this equation to be exact.
Hint, Solution

Exercise 16.2
Determine an equation for the integrating factor µ(x) for Equation 16.1.
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Hint, Solution

Exercise 16.3
Show that

y′′ + xy′ + y = 0

is exact. Find the solution.
Hint, Solution

16.2 Nature of Solutions

Result 16.2.1 Consider the nth order ordinary differential equation of the form

L[y] =
dny

dxn
+ pn−1(x)

dn−1y

dxn−1 + · · ·+ p1(x)
dy

dx
+ p0(x)y = f(x). (16.2)

If the coefficient functions pn−1(x), . . . , p0(x) and the inhomogeneity f(x) are continuous on
some interval a < x < b then the differential equation subject to the conditions,

y(x0) = v0, y′(x0) = v1, . . . y(n−1)(x0) = vn−1, a < x0 < b,

has a unique solution on the interval.

Exercise 16.4
On what intervals do the following problems have unique solutions?

1. xy′′ + 3y = x

2. x(x− 1)y′′ + 3xy′ + 4y = 2
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3. ex y′′ + x2y′ + y = tanx

Hint, Solution

Linearity of the Operator. The differential operator L is linear. To verify this,

L[cy] =
dn

dxn
(cy) + pn−1(x)

dn−1

dxn−1
(cy) + · · ·+ p1(x)

d

dx
(cy) + p0(x)(cy)

= c
dn

dxn
y + cpn−1(x)

dn−1

dxn−1
y + · · ·+ cp1(x)

d

dx
y + cp0(x)y

= cL[y]

L[y1 + y2] =
dn

dxn
(y1 + y2) + pn−1(x)

dn−1

dxn−1
(y1 + y2) + · · ·+ p1(x)

d

dx
(y1 + y2) + p0(x)(y1 + y2)

=
dn

dxn
(y1) + pn−1(x)

dn−1

dxn−1
(y1) + · · ·+ p1(x)

d

dx
(y1) + p0(x)(y1)

+
dn

dxn
(y2) + pn−1(x)

dn−1

dxn−1
(y2) + · · ·+ p1(x)

d

dx
(y2) + p0(x)(y2)

= L[y1] + L[y2].

Homogeneous Solutions. The general homogeneous equation has the form

L[y] =
dny

dxn
+ pn−1(x)

dn−1y

dxn−1
+ · · ·+ p1(x)

dy

dx
+ p0(x)y = 0.

From the linearity of L, we see that if y1 and y2 are solutions to the homogeneous equation then c1y1 + c2y2 is also a
solution, (L[c1y1 + c2y2] = 0).

On any interval where the coefficient functions are continuous, the nth order linear homogeneous equation has n
linearly independent solutions, y1, y2, . . . , yn. (We will study linear independence in Section 16.4.) The general solution
to the homogeneous problem is then

yh = c1y1 + c2y2 + · · ·+ cnyn.
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Particular Solutions. Any function, yp, that satisfies the inhomogeneous equation, L[yp] = f(x), is called a
particular solution or particular integral of the equation. Note that for linear differential equations the particular solution
is not unique. If yp is a particular solution then yp+yh is also a particular solution where yh is any homogeneous solution.

The general solution to the problem L[y] = f(x) is the sum of a particular solution and a linear combination of the
homogeneous solutions

y = yp + c1y1 + · · ·+ cnyn.

Example 16.2.1 Consider the differential equation

y′′ − y′ = 1.

You can verify that two homogeneous solutions are ex and 1. A particular solution is −x. Thus the general solution is

y = −x+ c1 ex +c2.

Exercise 16.5
Suppose you are able to find three linearly independent particular solutions u1(x), u2(x) and u3(x) of the second order
linear differential equation L[y] = f(x). What is the general solution?
Hint, Solution

Real-Valued Solutions. If the coefficient function and the inhomogeneity in Equation 16.2 are real-valued, then
the general solution can be written in terms of real-valued functions. Let y be any, homogeneous solution, (perhaps
complex-valued). By taking the complex conjugate of the equation L[y] = 0 we show that ȳ is a homogeneous solution
as well.

L[y] = 0

L[y] = 0

y(n) + pn−1y(n−1) + · · ·+ p0y = 0

ȳ(n) + pn−1ȳ
(n−1) + · · ·+ p0ȳ = 0

L [ȳ] = 0
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For the same reason, if yp is a particular solution, then yp is a particular solution as well.

Since the real and imaginary parts of a function y are linear combinations of y and ȳ,

<(y) =
y + ȳ

2
, =(y) =

y − ȳ

ı2
,

if y is a homogeneous solution then both <y and =(y) are homogeneous solutions. Likewise, if yp is a particular solution
then <(yp) is a particular solution.

L [<(yp)] = L

[
yp + yp

2

]
=
f

2
+
f

2
= f

Thus we see that the homogeneous solution, the particular solution and the general solution of a linear differential
equation with real-valued coefficients and inhomogeneity can be written in terms of real-valued functions.

Result 16.2.2 The differential equation

L[y] =
dny

dxn
+ pn−1(x)

dn−1y

dxn−1 + · · ·+ p1(x)
dy

dx
+ p0(x)y = f(x)

with continuous coefficients and inhomogeneity has a general solution of the form

y = yp + c1y1 + · · ·+ cnyn

where yp is a particular solution, L[yp] = f , and the yk are linearly independent homogeneous
solutions, L[yk] = 0. If the coefficient functions and inhomogeneity are real-valued, then the
general solution can be written in terms of real-valued functions.
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16.3 Transformation to a First Order System

Any linear differential equation can be put in the form of a system of first order differential equations. Consider

y(n) + pn−1y
(n−1) + · · ·+ p0y = f(x).

We introduce the functions,
y1 = y, y2 = y′, , . . . , yn = y(n−1).

The differential equation is equivalent to the system

y′1 = y2

y′2 = y3

... =
...

y′n = f(x)− pn−1yn − · · · − p0y1.

The first order system is more useful when numerically solving the differential equation.

Example 16.3.1 Consider the differential equation

y′′ + x2y′ + cosx y = sinx.

The corresponding system of first order equations is

y′1 = y2

y′2 = sinx− x2y2 − cosx y1.

16.4 The Wronskian

16.4.1 Derivative of a Determinant.

Before investigating the Wronskian, we will need a preliminary result from matrix theory. Consider an n× n matrix A
whose elements aij(x) are functions of x. We will denote the determinant by ∆[A(x)]. We then have the following
theorem.
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Result 16.4.1 Let aij(x), the elements of the matrix A, be differentiable functions of x.
Then

d

dx
∆[A(x)] =

n∑
k=1

∆k[A(x)]

where ∆k[A(x)] is the determinant of the matrix A with the kth row replaced by the derivative
of the kth row.

Example 16.4.1 Consider the the matrix

A(x) =

(
x x2

x2 x4

)
The determinant is x5 − x4 thus the derivative of the determinant is 5x4 − 4x3. To check the theorem,

d

dx
∆[A(x)] =

d

dx

∣∣∣∣ x x2

x2 x4

∣∣∣∣
=

∣∣∣∣ 1 2x
x2 x4

∣∣∣∣+ ∣∣∣∣ x x2

2x 4x3

∣∣∣∣
= x4 − 2x3 + 4x4 − 2x3

= 5x4 − 4x3.

16.4.2 The Wronskian of a Set of Functions.

A set of functions {y1, y2, . . . , yn} is linearly dependent on an interval if there are constants c1, . . . , cn not all zero such
that

c1y1 + c2y2 + · · ·+ cnyn = 0 (16.3)

identically on the interval. The set is linearly independent if all of the constants must be zero to satisfy c1y1+· · · cnyn = 0
on the interval.
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Consider a set of functions {y1, y2, . . . , yn} that are linearly dependent on a given interval and n − 1 times differ-
entiable. There are a set of constants, not all zero, that satisfy equation 16.3

Differentiating equation 16.3 n− 1 times gives the equations,

c1y
′
1 + c2y

′
2 + · · ·+ cny

′
n = 0

c1y
′′
1 + c2y

′′
2 + · · ·+ cny

′′
n = 0

· · ·
c1y

(n−1)
1 + c2y

(n−1)
2 + · · ·+ cny

(n−1)
n = 0.

We could write the problem to find the constants as
y1 y2 . . . yn
y′1 y′2 . . . y′n
y′′1 y′′2 . . . y′′n
...

...
. . . . . .

y
(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n




c1
c2
c3
...
cn

 = 0

From linear algebra, we know that this equation has a solution for a nonzero constant vector only if the determinant of
the matrix is zero. Here we define the Wronskian ,W (x), of a set of functions.

W (x) =

∣∣∣∣∣∣∣∣∣
y1 y2 . . . yn
y′1 y′2 . . . y′n
...

...
. . . . . .

y
(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n

∣∣∣∣∣∣∣∣∣
Thus if a set of functions is linearly dependent on an interval, then the Wronskian is identically zero on that interval.
Alternatively, if the Wronskian is identically zero, then the above matrix equation has a solution for a nonzero constant
vector. This implies that the the set of functions is linearly dependent.

Result 16.4.2 The Wronskian of a set of functions vanishes identically over an interval if
and only if the set of functions is linearly dependent on that interval. The Wronskian of a set
of linearly independent functions does not vanish except possibly at isolated points.
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Example 16.4.2 Consider the set, {x, x2}. The Wronskian is

W (x) =

∣∣∣∣x x2

1 2x

∣∣∣∣
= 2x2 − x2

= x2.

Thus the functions are independent.

Example 16.4.3 Consider the set {sin x, cosx, eıx}. The Wronskian is

W (x) =

∣∣∣∣∣∣
sin x cosx eıx

cosx − sin x ı eıx

− sin x − cosx − eıx

∣∣∣∣∣∣ .
Since the last row is a constant multiple of the first row, the determinant is zero. The functions are dependent. We
could also see this with the identity eıx = cos x+ ı sin x.

16.4.3 The Wronskian of the Solutions to a Differential Equation

Consider the nth order linear homogeneous differential equation

y(n) + pn−1(x)y
(n−1) + · · ·+ p0(x)y = 0.

Let {y1, y2, . . . , yn} be any set of n linearly independent solutions. Let Y (x) be the matrix such that W (x) = ∆[Y (x)].
Now let’s differentiate W (x).

W ′(x) =
d

dx
∆[Y (x)]

=
n∑
k=1

∆k[Y (x)]
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We note that the all but the last term in this sum is zero. To see this, let’s take a look at the first term.

∆1[Y (x)] =

∣∣∣∣∣∣∣∣∣
y′1 y′2 · · · y′n
y′1 y′2 · · · y′n
...

...
. . .

...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n

∣∣∣∣∣∣∣∣∣
The first two rows in the matrix are identical. Since the rows are dependent, the determinant is zero.

The last term in the sum is

∆n[Y (x)] =

∣∣∣∣∣∣∣∣∣
y1 y2 · · · yn
...

...
. . .

...

y
(n−2)
1 y

(n−2)
2 · · · y

(n−2)
n

y
(n)
1 y

(n)
2 · · · y

(n)
n

∣∣∣∣∣∣∣∣∣ .
In the last row of this matrix we make the substitution y

(n)
i = −pn−1(x)y

(n−1)
i − · · · − p0(x)yi. Recalling that we

can add a multiple of a row to another without changing the determinant, we add p0(x) times the first row, and p1(x)
times the second row, etc., to the last row. Thus we have the determinant,

W ′(x) =

∣∣∣∣∣∣∣∣∣
y1 y2 · · · yn
...

...
. . .

...

y
(n−2)
1 y

(n−2)
2 · · · y

(n−2)
n

−pn−1(x)y
(n−1)
1 −pn−1(x)y

(n−1)
2 · · · −pn−1(x)y

(n−1)
n

∣∣∣∣∣∣∣∣∣
= −pn−1(x)

∣∣∣∣∣∣∣∣∣
y1 y2 · · · yn
...

...
. . .

...

y
(n−2)
1 y

(n−2)
2 · · · y

(n−2)
n

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n

∣∣∣∣∣∣∣∣∣
= −pn−1(x)W (x)

Thus the Wronskian satisfies the first order differential equation,

W ′(x) = −pn−1(x)W (x).
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Solving this equation we get a result known as Abel’s formula.

W (x) = c exp

(
−
∫
pn−1(x) dx

)
Thus regardless of the particular set of solutions that we choose, we can compute their Wronskian up to a constant
factor.

Result 16.4.3 The Wronskian of any linearly independent set of solutions to the equation

y(n) + pn−1(x)y
(n−1) + · · ·+ p0(x)y = 0

is, (up to a multiplicative constant), given by

W (x) = exp

(
−
∫
pn−1(x) dx

)
.

Example 16.4.4 Consider the differential equation

y′′ − 3y′ + 2y = 0.

The Wronskian of the two independent solutions is

W (x) = c exp

(
−
∫
−3 dx

)
= c e3x .

For the choice of solutions {ex, e2x}, the Wronskian is

W (x) =

∣∣∣∣ex e2x

ex 2 e2x

∣∣∣∣ = 2 e3x− e3x = e3x .
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16.5 Well-Posed Problems

Consider the initial value problem for an nth order linear differential equation.

dny

dxn
+ pn−1(x)

dn−1y

dxn−1
+ · · ·+ p1(x)

dy

dx
+ p0(x)y = f(x)

y(x0) = v1, y′(x0) = v2, . . . , y(n−1)(x0) = vn

Since the general solution to the differential equation is a linear combination of the n homogeneous solutions plus the
particular solution

y = yp + c1y1 + c2y2 + · · ·+ cnyn,

the problem to find the constants ci can be written
y1(x0) y2(x0) . . . yn(x0)
y′1(x0) y′2(x0) . . . y′n(x0)

...
...

. . . . . .

y
(n−1)
1 (x0) y

(n−1)
2 (x0) . . . y

(n−1)
n (x0)



c1
c2
...
cn

+


yp(x0)
y′p(x0)

...

y
(n−1)
p (x0)

 =


v1

v2
...
vn

 .

From linear algebra we know that this system of equations has a unique solution only if the determinant of the matrix
is nonzero. Note that the determinant of the matrix is just the Wronskian evaluated at x0. Thus if the Wronskian
vanishes at x0, the initial value problem for the differential equation either has no solutions or infinitely many solutions.
Such problems are said to be ill-posed. From Abel’s formula for the Wronskian

W (x) = exp

(
−
∫
pn−1(x) dx

)
,

we see that the only way the Wronskian can vanish is if the value of the integral goes to ∞.

Example 16.5.1 Consider the initial value problem

y′′ − 2

x
y′ +

2

x2
y = 0, y(0) = y′(0) = 1.
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The Wronskian

W (x) = exp

(
−
∫
−2

x
dx

)
= exp (2 log x) = x2

vanishes at x = 0. Thus this problem is not well-posed.

The general solution of the differential equation is

y = c1x+ c2x
2.

We see that the general solution cannot satisfy the initial conditions. If instead we had the initial conditions y(0) = 0,
y′(0) = 1, then there would be an infinite number of solutions.

Example 16.5.2 Consider the initial value problem

y′′ − 2

x2
y = 0, y(0) = y′(0) = 1.

The Wronskian

W (x) = exp

(
−
∫

0 dx

)
= 1

does not vanish anywhere. However, this problem is not well-posed.

The general solution,

y = c1x
−1 + c2x

2,

cannot satisfy the initial conditions. Thus we see that a non-vanishing Wronskian does not imply that the problem is
well-posed.
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Result 16.5.1 Consider the initial value problem

dny

dxn
+ pn−1(x)

dn−1y

dxn−1 + · · ·+ p1(x)
dy

dx
+ p0(x)y = 0

y(x0) = v1, y′(x0) = v2, . . . , y(n−1)(x0) = vn.

If the Wronskian

W (x) = exp

(
−
∫
pn−1(x) dx

)
vanishes at x = x0 then the problem is ill-posed. The problem may be ill-posed even if the
Wronskian does not vanish.

16.6 The Fundamental Set of Solutions

Consider a set of linearly independent solutions {u1, u2, . . . , un} to an nth order linear homogeneous differential equation.
This is called the fundamental set of solutions at x0 if they satisfy the relations

u1(x0) = 1 u2(x0) = 0 . . . un(x0) = 0
u′1(x0) = 0 u′2(x0) = 1 . . . u′n(x0) = 0

...
...

. . .
...

u
(n−1)
1 (x0) = 0 u

(n−1)
2 (x0) = 0 . . . u

(n−1)
n (x0) = 1

Knowing the fundamental set of solutions is handy because it makes the task of solving an initial value problem
trivial. Say we are given the initial conditions,

y(x0) = v1, y′(x0) = v2, . . . , y(n−1)(x0) = vn.

If the ui’s are a fundamental set then the solution that satisfies these constraints is just

y = v1u1(x) + v2u2(x) + · · ·+ vnun(x).
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Of course in general, a set of solutions is not the fundamental set. If the Wronskian of the solutions is nonzero and
finite we can generate a fundamental set of solutions that are linear combinations of our original set. Consider the case
of a second order equation Let {y1, y2} be two linearly independent solutions. We will generate the fundamental set of
solutions, {u1, u2}. (

u1

u2

)
=

(
c11 c12
c21 c22

)(
y1

y2

)
For {u1, u2} to satisfy the relations that define a fundamental set, it must satisfy the matrix equation(

u1(x0) u′1(x0)
u2(x0) u′2(x0)

)
=

(
c11 c12
c21 c22

)(
y1(x0) y′1(x0)
y2(x0) y′2(x0)

)
=

(
1 0
0 1

)
(
c11 c12
c21 c22

)
=

(
y1(x0) y′1(x0)
y2(x0) y′2(x0)

)−1

If the Wronskian is non-zero and finite, we can solve for the constants, cij, and thus find the fundamental set of
solutions. To generalize this result to an equation of order n, simply replace all the 2×2 matrices and vectors of length
2 with n× n matrices and vectors of length n. I presented the case of n = 2 simply to save having to write out all the
ellipses involved in the general case. (It also makes for easier reading.)

Example 16.6.1 Two linearly independent solutions to the differential equation y′′+y = 0 are y1 = eıx and y2 = e−ıx.(
y1(0) y′1(0)
y2(0) y′2(0)

)
=

(
1 ı
1 −i

)
To find the fundamental set of solutions, {u1, u2}, at x = 0 we solve the equation(

c11 c12
c21 c22

)
=

(
1 ı
1 −ı

)−1

(
c11 c12
c21 c22

)
=

1

ı2

(
ı ı
1 −1

)
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The fundamental set is

u1 =
eıx + e−ıx

2
, u2 =

eıx− e−ıx

ı2
.

Using trigonometric identities we can rewrite these as

u1 = cos x, u2 = sinx.

Result 16.6.1 The fundamental set of solutions at x = x0, {u1, u2, . . . , un}, to an nth order
linear differential equation, satisfy the relations

u1(x0) = 1 u2(x0) = 0 . . . un(x0) = 0
u′1(x0) = 0 u′2(x0) = 1 . . . u′n(x0) = 0

...
... . . . ...

u
(n−1)
1 (x0) = 0 u

(n−1)
2 (x0) = 0 . . . u

(n−1)
n (x0) = 1.

If the Wronskian of the solutions is nonzero and finite at the point x0 then you can generate
the fundamental set of solutions from any linearly independent set of solutions.

Exercise 16.6
Two solutions of y′′ − y = 0 are ex and e−x. Show that the solutions are independent. Find the fundamental set of
solutions at x = 0.
Hint, Solution

16.7 Adjoint Equations

For the nth order linear differential operator

L[y] = pn
dny

dxn
+ pn−1

dn−1y

dxn−1
+ · · ·+ p0y
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(where the pj are complex-valued functions) we define the adjoint of L

L∗[y] = (−1)n
dn

dxn
(pny) + (−1)n−1 dn−1

dxn−1
(pn−1y) + · · ·+ p0y.

Here f denotes the complex conjugate of f .

Example 16.7.1

L[y] = xy′′ +
1

x
y′ + y

has the adjoint

L∗[y] =
d2

dx2
[xy]− d

dx

[
1

x
y

]
+ y

= xy′′ + 2y′ − 1

x
y′ +

1

x2
y + y

= xy′′ +

(
2− 1

x

)
y′ +

(
1 +

1

x2

)
y.

Taking the adjoint of L∗ yields

L∗∗[y] =
d2

dx2
[xy]− d

dx

[(
2− 1

x

)
y

]
+

(
1 +

1

x2

)
y

= xy′′ + 2y′ −
(

2− 1

x

)
y′ −

(
1

x2

)
y +

(
1 +

1

x2

)
y

= xy′′ +
1

x
y′ + y.

Thus by taking the adjoint of L∗, we obtain the original operator.

In general, L∗∗ = L.
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Consider L[y] = pny
(n) + · · ·+ p0y. If each of the pk is k times continuously differentiable and u and v are n times

continuously differentiable on some interval, then on that interval

vL[u]− uL∗[v] =
d

dx
B[u, v]

where B[u, v], the bilinear concomitant, is the bilinear form

B[u, v] =
n∑

m=1

∑
j+k=m−1
j≥0,k≥0

(−1)ju(k)(pmv)
(j).

This equation is known as Lagrange’s identity. If L is a second order operator then

vL[u]− uL∗[v] =
d

dx

[
up1v + u′p2v − u(p2v)

′]
= u′′p2v + u′p1v + u

[
− p2v

′′ + (−2p′2 + p1)v
′ + (−p′′2 + p′1)v

]
.

Example 16.7.2 Verify Lagrange’s identity for the second order operator, L[y] = p2y
′′ + p1y

′ + p0y.

vL[u]− uL∗[v] = v(p2u
′′ + p1u

′ + p0u)− u

(
d2

dx2
(p2v)−

d

dx
(p1v) + p0v

)
= v(p2u

′′ + p1u
′ + p0u)− u(p2v′′ + (2p2

′ − p1)v′ + (p2
′′ − p1

′ + p0)v)

= u′′p2v + u′p1v + u
[
− p2v

′′ + (−2p′2 + p1)v
′ + (−p′′2 + p′1)v

]
.

We will not verify Lagrange’s identity for the general case.

Integrating Lagrange’s identity on its interval of validity gives us Green’s formula.∫ b

a

(
vL[u]− uL∗[v]

)
dx = B[u, v]

∣∣
x=b

−B[u, v]
∣∣
x=a
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Result 16.7.1 The adjoint of the operator

L[y] = pn
dny

dxn
+ pn−1

dn−1y

dxn−1 + · · ·+ p0y

is defined

L∗[y] = (−1)n dn

dxn
(pny) + (−1)n−1 dn−1

dxn−1 (pn−1y) + · · ·+ p0y.

If each of the pk is k times continuously differentiable and u and v are n times continuously
differentiable, then Lagrange’s identity states

vL[y]− uL∗[v] =
d

dx
B[u, v] =

d

dx

n∑
m=1

∑
j+k=m−1
j≥0,k≥0

(−1)ju(k)(pmv)
(j).

Integrating Lagrange’s identity on it’s domain of validity yields Green’s formula,∫ b

a

(
vL[u]− uL∗[v]

)
dx = B[u, v]

∣∣
x=b

−B[u, v]
∣∣
x=a

.
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16.8 Additional Exercises

Exact Equations
Nature of Solutions
Transformation to a First Order System
The Wronskian
Well-Posed Problems
The Fundamental Set of Solutions
Adjoint Equations

Exercise 16.7
Find the adjoint of the Bessel equation of order ν,

x2y′′ + xy′ + (x2 − ν2)y = 0,

and the Legendre equation of order α,

(1− x2)y′′ − 2xy′ + α(α+ 1)y = 0.

Hint, Solution

Exercise 16.8
Find the adjoint of

x2y′′ − xy′ + 3y = 0.

Hint, Solution
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16.9 Hints

Hint 16.1

Hint 16.2

Hint 16.3

Hint 16.4

Hint 16.5
The difference of any two of the ui’s is a homogeneous solution.

Hint 16.6

Exact Equations
Nature of Solutions
Transformation to a First Order System
The Wronskian
Well-Posed Problems
The Fundamental Set of Solutions
Adjoint Equations

Hint 16.7
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Hint 16.8
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16.10 Solutions
Solution 16.1
The second order, linear, homogeneous differential equation is

P (x)y′′ +Q(x)y′ +R(x)y = 0. (16.4)

An exact equation can be written in the form:

d

dx
[a(x)y′ + b(x)y] = 0.

If Equation 16.4 is exact, then we can write it in the form:

d

dx
[P (x)y′ + f(x)y] = 0

for some function f(x). We carry out the differentiation to write the equation in standard form:

P (x)y′′ + (P ′(x) + f(x)) y′ + f ′(x)y = 0 (16.5)

We equate the coefficients of Equations 16.4 and 16.5 to obtain a set of equations.

P ′(x) + f(x) = Q(x), f ′(x) = R(x).

In order to eliminate f(x), we differentiate the first equation and substitute in the expression for f ′(x) from the second
equation. This gives us a necessary condition for Equation 16.4 to be exact:

P ′′(x)−Q′(x) +R(x) = 0 (16.6)

Now we demonstrate that Equation 16.6 is a sufficient condition for exactness. Suppose that Equation 16.6 holds.
Then we can replace R by Q′ − P ′′ in the differential equation.

Py′′ +Qy′ + (Q′ − P ′′)y = 0
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We recognize the right side as an exact differential.

(Py′ + (Q− P ′)y)′ = 0

Thus Equation 16.6 is a sufficient condition for exactness. We can integrate to reduce the problem to a first order
differential equation.

Py′ + (Q− P ′)y = c

Solution 16.2
Suppose that there is an integrating factor µ(x) that will make

P (x)y′′ +Q(x)y′ +R(x)y = 0

exact. We multiply by this integrating factor.

µ(x)P (x)y′′ + µ(x)Q(x)y′ + µ(x)R(x)y = 0. (16.7)

We apply the exactness condition from Exercise 16.1 to obtain a differential equation for the integrating factor.

(µP )′′ − (µQ)′ + µR = 0

µ′′P + 2µ′P ′ + µP ′′ − µ′Q− µQ′ + µR = 0

Pµ′′ + (2P ′ −Q)µ′ + (P ′′ −Q′ +R)µ = 0

Solution 16.3
We consider the differential equation,

y′′ + xy′ + y = 0.

Since

(1)′′ − (x)′ + 1 = 0
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we see that this is an exact equation. We rearrange terms to form exact derivatives and then integrate.

(y′)′ + (xy)′ = 0

y′ + xy = c

d

dx

[
ex

2/2 y
]

= c ex
2/2

y = c e−x
2/2

∫
ex

2/2 dx+ d e−x
2/2

Solution 16.4
Consider the initial value problem,

y′′ + p(x)y′ + q(x)y = f(x),

y(x0) = y0, y′(x0) = y1.

If p(x), q(x) and f(x) are continuous on an interval (a . . . b) with x0 ∈ (a . . . b), then the problem has a unique solution
on that interval.

1.

xy′′ + 3y = x

y′′ +
3

x
y = 1

Unique solutions exist on the intervals (−∞ . . . 0) and (0 . . .∞).

2.

x(x− 1)y′′ + 3xy′ + 4y = 2

y′′ +
3

x− 1
y′ +

4

x(x− 1)
y =

2

x(x− 1)

Unique solutions exist on the intervals (−∞ . . . 0), (0 . . . 1) and (1 . . .∞).
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3.

ex y′′ + x2y′ + y = tanx

y′′ + x2 e−x y′ + e−x y = e−x tan x

Unique solutions exist on the intervals
(

(2n−1)π
2

. . . (2n+1)π
2

)
for n ∈ Z.

Solution 16.5
We know that the general solution is

y = yp + c1y1 + c2y2,

where yp is a particular solution and y1 and y2 are linearly independent homogeneous solutions. Since yp can be
any particular solution, we choose yp = u1. Now we need to find two homogeneous solutions. Since L[ui] = f(x),
L[u1−u2] = L[u2−u3] = 0. Finally, we note that since the ui’s are linearly independent, y1 = u1−u2 and y2 = u2−u3

are linearly independent. Thus the general solution is

y = u1 + c1(u1 − u2) + c2(u2 − u3).

Solution 16.6
The Wronskian of the solutions is

W (x) =

∣∣∣∣ex e−x

ex − e−x

∣∣∣∣ = −2.

Since the Wronskian is nonzero, the solutions are independent.

The fundamental set of solutions, {u1, u2}, is a linear combination of ex and e−x.(
u1

u2

)
=

(
c11 c12
c21 c22

)(
ex

e−x

)
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The coefficients are (
c11 c12
c21 c22

)
=

(
e0 e0

e−0 − e−0

)−1

=

(
1 1
1 −1

)−1

=
1

−2

(
−1 −1
−1 1

)
=

1

2

(
1 1
1 −1

)

u1 =
1

2
(ex + e−x), u2 =

1

2
(ex− e−x).

The fundamental set of solutions at x = 0 is

{coshx, sinh x}.

Exact Equations
Nature of Solutions
Transformation to a First Order System
The Wronskian
Well-Posed Problems
The Fundamental Set of Solutions
Adjoint Equations

Solution 16.7
1. The Bessel equation of order ν is

x2y′′ + xy′ + (x2 − ν2)y = 0.
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The adjoint equation is

x2µ′′ + (4x− x)µ′ + (2− 1 + x2 − ν2)µ = 0

x2µ′′ + 3xµ′ + (1 + x2 − ν2)µ = 0.

2. The Legendre equation of order α is

(1− x2)y′′ − 2xy′ + α(α+ 1)y = 0

The adjoint equation is

(1− x2)µ′′ + (−4x+ 2x)µ′ + (−2 + 2 + α(α+ 1))µ = 0

(1− x2)µ′′ − 2xµ′ + α(α+ 1)µ = 0

Solution 16.8
The adjoint of

x2y′′ − xy′ + 3y = 0

is

d2

dx2
(x2y) +

d

dx
(xy) + 3y = 0

(x2y′′ + 4xy′ + 2y) + (xy′ + y) + 3y = 0

x2y′′ + 5xy′ + 6y = 0.
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16.11 Quiz

Problem 16.1
What is the differential equation whose solution is the two parameter family of curves y = c1 sin(2x+ c2)?
Solution
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16.12 Quiz Solutions

Solution 16.1
We take the first and second derivative of y = c1 sin(2x+ c2).

y′ = 2c1 cos(2x+ c2)

y′′ = −4c1 sin(2x+ c2)

This gives us three equations involving x, y, y′, y′′ and the parameters c1 and c2. We eliminate the the parameters to
obtain the differential equation. Clearly we have,

y′′ + 4y = 0.
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Chapter 17

Techniques for Linear Differential Equations

My new goal in life is to take the meaningless drivel out of human interaction.

-Dave Ozenne

The nth order linear homogeneous differential equation can be written in the form:

y(n) + an−1(x)y
(n−1) + · · ·+ a1(x)y

′ + a0(x)y = 0.

In general it is not possible to solve second order and higher linear differential equations. In this chapter we will examine
equations that have special forms which allow us to either reduce the order of the equation or solve it.

17.1 Constant Coefficient Equations

The nth order constant coefficient differential equation has the form:

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = 0.
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We will find that solving a constant coefficient differential equation is no more difficult than finding the roots of a
polynomial. For notational simplicity, we will first consider second order equations. Then we will apply the same
techniques to higher order equations.

17.1.1 Second Order Equations

Factoring the Differential Equation. Consider the second order constant coefficient differential equation:

y′′ + 2ay′ + by = 0. (17.1)

Just as we can factor a second degree polynomial:

λ2 + 2aλ+ b = (λ− α)(λ− β), α = −a+
√
a2 − b and β = −a−

√
a2 − b,

we can factor Equation 17.1. (
d2

dx2
+ 2a

d

dx
+ b

)
y =

(
d

dx
− α

)(
d

dx
− β

)
y

Once we have factored the differential equation, we can solve it by solving a series of two first order differential equations.
We set u =

(
d
dx
− β

)
y to obtain a first order equation:(

d

dx
− α

)
u = 0,

which has the solution:

u = c1 eαx .

To find the solution of Equation 17.1, we solve(
d

dx
− β

)
y = u = c1 eαx .
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We multiply by the integrating factor and integrate.

d

dx

(
e−βx y

)
= c1 e(α−β)x

y = c1 eβx
∫

e(α−β)x dx+ c2 eβx

We first consider the case that α and β are distinct.

y = c1 eβx
1

α− β
e(α−β)x +c2 eβx

We choose new constants to write the solution in a simpler form.

y = c1 eαx +c2 eβx

Now we consider the case α = β.

y = c1 eαx
∫

1 dx+ c2 eαx

y = c1x eαx +c2 eαx

The solution of Equation 17.1 is

y =

{
c1 eαx +c2 eβx, α 6= β,

c1 eαx +c2x eαx, α = β.
(17.2)

Example 17.1.1 Consider the differential equation: y′′+y = 0. To obtain the general solution, we factor the equation
and apply the result in Equation 17.2. (

d

dx
− ı

)(
d

dx
+ ı

)
y = 0

y = c1 eıx +c2 e−ıx .
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Example 17.1.2 Next we solve y′′ = 0. (
d

dx
− 0

)(
d

dx
− 0

)
y = 0

y = c1 e0x +c2x e0x

y = c1 + c2x

Substituting the Form of the Solution into the Differential Equation. Note that if we substitute y = eλx

into the differential equation (17.1), we will obtain the quadratic polynomial (17.1.1) for λ.

y′′ + 2ay′ + by = 0

λ2 eλx +2aλ eλx +b eλx = 0

λ2 + 2aλ+ b = 0

This gives us a superficially different method for solving constant coefficient equations. We substitute y = eλx into
the differential equation. Let α and β be the roots of the quadratic in λ. If the roots are distinct, then the linearly
independent solutions are y1 = eαx and y2 = eβx. If the quadratic has a double root at λ = α, then the linearly
independent solutions are y1 = eαx and y2 = x eαx.

Example 17.1.3 Consider the equation:

y′′ − 3y′ + 2y = 0.

The substitution y = eλx yields

λ2 − 3λ+ 2 = (λ− 1)(λ− 2) = 0.

Thus the solutions are ex and e2x.

Example 17.1.4 Next consider the equation:

y′′ − 2y′ + 4y = 0.
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The substitution y = eλx yields
λ2 − 2λ+ 4 = (λ− 2)2 = 0.

Because the polynomial has a double root, the solutions are e2x and x e2x.

Result 17.1.1 Consider the second order constant coefficient differential equation:

y′′ + 2ay′ + by = 0.

We can factor the differential equation into the form:(
d

dx
− α

)(
d

dx
− β

)
y = 0,

which has the solution:

y =

{
c1 eαx +c2 eβx, α 6= β,

c1 eαx +c2x eαx, α = β.

We can also determine α and β by substituting y = eλx into the differential equation and
factoring the polynomial in λ.

Shift Invariance. Note that if u(x) is a solution of a constant coefficient equation, then u(x+ c) is also a solution.
This is useful in applying initial or boundary conditions.

Example 17.1.5 Consider the problem

y′′ − 3y′ + 2y = 0, y(0) = a, y′(0) = b.

We know that the general solution is
y = c1 ex +c2 e2x .

934



Applying the initial conditions, we obtain the equations,

c1 + c2 = a, c1 + 2c2 = b.

The solution is
y = (2a− b) ex +(b− a) e2x .

Now suppose we wish to solve the same differential equation with the boundary conditions y(1) = a and y′(1) = b. All
we have to do is shift the solution to the right.

y = (2a− b) ex−1 +(b− a) e2(x−1) .

17.1.2 Real-Valued Solutions

If the coefficients of the differential equation are real, then the solution can be written in terms of real-valued functions
(Result 16.2.2). For a real root λ = α of the polynomial in λ, the corresponding solution, y = eαx, is real-valued.

Now recall that the complex roots of a polynomial with real coefficients occur in complex conjugate pairs. Assume
that α± ıβ are roots of

λn + an−1λ
n−1 + · · ·+ a1λ+ a0 = 0.

The corresponding solutions of the differential equation are e(α+ıβ)x and e(α−ıβ)x. Note that the linear combinations

e(α+ıβ)x + e(α−ıβ)x

2
= eαx cos(βx),

e(α+ıβ)x− e(α−ıβ)x

ı2
= eαx sin(βx),

are real-valued solutions of the differential equation. We could also obtain real-valued solution by taking the real and
imaginary parts of either e(α+ıβ)x or e(α−ıβ)x.

<
(
e(α+ıβ)x

)
= eαx cos(βx), =

(
e(α+ıβ)x

)
= eαx sin(βx)

Example 17.1.6 Consider the equation
y′′ − 2y′ + 2y = 0.
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The substitution y = eλx yields

λ2 − 2λ+ 2 = (λ− 1− ı)(λ− 1 + ı) = 0.

The linearly independent solutions are

e(1+ı)x, and e(1−ı)x .

We can write the general solution in terms of real functions.

y = c1 ex cosx+ c2 ex sin x

Exercise 17.1
Find the general solution of

y′′ + 2ay′ + by = 0

for a, b ∈ R. There are three distinct forms of the solution depending on the sign of a2 − b.

Hint, Solution

Exercise 17.2
Find the fundamental set of solutions of

y′′ + 2ay′ + by = 0

at the point x = 0, for a, b ∈ R. Use the general solutions obtained in Exercise 17.1.

Hint, Solution
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Result 17.1.2 . Consider the second order constant coefficient equation

y′′ + 2ay′ + by = 0.

The general solution of this differential equation is

y =


e−ax

(
c1 e

√
a2−b x +c2 e−

√
a2−b x

)
if a2 > b,

e−ax
(
c1 cos(

√
b− a2 x) + c2 sin(

√
b− a2 x)

)
if a2 < b,

e−ax(c1 + c2x) if a2 = b.

The fundamental set of solutions at x = 0 is
{

e−ax
(
cosh(

√
a2 − b x) + a√

a2−b sinh(
√

a2 − b x)
)

, e−ax 1√
a2−b sinh(

√
a2 − b x)

}
if a2 > b,{

e−ax
(
cos(

√
b− a2 x) + a√

b−a2
sin(

√
b− a2 x)

)
, e−ax 1√

b−a2
sin(

√
b− a2 x)

}
if a2 < b,

{(1 + ax) e−ax, x e−ax} if a2 = b.

To obtain the fundamental set of solutions at the point x = ξ, substitute (x − ξ) for x in
the above solutions.

17.1.3 Higher Order Equations

The constant coefficient equation of order n has the form

L[y] = y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = 0. (17.3)
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The substitution y = eλx will transform this differential equation into an algebraic equation.

L[eλx] = λn eλx +an−1λ
n−1 eλx + · · ·+ a1λ eλx +a0 eλx = 0(

λn + an−1λ
n−1 + · · ·+ a1λ+ a0

)
eλx = 0

λn + an−1λ
n−1 + · · ·+ a1λ+ a0 = 0

Assume that the roots of this equation, λ1, . . . , λn, are distinct. Then the n linearly independent solutions of Equa-
tion 17.3 are

eλ1x, . . . , eλnx .

If the roots of the algebraic equation are not distinct then we will not obtain all the solutions of the differential
equation. Suppose that λ1 = α is a double root. We substitute y = eλx into the differential equation.

L[eλx] = [(λ− α)2(λ− λ3) · · · (λ− λn)] e
λx = 0

Setting λ = α will make the left side of the equation zero. Thus y = eαx is a solution. Now we differentiate both sides
of the equation with respect to λ and interchange the order of differentiation.

d

dλ
L[eλx] = L

[
d

dλ
eλx
]

= L
[
x eλx

]
Let p(λ) = (λ− λ3) · · · (λ− λn). We calculate L

[
x eλx

]
by applying L and then differentiating with respect to λ.

L
[
x eλx

]
=

d

dλ
L[eλx]

=
d

dλ
[(λ− α)2(λ− λ3) · · · (λ− λn)] e

λx

=
d

dλ
[(λ− α)2p(λ)] eλx

=
[
2(λ− α)p(λ) + (λ− α)2p′(λ) + (λ− α)2p(λ)x

]
eλx

= (λ− α) [2p(λ) + (λ− α)p′(λ) + (λ− α)p(λ)x] eλx
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Since setting λ = α will make this expression zero, L[x eαx] = 0, x eαx is a solution of Equation 17.3. You can verify
that eαx and x eαx are linearly independent. Now we have generated all of the solutions for the differential equation.

If λ = α is a root of multiplicity m then by repeatedly differentiating with respect to λ you can show that the
corresponding solutions are

eαx, x eαx, x2 eαx, . . . , xm−1 eαx .

Example 17.1.7 Consider the equation
y′′′ − 3y′ + 2y = 0.

The substitution y = eλx yields
λ3 − 3λ+ 2 = (λ− 1)2(λ+ 2) = 0.

Thus the general solution is

y = c1 ex +c2x ex +c3 e−2x .

Result 17.1.3 Consider the nth order constant coefficient equation

dny

dxn
+ an−1

dn−1y

dxn−1 + · · ·+ a1
dy

dx
+ a0y = 0.

Let the factorization of the algebraic equation obtained with the substitution y = eλx be

(λ− λ1)
m1(λ− λ2)

m2 · · · (λ− λp)
mp = 0.

A set of linearly independent solutions is given by

{eλ1x, x eλ1x, . . . , xm1−1 eλ1x, . . . , eλpx, x eλpx, . . . , xmp−1 eλpx}.

If the coefficients of the differential equation are real, then we can find a real-valued set of
solutions.
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Example 17.1.8 Consider the equation
d4y

dx4
+ 2

d2y

dx2
+ y = 0.

The substitution y = eλx yields

λ4 + 2λ2 + 1 = (λ− i)2(λ+ i)2 = 0.

Thus the linearly independent solutions are

eıx, x eıx, e−ıx and x e−ıx .

Noting that

eıx = cos(x) + ı sin(x),

we can write the general solution in terms of sines and cosines.

y = c1 cosx+ c2 sin x+ c3x cosx+ c4x sin x

17.2 Euler Equations

Consider the equation

L[y] = x2 d2y

dx2
+ ax

dy

dx
+ by = 0, x > 0.

Let’s say, for example, that y has units of distance and x has units of time. Note that each term in the differential
equation has the same dimension.

(time)2 (distance)

(time)2
= (time)

(distance)

(time)
= (distance)

Thus this is a second order Euler, or equidimensional equation. We know that the first order Euler equation, xy′+ay = 0,
has the solution y = cxa. Thus for the second order equation we will try a solution of the form y = xλ. The substitution
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y = xλ will transform the differential equation into an algebraic equation.

L[xλ] = x2 d2

dx2
[xλ] + ax

d

dx
[xλ] + bxλ = 0

λ(λ− 1)xλ + aλxλ + bxλ = 0

λ(λ− 1) + aλ+ b = 0

Factoring yields

(λ− λ1)(λ− λ2) = 0.

If the two roots, λ1 and λ2, are distinct then the general solution is

y = c1x
λ1 + c2x

λ2 .

If the roots are not distinct, λ1 = λ2 = λ, then we only have the one solution, y = xλ. To generate the other solution
we use the same approach as for the constant coefficient equation. We substitute y = xλ into the differential equation
and differentiate with respect to λ.

d

dλ
L[xλ] = L[

d

dλ
xλ]

= L[lnx xλ]

Note that
d

dλ
xλ =

d

dλ
eλ lnx = ln x eλ lnx = ln x xλ.

Now we apply L and then differentiate with respect to λ.

d

dλ
L[xλ] =

d

dλ
(λ− α)2xλ

= 2(λ− α)xλ + (λ− α)2 lnx xλ
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Equating these two results,
L[lnx xλ] = 2(λ− α)xλ + (λ− α)2 lnx xλ.

Setting λ = α will make the right hand side zero. Thus y = ln x xα is a solution.
If you are in the mood for a little algebra you can show by repeatedly differentiating with respect to λ that if λ = α

is a root of multiplicity m in an nth order Euler equation then the associated solutions are

xα, lnx xα, (lnx)2xα, . . . , (lnx)m−1xα.

Example 17.2.1 Consider the Euler equation

xy′′ − y′ +
y

x
= 0.

The substitution y = xλ yields the algebraic equation

λ(λ− 1)− λ+ 1 = (λ− 1)2 = 0.

Thus the general solution is
y = c1x+ c2x lnx.

17.2.1 Real-Valued Solutions

If the coefficients of the Euler equation are real, then the solution can be written in terms of functions that are real-valued
when x is real and positive, (Result 16.2.2). If α± ıβ are the roots of

λ(λ− 1) + aλ+ b = 0

then the corresponding solutions of the Euler equation are

xα+ıβ and xα−ıβ.

We can rewrite these as
xα eıβ lnx and xα e−ıβ lnx .
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Note that the linear combinations

xα eıβ lnx +xα e−ıβ lnx

2
= xα cos(β lnx), and

xα eıβ lnx−xα e−ıβ lnx

ı2
= xα sin(β lnx),

are real-valued solutions when x is real and positive. Equivalently, we could take the real and imaginary parts of either
xα+ıβ or xα−ıβ.

<
(
xα eıβ lnx

)
= xα cos(β lnx), =

(
xα eıβ lnx

)
= xα sin(β lnx)

Result 17.2.1 Consider the second order Euler equation

x2y′′ + (2a+ 1)xy′ + by = 0.

The general solution of this differential equation is

y =


x−a

(
c1x

√
a2−b + c2x

−
√

a2−b
)

if a2 > b,

x−a
(
c1 cos

(√
b− a2 lnx

)
+ c2 sin

(√
b− a2 lnx

))
if a2 < b,

x−a (c1 + c2 lnx) if a2 = b.

The fundamental set of solutions at x = ξ is

y =



{(
x
ξ

)−a (
cosh

(√
a2 − b ln x

ξ

)
+ a√

a2−b sinh
(√

a2 − b ln x
ξ

))
,(

x
ξ

)−a
ξ√
a2−b sinh

(√
a2 − b ln x

ξ

)}
if a2 > b,{(

x
ξ

)−a (
cos
(√

b− a2 ln x
ξ

)
+ a√

b−a2 sin
(√

b− a2 ln x
ξ

))
,(

x
ξ

)−a
ξ√
b−a2 sin

(√
b− a2 ln x

ξ

)}
if a2 < b,{(

x
ξ

)−a (
1 + a ln x

ξ

)
,
(
x
ξ

)−a
ξ ln x

ξ

}
if a2 = b.

943



Example 17.2.2 Consider the Euler equation

x2y′′ − 3xy′ + 13y = 0.

The substitution y = xλ yields

λ(λ− 1)− 3λ+ 13 = (λ− 2− ı3)(λ− 2 + ı3) = 0.

The linearly independent solutions are {
x2+ı3, x2−ı3} .

We can put this in a more understandable form.

x2+ı3 = x2 eı3 lnx = x2 cos(3 lnx) + x2 sin(3 ln x)

We can write the general solution in terms of real-valued functions.

y = c1x
2 cos(3 lnx) + c2x

2 sin(3 ln x)

Result 17.2.2 Consider the nth order Euler equation

xn dny

dxn
+ an−1x

n−1 dn−1y

dxn−1 + · · ·+ a1x
dy

dx
+ a0y = 0.

Let the factorization of the algebraic equation obtained with the substitution y = xλ be

(λ− λ1)
m1(λ− λ2)

m2 · · · (λ− λp)
mp = 0.

A set of linearly independent solutions is given by

{xλ1, lnx xλ1, . . . , (lnx)m1−1xλ1, . . . , xλp, lnx xλp, . . . , (lnx)mp−1xλp}.

If the coefficients of the differential equation are real, then we can find a set of solutions that
are real valued when x is real and positive.
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17.3 Exact Equations

Exact equations have the form

d

dx
F (x, y, y′, y′′, . . .) = f(x).

If you can write an equation in the form of an exact equation, you can integrate to reduce the order by one, (or solve
the equation for first order). We will consider a few examples to illustrate the method.

Example 17.3.1 Consider the equation

y′′ + x2y′ + 2xy = 0.

We can rewrite this as

d

dx

[
y′ + x2y

]
= 0.

Integrating yields a first order inhomogeneous equation.

y′ + x2y = c1

We multiply by the integrating factor I(x) = exp(
∫
x2 dx) to make this an exact equation.

d

dx

(
ex

3/3 y
)

= c1 ex
3/3

ex
3/3 y = c1

∫
ex

3/3 dx+ c2

y = c1 e−x
3/3

∫
ex

3/3 dx+ c2 e−x
3/3
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Result 17.3.1 If you can write a differential equation in the form

d

dx
F (x, y, y′, y′′, . . .) = f(x),

then you can integrate to reduce the order of the equation.

F (x, y, y′, y′′, . . .) =

∫
f(x) dx+ c

17.4 Equations Without Explicit Dependence on y

Example 17.4.1 Consider the equation
y′′ +

√
xy′ = 0.

This is a second order equation for y, but note that it is a first order equation for y′. We can solve directly for y′.

d

dx

(
exp

(
2

3
x3/2

)
y′
)

= 0

y′ = c1 exp

(
−2

3
x3/2

)
Now we just integrate to get the solution for y.

y = c1

∫
exp

(
−2

3
x3/2

)
dx+ c2

Result 17.4.1 If an nth order equation does not explicitly depend on y then you can consider
it as an equation of order n− 1 for y′.
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17.5 Reduction of Order

Consider the second order linear equation

L[y] ≡ y′′ + p(x)y′ + q(x)y = f(x).

Suppose that we know one homogeneous solution y1. We make the substitution y = uy1 and use that L[y1] = 0.

L[uy1] = 0u′′y1 + 2u′y′1 + uy′′1 + p(u′y1 + uy′1) + quy1 = 0

u′′y1 + u′(2y′1 + py1) + u(y′′1 + py′1 + qy1) = 0

u′′y1 + u′(2y′1 + py1) = 0

Thus we have reduced the problem to a first order equation for u′. An analogous result holds for higher order equations.

Result 17.5.1 Consider the nth order linear differential equation

y(n) + pn−1(x)y
(n−1) + · · ·+ p1(x)y

′ + p0(x)y = f(x).

Let y1 be a solution of the homogeneous equation. The substitution y = uy1 will transform
the problem into an (n− 1)th order equation for u′. For the second order problem

y′′ + p(x)y′ + q(x)y = f(x)

this reduced equation is
u′′y1 + u′(2y′1 + py1) = f(x).

Example 17.5.1 Consider the equation

y′′ + xy′ − y = 0.
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By inspection we see that y1 = x is a solution. We would like to find another linearly independent solution. The
substitution y = xu yields

xu′′ + (2 + x2)u′ = 0

u′′ +

(
2

x
+ x

)
u′ = 0

The integrating factor is I(x) = exp(2 lnx+ x2/2) = x2 exp(x2/2).

d

dx

(
x2 ex

2/2 u′
)

= 0

u′ = c1x
−2 e−x

2/2

u = c1

∫
x−2 e−x

2/2 dx+ c2

y = c1x

∫
x−2 e−x

2/2 dx+ c2x

Thus we see that a second solution is

y2 = x

∫
x−2 e−x

2/2 dx.

17.6 *Reduction of Order and the Adjoint Equation

Let L be the linear differential operator

L[y] = pn
dny

dxn
+ pn−1

dn−1y

dxn−1
+ · · ·+ p0y,

where each pj is a j times continuously differentiable complex valued function. Recall that the adjoint of L is

L∗[y] = (−1)n
dn

dxn
(pny) + (−1)n−1 dn−1

dxn−1
(pn−1y) + · · ·+ p0y.
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If u and v are n times continuously differentiable, then Lagrange’s identity states

vL[u]− uL∗[v] =
d

dx
B[u, v],

where

B[u, v] =
n∑

m=1

∑
j+k=m−1
j≥0,k≥0

(−1)ju(k)(pmv)
(j).

For second order equations,
B[u, v] = up1v + u′p2v − u(p2v)

′.

(See Section 16.7.)
If we can find a solution to the homogeneous adjoint equation, L∗[y] = 0, then we can reduce the order of the

equation L[y] = f(x). Let ψ satisfy L∗[ψ] = 0. Substituting u = y, v = ψ into Lagrange’s identity yields

ψL[y]− yL∗[ψ] =
d

dx
B[y, ψ]

ψL[y] =
d

dx
B[y, ψ].

The equation L[y] = f(x) is equivalent to the equation

d

dx
B[y, ψ] = ψf

B[y, ψ] =

∫
ψ(x)f(x) dx,

which is a linear equation in y of order n− 1.

Example 17.6.1 Consider the equation

L[y] = y′′ − x2y′ − 2xy = 0.
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Method 1. Note that this is an exact equation.

d

dx
(y′ − x2y) = 0

y′ − x2y = c1
d

dx

(
e−x

3/3 y
)

= c1 e−x
3/3

y = c1 ex
3/3

∫
e−x

3/3 dx+ c2 ex
3/3

Method 2. The adjoint equation is
L∗[y] = y′′ + x2y′ = 0.

By inspection we see that ψ = (constant) is a solution of the adjoint equation. To simplify the algebra we will choose
ψ = 1. Thus the equation L[y] = 0 is equivalent to

B[y, 1] = c1

y(−x2) +
d

dx
[y](1)− y

d

dx
[1] = c1

y′ − x2y = c1.

By using the adjoint equation to reduce the order we obtain the same solution as with Method 1.
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17.7 Additional Exercises

Constant Coefficient Equations

Exercise 17.3 (mathematica/ode/techniques linear/constant.nb)
Find the solution of each one of the following initial value problems. Sketch the graph of the solution and describe its
behavior as t increases.

1. 6y′′ − 5y′ + y = 0, y(0) = 4, y′(0) = 0

2. y′′ − 2y′ + 5y = 0, y(π/2) = 0, y′(π/2) = 2

3. y′′ + 4y′ + 4y = 0, y(−1) = 2, y′(−1) = 1

Hint, Solution

Exercise 17.4 (mathematica/ode/techniques linear/constant.nb)
Substitute y = eλx to find two linearly independent solutions to

y′′ − 4y′ + 13y = 0.

that are real-valued when x is real-valued.
Hint, Solution

Exercise 17.5 (mathematica/ode/techniques linear/constant.nb)
Find the general solution to

y′′′ − y′′ + y′ − y = 0.

Write the solution in terms of functions that are real-valued when x is real-valued.
Hint, Solution

Exercise 17.6
Substitute y = eλx to find the fundamental set of solutions at x = 0 for each of the equations:

1. y′′ + y = 0,
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2. y′′ − y = 0,

3. y′′ = 0.

What are the fundamental set of solutions at x = 1 for each of these equations.
Hint, Solution

Exercise 17.7
Consider a ball of mass m hanging by an ideal spring of spring constant k. The ball is suspended in a fluid which
damps the motion. This resistance has a coefficient of friction, µ. Find the differential equation for the displacement
of the mass from its equilibrium position by balancing forces. Denote this displacement by y(t). If the damping force
is weak, the mass will have a decaying, oscillatory motion. If the damping force is strong, the mass will not oscillate.
The displacement will decay to zero. The value of the damping which separates these two behaviors is called critical
damping.

Find the solution which satisfies the initial conditions y(0) = 0, y′(0) = 1. Use the solutions obtained in Exercise 17.2
or refer to Result 17.1.2.

Consider the case m = k = 1. Find the coefficient of friction for which the displacement of the mass decays most
rapidly. Plot the displacement for strong, weak and critical damping.
Hint, Solution

Exercise 17.8
Show that y = c cos(x− φ) is the general solution of y′′ + y = 0 where c and φ are constants of integration. (It is not
sufficient to show that y = c cos(x− φ) satisfies the differential equation. y = 0 satisfies the differential equation, but
is is certainly not the general solution.) Find constants c and φ such that y = sin(x).

Is y = c cosh(x− φ) the general solution of y′′ − y = 0? Are there constants c and φ such that y = sinh(x)?
Hint, Solution

Exercise 17.9 (mathematica/ode/techniques linear/constant.nb)
Let y(t) be the solution of the initial-value problem

y′′ + 5y′ + 6y = 0; y(0) = 1, y′(0) = V.

For what values of V does y(t) remain nonnegative for all t > 0?
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Hint, Solution

Exercise 17.10 (mathematica/ode/techniques linear/constant.nb)
Find two linearly independent solutions of

y′′ + sign(x)y = 0, −∞ < x <∞.

where sign(x) = ±1 according as x is positive or negative. (The solution should be continuous and have a continuous
first derivative.)
Hint, Solution

Euler Equations

Exercise 17.11
Find the general solution of

x2y′′ + xy′ + y = 0, x > 0.

Hint, Solution

Exercise 17.12
Substitute y = xλ to find the general solution of

x2y′′ − 2xy + 2y = 0.

Hint, Solution

Exercise 17.13 (mathematica/ode/techniques linear/constant.nb)
Substitute y = xλ to find the general solution of

xy′′′ + y′′ +
1

x
y′ = 0.

Write the solution in terms of functions that are real-valued when x is real-valued and positive.
Hint, Solution
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Exercise 17.14
Find the general solution of

x2y′′ + (2a+ 1)xy′ + by = 0.

Hint, Solution

Exercise 17.15
Show that

y1 = eax, y2 = lim
α→a

eαx− e−αx

α

are linearly indepedent solutions of
y′′ − a2y = 0

for all values of a. It is common to abuse notation and write the second solution as

y2 =
eax− e−ax

a

where the limit is taken if a = 0. Likewise show that

y1 = xa, y2 =
xa − x−a

a

are linearly indepedent solutions of
x2y′′ + xy′ − a2y = 0

for all values of a.
Hint, Solution

Exercise 17.16 (mathematica/ode/techniques linear/constant.nb)
Find two linearly independent solutions (i.e., the general solution) of

(a) x2y′′ − 2xy′ + 2y = 0, (b) x2y′′ − 2y = 0, (c) x2y′′ − xy′ + y = 0.

Hint, Solution
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Exact Equations

Exercise 17.17
Solve the differential equation

y′′ + y′ sin x+ y cosx = 0.

Hint, Solution

Equations Without Explicit Dependence on y
Reduction of Order

Exercise 17.18
Consider

(1− x2)y′′ − 2xy′ + 2y = 0, −1 < x < 1.

Verify that y = x is a solution. Find the general solution.
Hint, Solution

Exercise 17.19
Consider the differential equation

y′′ − x+ 1

x
y′ +

1

x
y = 0.

Since the coefficients sum to zero, (1− x+1
x

+ 1
x

= 0), y = ex is a solution. Find another linearly independent solution.
Hint, Solution

Exercise 17.20
One solution of

(1− 2x)y′′ + 4xy′ − 4y = 0

is y = x. Find the general solution.
Hint, Solution
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Exercise 17.21
Find the general solution of

(x− 1)y′′ − xy′+ y = 0,

given that one solution is y = ex. (you may assume x > 1)
Hint, Solution

*Reduction of Order and the Adjoint Equation
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17.8 Hints

Hint 17.1
Substitute y = eλx into the differential equation.

Hint 17.2
The fundamental set of solutions is a linear combination of the homogeneous solutions.

Constant Coefficient Equations

Hint 17.3

Hint 17.4

Hint 17.5
It is a constant coefficient equation.

Hint 17.6
Use the fact that if u(x) is a solution of a constant coefficient equation, then u(x+ c) is also a solution.

Hint 17.7
The force on the mass due to the spring is −ky(t). The frictional force is −µy′(t).

Note that the initial conditions describe the second fundamental solution at t = 0.

Note that for large t, t eαt is much small than eβt if α < β. (Prove this.)

Hint 17.8
By definition, the general solution of a second order differential equation is a two parameter family of functions that
satisfies the differential equation. The trigonometric identities in Appendix M may be useful.
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Hint 17.9

Hint 17.10

Euler Equations

Hint 17.11

Hint 17.12

Hint 17.13

Hint 17.14
Substitute y = xλ into the differential equation. Consider the three cases: a2 > b, a2 < b and a2 = b.

Hint 17.15

Hint 17.16

Exact Equations

Hint 17.17
It is an exact equation.

Equations Without Explicit Dependence on y

958



Reduction of Order

Hint 17.18

Hint 17.19
Use reduction of order to find the other solution.

Hint 17.20
Use reduction of order to find the other solution.

Hint 17.21

*Reduction of Order and the Adjoint Equation
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17.9 Solutions
Solution 17.1
We substitute y = eλx into the differential equation.

y′′ + 2ay′ + by = 0

λ2 + 2aλ+ b = 0

λ = −a±
√
a2 − b

If a2 > b then the two roots are distinct and real. The general solution is

y = c1 e(−a+
√
a2−b)x +c2 e(−a−

√
a2−b)x .

If a2 < b then the two roots are distinct and complex-valued. We can write them as

λ = −a± ı
√
b− a2.

The general solution is

y = c1 e(−a+ı
√
b−a2)x +c2 e(−a−ı

√
b−a2)x .

By taking the sum and difference of the two linearly independent solutions above, we can write the general solution as

y = c1 e−ax cos
(√

b− a2 x
)

+ c2 e−ax sin
(√

b− a2 x
)
.

If a2 = b then the only root is λ = −a. The general solution in this case is then

y = c1 e−ax +c2x e−ax .

In summary, the general solution is

y =


e−ax

(
c1 e

√
a2−b x +c2 e−

√
a2−b x

)
if a2 > b,

e−ax
(
c1 cos

(√
b− a2 x

)
+ c2 sin

(√
b− a2 x

))
if a2 < b,

e−ax(c1 + c2x) if a2 = b.
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Solution 17.2
First we note that the general solution can be written,

y =


e−ax

(
c1 cosh

(√
a2 − b x

)
+ c2 sinh

(√
a2 − b x

))
if a2 > b,

e−ax
(
c1 cos

(√
b− a2 x

)
+ c2 sin

(√
b− a2 x

))
if a2 < b,

e−ax(c1 + c2x) if a2 = b.

We first consider the case a2 > b. The derivative is

y′ = e−ax
((
−ac1 +

√
a2 − b c2

)
cosh

(√
a2 − b x

)
+
(
−ac2 +

√
a2 − b c1

)
sinh

(√
a2 − b x

))
.

The conditions, y1(0) = 1 and y′1(0) = 0, for the first solution become,

c1 = 1, −ac1 +
√
a2 − b c2 = 0,

c1 = 1, c2 =
a√
a2 − b

.

The conditions, y2(0) = 0 and y′2(0) = 1, for the second solution become,

c1 = 0, −ac1 +
√
a2 − b c2 = 1,

c1 = 0, c2 =
1√
a2 − b

.

The fundamental set of solutions is{
e−ax

(
cosh

(√
a2 − b x

)
+

a√
a2 − b

sinh
(√

a2 − b x
))

, e−ax
1√
a2 − b

sinh
(√

a2 − b x
)}

.

Now consider the case a2 < b. The derivative is

y′ = e−ax
((
−ac1 +

√
b− a2 c2

)
cos
(√

b− a2 x
)

+
(
−ac2 −

√
b− a2 c1

)
sin
(√

b− a2 x
))

.
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Clearly, the fundamental set of solutions is{
e−ax

(
cos
(√

b− a2 x
)

+
a√
b− a2

sin
(√

b− a2 x
))

, e−ax
1√
b− a2

sin
(√

b− a2 x
)}

.

Finally we consider the case a2 = b. The derivative is

y′ = e−ax(−ac1 + c2 +−ac2x).

The conditions, y1(0) = 1 and y′1(0) = 0, for the first solution become,

c1 = 1, −ac1 + c2 = 0,

c1 = 1, c2 = a.

The conditions, y2(0) = 0 and y′2(0) = 1, for the second solution become,

c1 = 0, −ac1 + c2 = 1,

c1 = 0, c2 = 1.

The fundamental set of solutions is {
(1 + ax) e−ax, x e−ax

}
.

In summary, the fundamental set of solutions at x = 0 is
{

e−ax
(
cosh

(√
a2 − b x

)
+ a√

a2−b sinh
(√

a2 − b x
))
, e−ax 1√

a2−b sinh
(√

a2 − b x
)}

if a2 > b,{
e−ax

(
cos
(√

b− a2 x
)

+ a√
b−a2 sin

(√
b− a2 x

))
, e−ax 1√

b−a2 sin
(√

b− a2 x
)}

if a2 < b,

{(1 + ax) e−ax, x e−ax} if a2 = b.

Constant Coefficient Equations
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Solution 17.3
1. We consider the problem

6y′′ − 5y′ + y = 0, y(0) = 4, y′(0) = 0.

We make the substitution y = eλx in the differential equation.

6λ2 − 5λ+ 1 = 0

(2λ− 1)(3λ− 1) = 0

λ =

{
1

3
,
1

2

}
The general solution of the differential equation is

y = c1 et/3 +c2 et/2 .

We apply the initial conditions to determine the constants.

c1 + c2 = 4,
c1
3

+
c2
2

= 0

c1 = 12, c2 = −8

The solution subject to the initial conditions is

y = 12 et/3−8 et/2 .

The solution is plotted in Figure 17.1. The solution tends to −∞ as t→∞.

2. We consider the problem
y′′ − 2y′ + 5y = 0, y(π/2) = 0, y′(π/2) = 2.

We make the substitution y = eλx in the differential equation.

λ2 − 2λ+ 5 = 0

λ = 1±
√

1− 5

λ = {1 + ı2, 1− ı2}
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Figure 17.1: The solution of 6y′′ − 5y′ + y = 0, y(0) = 4, y′(0) = 0.

The general solution of the differential equation is

y = c1 et cos(2t) + c2 et sin(2t).

We apply the initial conditions to determine the constants.

y(π/2) = 0 ⇒ −c1 eπ/2 = 0 ⇒ c1 = 0

y′(π/2) = 2 ⇒ −2c2 eπ/2 = 2 ⇒ c2 = − e−π/2

The solution subject to the initial conditions is

y = − et−π/2 sin(2t).

The solution is plotted in Figure 17.2. The solution oscillates with an amplitude that tends to ∞ as t→∞.

3. We consider the problem

y′′ + 4y′ + 4y = 0, y(−1) = 2, y′(−1) = 1.
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Figure 17.2: The solution of y′′ − 2y′ + 5y = 0, y(π/2) = 0, y′(π/2) = 2.

We make the substitution y = eλx in the differential equation.

λ2 + 4λ+ 4 = 0

(λ+ 2)2 = 0

λ = −2

The general solution of the differential equation is

y = c1 e−2t +c2t e
−2t .

We apply the initial conditions to determine the constants.

c1 e2−c2 e2 = 2, −2c1 e2 +3c2 e2 = 1

c1 = 7 e−2, c2 = 5 e−2

The solution subject to the initial conditions is

y = (7 + 5t) e−2(t+1)
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Figure 17.3: The solution of y′′ + 4y′ + 4y = 0, y(−1) = 2, y′(−1) = 1.

The solution is plotted in Figure 17.3. The solution vanishes as t→∞.

lim
t→∞

(7 + 5t) e−2(t+1) = lim
t→∞

7 + 5t

e2(t+1)
= lim

t→∞

5

2 e2(t+1)
= 0

Solution 17.4

y′′ − 4y′ + 13y = 0.

With the substitution y = eλx we obtain

λ2 eλx−4λ eλx +13 eλx = 0

λ2 − 4λ+ 13 = 0

λ = 2± 3i.

Thus two linearly independent solutions are

e(2+3i)x, and e(2−3i)x .
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Noting that

e(2+3i)x = e2x[cos(3x) + ı sin(3x)]

e(2−3i)x = e2x[cos(3x)− ı sin(3x)],

we can write the two linearly independent solutions

y1 = e2x cos(3x), y2 = e2x sin(3x).

Solution 17.5
We note that

y′′′ − y′′ + y′ − y = 0

is a constant coefficient equation. The substitution, y = eλx, yields

λ3 − λ2 + λ− 1 = 0

(λ− 1)(λ− i)(λ+ i) = 0.

The corresponding solutions are ex, eıx, and e−ıx. We can write the general solution as

y = c1 ex +c2 cosx+ c3 sin x.

Solution 17.6
We start with the equation y′′ + y = 0. We substitute y = eλx into the differential equation to obtain

λ2 + 1 = 0, λ = ±i.

A linearly independent set of solutions is
{eıx, e−ıx}.

The fundamental set of solutions has the form

y1 = c1 eıx +c2 e−ıx,

y2 = c3 eıx +c4 e−ıx .
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By applying the constraints

y1(0) = 1, y′1(0) = 0,

y2(0) = 0, y′2(0) = 1,

we obtain

y1 =
eıx + e−ıx

2
= cos x,

y2 =
eıx + e−ıx

ı2
= sinx.

Now consider the equation y′′ − y = 0. By substituting y = eλx we find that a set of solutions is

{ex, e−x}.

By taking linear combinations of these we see that another set of solutions is

{coshx, sinh x}.

Note that this is the fundamental set of solutions.
Next consider y′′ = 0. We can find the solutions by substituting y = eλx or by integrating the equation twice. The

fundamental set of solutions as x = 0 is
{1, x}.

Note that if u(x) is a solution of a constant coefficient differential equation, then u(x+ c) is also a solution. Also
note that if u(x) satisfies y(0) = a, y′(0) = b, then u(x− x0) satisfies y(x0) = a, y′(x0) = b. Thus the fundamental
sets of solutions at x = 1 are

1. {cos(x− 1), sin(x− 1)},

2. {cosh(x− 1), sinh(x− 1)},

3. {1, x− 1}.
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Solution 17.7
Let y(t) denote the displacement of the mass from equilibrium. The forces on the mass are −ky(t) due to the spring
and −µy′(t) due to friction. We equate the external forces to my′′(t) to find the differential equation of the motion.

my′′ = −ky − µy′

y′′ +
µ

m
y′ +

k

m
y = 0

The solution which satisfies the initial conditions y(0) = 0, y′(0) = 1 is

y(t) =


e−µt/(2m) 2m√

µ2−4km
sinh

(√
µ2 − 4km t/(2m)

)
if µ2 > km,

e−µt/(2m) 2m√
4km−µ2

sin
(√

4km− µ2 t/(2m)
)

if µ2 < km,

t e−µt/(2m) if µ2 = km.

We respectively call these cases: strongly damped, weakly damped and critically damped. In the case that m = k = 1
the solution is

y(t) =


e−µt/2 2√

µ2−4
sinh

(√
µ2 − 4 t/2

)
if µ > 2,

e−µt/2 2√
4−µ2

sin
(√

4− µ2 t/2
)

if µ < 2,

t e−t if µ = 2.

Note that when t is large, t e−t is much smaller than e−µt/2 for µ < 2. To prove this we examine the ratio of these
functions as t→∞.

lim
t→∞

t e−t

e−µt/2
= lim

t→∞

t

e(1−µ/2)t

= lim
t→∞

1

(1− µ/2) e(1−µ)t

= 0
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Figure 17.4: Strongly, weakly and critically damped solutions.

Using this result, we see that the critically damped solution decays faster than the weakly damped solution.
We can write the strongly damped solution as

e−µt/2
2√
µ2 − 4

(
e
√
µ2−4 t/2− e−

√
µ2−4 t/2

)
.

For large t, the dominant factor is e
“√

µ2−4−µ
”
t/2

. Note that for µ > 2,√
µ2 − 4 =

√
(µ+ 2)(µ− 2) > µ− 2.

Therefore we have the bounds

−2 <
√
µ2 − 4− µ < 0.

This shows that the critically damped solution decays faster than the strongly damped solution. µ = 2 gives the fastest
decaying solution. Figure 17.4 shows the solution for µ = 4, µ = 1 and µ = 2.
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Solution 17.8
Clearly y = c cos(x− φ) satisfies the differential equation y′′ + y = 0. Since it is a two-parameter family of functions,
it must be the general solution.

Using a trigonometric identity we can rewrite the solution as

y = c cosφ cosx+ c sinφ sin x.

Setting this equal to sin x gives us the two equations

c cosφ = 0,

c sinφ = 1,

which has the solutions c = 1, φ = (2n+ 1/2)π, and c = −1, φ = (2n− 1/2)π, for n ∈ Z.
Clearly y = c cosh(x − φ) satisfies the differential equation y′′ − y = 0. Since it is a two-parameter family of

functions, it must be the general solution.
Using a trigonometric identity we can rewrite the solution as

y = c coshφ coshx+ c sinhφ sinh x.

Setting this equal to sinh x gives us the two equations

c coshφ = 0,

c sinhφ = 1,

which has the solutions c = −i, φ = ı(2n+ 1/2)π, and c = i, φ = ı(2n− 1/2)π, for n ∈ Z.

Solution 17.9
We substitute y = eλt into the differential equation.

λ2 eλt +5λ eλt +6 eλt = 0

λ2 + 5λ+ 6 = 0

(λ+ 2)(λ+ 3) = 0
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The general solution of the differential equation is

y = c1 e−2t +c2 e−3t .

The initial conditions give us the constraints:

c1 + c2 = 1,

−2c1 − 3c2 = V.

The solution subject to the initial conditions is

y = (3 + V ) e−2t−(2 + V ) e−3t .

This solution will be non-negative for t > 0 if V ≥ −3.

Solution 17.10
For negative x, the differential equation is

y′′ − y = 0.

We substitute y = eλx into the differential equation to find the solutions.

λ2 − 1 = 0

λ = ±1

y =
{
ex, e−x

}
We can take linear combinations to write the solutions in terms of the hyperbolic sine and cosine.

y = {cosh(x), sinh(x)}

For positive x, the differential equation is
y′′ + y = 0.
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We substitute y = eλx into the differential equation to find the solutions.

λ2 + 1 = 0

λ = ±ı
y =

{
eıx, e−ıx

}
We can take linear combinations to write the solutions in terms of the sine and cosine.

y = {cos(x), sin(x)}

We will find the fundamental set of solutions at x = 0. That is, we will find a set of solutions, {y1, y2} that satisfy
the conditions:

y1(0) = 1 y′1(0) = 0

y2(0) = 0 y′2(0) = 1

Clearly, these solutions are

y1 =

{
cosh(x) x < 0

cos(x) x ≥ 0
y2 =

{
sinh(x) x < 0

sin(x) x ≥ 0

Euler Equations

Solution 17.11
We consider an Euler equation,

x2y′′ + xy′ + y = 0, x > 0.

We make the change of independent variable ξ = ln x, u(ξ) = y(x) to obtain

u′′ + u = 0.
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We make the substitution u(ξ) = eλξ.

λ2 + 1 = 0

λ = ±i

A set of linearly independent solutions for u(ξ) is

{eıξ, e−ıξ}.

Since

cos ξ =
eıξ + e−ıξ

2
and sin ξ =

eıξ − e−ıξ

ı2
,

another linearly independent set of solutions is

{cos ξ, sin ξ}.

The general solution for y(x) is

y(x) = c1 cos(lnx) + c2 sin(lnx).

Solution 17.12
Consider the differential equation

x2y′′ − 2xy + 2y = 0.

With the substitution y = xλ this equation becomes

λ(λ− 1)− 2λ+ 2 = 0

λ2 − 3λ+ 2 = 0

λ = 1, 2.

The general solution is then

y = c1x+ c2x
2.
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Solution 17.13
We note that

xy′′′ + y′′ +
1

x
y′ = 0

is an Euler equation. The substitution y = xλ yields

λ3 − 3λ2 + 2λ+ λ2 − λ+ λ = 0

λ3 − 2λ2 + 2λ = 0.

The three roots of this algebraic equation are

λ = 0, λ = 1 + i, λ = 1− ı

The corresponding solutions to the differential equation are

y = x0 y = x1+ı y = x1−ı

y = 1 y = x eı lnx y = x e−ı lnx .

We can write the general solution as

y = c1 + c2x cos(lnx) + c3 sin(lnx).

Solution 17.14
We substitute y = xλ into the differential equation.

x2y′′ + (2a+ 1)xy′ + by = 0

λ(λ− 1) + (2a+ 1)λ+ b = 0

λ2 + 2aλ+ b = 0

λ = −a±
√
a2 − b
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For a2 > b then the general solution is

y = c1x
−a+

√
a2−b + c2x

−a−
√
a2−b.

For a2 < b, then the general solution is

y = c1x
−a+ı

√
b−a2

+ c2x
−a−ı

√
b−a2

.

By taking the sum and difference of these solutions, we can write the general solution as

y = c1x
−a cos

(√
b− a2 lnx

)
+ c2x

−a sin
(√

b− a2 lnx
)
.

For a2 = b, the quadratic in lambda has a double root at λ = a. The general solution of the differential equation is

y = c1x
−a + c2x

−a lnx.

In summary, the general solution is:

y =


x−a

(
c1x

√
a2−b + c2x

−
√
a2−b

)
if a2 > b,

x−a
(
c1 cos

(√
b− a2 lnx

)
+ c2 sin

(√
b− a2 lnx

))
if a2 < b,

x−a (c1 + c2 lnx) if a2 = b.

Solution 17.15
For a 6= 0, two linearly independent solutions of

y′′ − a2y = 0

are
y1 = eax, y2 = e−ax .

For a = 0, we have
y1 = e0x = 1, y2 = x e0x = x.
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In this case the solution are defined by

y1 = [eax]a=0 , y2 =

[
d

da
eax
]
a=0

.

By the definition of differentiation, f ′(0) is

f ′(0) = lim
a→0

f(a)− f(−a)
2a

.

Thus the second solution in the case a = 0 is

y2 = lim
a→0

eax− e−ax

a

Consider the solutions

y1 = eax, y2 = lim
α→a

eαx− e−αx

α
.

Clearly y1 is a solution for all a. For a 6= 0, y2 is a linear combination of eax and e−ax and is thus a solution. Since the
coefficient of e−ax in this linear combination is non-zero, it is linearly independent to y1. For a = 0, y2 is one half the
derivative of eax evaluated at a = 0. Thus it is a solution.

For a 6= 0, two linearly independent solutions of

x2y′′ + xy′ − a2y = 0

are
y1 = xa, y2 = x−a.

For a = 0, we have

y1 = [xa]a=0 = 1, y2 =

[
d

da
xa
]
a=0

= ln x.

Consider the solutions

y1 = xa, y2 =
xa − x−a

a
Clearly y1 is a solution for all a. For a 6= 0, y2 is a linear combination of xa and x−a and is thus a solution. For a = 0,
y2 is one half the derivative of xa evaluated at a = 0. Thus it is a solution.
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Solution 17.16
1.

x2y′′ − 2xy′ + 2y = 0

We substitute y = xλ into the differential equation.

λ(λ− 1)− 2λ+ 2 = 0

λ2 − 3λ+ 2 = 0

(λ− 1)(λ− 2) = 0

y = c1x+ c2x
2

2.
x2y′′ − 2y = 0

We substitute y = xλ into the differential equation.

λ(λ− 1)− 2 = 0

λ2 − λ− 2 = 0

(λ+ 1)(λ− 2) = 0

y =
c1
x

+ c2x
2

3.
x2y′′ − xy′ + y = 0

We substitute y = xλ into the differential equation.

λ(λ− 1)− λ+ 1 = 0

λ2 − 2λ+ 1 = 0

(λ− 1)2 = 0
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Since there is a double root, the solution is:

y = c1x+ c2x lnx.

Exact Equations

Solution 17.17
We note that

y′′ + y′ sin x+ y cosx = 0

is an exact equation.

d

dx
[y′ + y sin x] = 0

y′ + y sin x = c1
d

dx

[
y e− cosx

]
= c1 e− cosx

y = c1 ecosx

∫
e− cosx dx+ c2 ecosx

Equations Without Explicit Dependence on y
Reduction of Order

Solution 17.18

(1− x2)y′′ − 2xy′ + 2y = 0, −1 < x < 1

We substitute y = x into the differential equation to check that it is a solution.

(1− x2)(0)− 2x(1) + 2x = 0
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We look for a second solution of the form y = xu. We substitute this into the differential equation and use the fact
that x is a solution.

(1− x2)(xu′′ + 2u′)− 2x(xu′ + u) + 2xu = 0

(1− x2)(xu′′ + 2u′)− 2x(xu′) = 0

(1− x2)xu′′ + (2− 4x2)u′ = 0

u′′

u′
=

2− 4x2

x(x2 − 1)

u′′

u′
= −2

x
+

1

1− x
− 1

1 + x

ln(u′) = −2 ln(x)− ln(1− x)− ln(1 + x) + const

ln(u′) = ln

(
c

x2(1− x)(1 + x)

)
u′ =

c

x2(1− x)(1 + x)

u′ = c

(
1

x2
+

1

2(1− x)
+

1

2(1 + x)

)
u = c

(
−1

x
− 1

2
ln(1− x) +

1

2
ln(1 + x)

)
+ const

u = c

(
−1

x
+

1

2
ln

(
1 + x

1− x

))
+ const

A second linearly independent solution is

y = −1 +
x

2
ln

(
1 + x

1− x

)
.

980



Solution 17.19
We are given that y = ex is a solution of

y′′ − x+ 1

x
y′ +

1

x
y = 0.

To find another linearly independent solution, we will use reduction of order. Substituting

y = u ex

y′ = (u′ + u) ex

y′′ = (u′′ + 2u′ + u) ex

into the differential equation yields

u′′ + 2u′ + u− x+ 1

x
(u′ + u) +

1

x
u = 0.

u′′ +
x− 1

x
u′ = 0

d

dx

[
u′ exp

(∫ (
1− 1

x

)
dx

)]
= 0

u′ ex−lnx = c1

u′ = c1x e−x

u = c1

∫
x e−x dx+ c2

u = c1(x e−x + e−x) + c2

y = c1(x+ 1) + c2 ex

Thus a second linearly independent solution is

y = x+ 1.
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Solution 17.20
We are given that y = x is a solution of

(1− 2x)y′′ + 4xy′ − 4y = 0.

To find another linearly independent solution, we will use reduction of order. Substituting

y = xu

y′ = xu′ + u

y′′ = xu′′ + 2u′

into the differential equation yields

(1− 2x)(xu′′ + 2u′) + 4x(xu′ + u)− 4xu = 0,

(1− 2x)xu′′ + (4x2 − 4x+ 2)u′ = 0,

u′′

u′
=

4x2 − 4x+ 2

x(2x− 1)
,

u′′

u′
= 2− 2

x
+

2

2x− 1
,

ln(u′) = 2x− 2 ln x+ ln(2x− 1) + const,

u′ = c1

(
2

x
− 1

x2

)
e2x,

u = c1
1

x
e2x +c2,

y = c1 e2x +c2x.

Solution 17.21
One solution of

(x− 1)y′′ − xy′+ y = 0,
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is y1 = ex. We find a second solution with reduction of order. We make the substitution y2 = u ex in the differential
equation. We determine u up to an additive constant.

(x− 1)(u′′ + 2u′ + u) ex−x(u′ + u) ex +u ex = 0

(x− 1)u′′ + (x− 2)u′ = 0

u′′

u′
= −x− 2

x− 1
= −1 +

1

x− 1

ln |u′| = −x+ ln |x− 1|+ c

u′ = c(x− 1) e−x

u = −cx e−x

The second solution of the differential equation is y2 = x.

*Reduction of Order and the Adjoint Equation
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Chapter 18

Techniques for Nonlinear Differential
Equations

In mathematics you don’t understand things. You just get used to them.

- Johann von Neumann

18.1 Bernoulli Equations

Sometimes it is possible to solve a nonlinear equation by making a change of the dependent variable that converts it
into a linear equation. One of the most important such equations is the Bernoulli equation

dy

dt
+ p(t)y = q(t)yα, α 6= 1.

The change of dependent variable u = y1−α will yield a first order linear equation for u which when solved will give us
an implicit solution for y. (See Exercise 18.4.)
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Result 18.1.1 The Bernoulli equation y′ + p(t)y = q(t)yα, α 6= 1 can be transformed to
the first order linear equation

du

dt
+ (1− α)p(t)u = (1− α)q(t)

with the change of variables u = y1−α.

Example 18.1.1 Consider the Bernoulli equation

y′ =
2

x
y + y2.

First we divide by y2.

y−2y′ =
2

x
y−1 + 1

We make the change of variable u = y−1.

−u′ = 2

x
u+ 1

u′ +
2

x
u = −1
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The integrating factor is I(x) = exp(
∫

2
x
dx) = x2.

d

dx
(x2u) = −x2

x2u = −1

3
x3 + c

u = −1

3
x+

c

x2

y =

(
−1

3
x+

c

x2

)−1

Thus the solution for y is

y =
3x2

c− x2
.

18.2 Riccati Equations

Factoring Second Order Operators. Consider the second order linear equation

L[y] =

[
d2

dx2
+ p(x)

d

dx
+ q(x)

]
y = y′′ + p(x)y′ + q(x)y = f(x).

If we were able to factor the linear operator L into the form

L =

[
d

dx
+ a(x)

] [
d

dx
+ b(x)

]
, (18.1)

then we would be able to solve the differential equation. Factoring reduces the problem to a system of first order
equations. We start with the factored equation[

d

dx
+ a(x)

] [
d

dx
+ b(x)

]
y = f(x).
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We set u =
[

d
dx

+ b(x)
]
y and solve the problem

[
d

dx
+ a(x)

]
u = f(x).

Then to obtain the solution we solve [
d

dx
+ b(x)

]
y = u.

Example 18.2.1 Consider the equation

y′′ +

(
x− 1

x

)
y′ +

(
1

x2
− 1

)
y = 0.

Let’s say by some insight or just random luck we are able to see that this equation can be factored into

[
d

dx
+ x

] [
d

dx
− 1

x

]
y = 0.

We first solve the equation

[
d

dx
+ x

]
u = 0.

u′ + xu = 0

d

dx

(
ex

2/2 u
)

= 0

u = c1 e−x
2/2
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Then we solve for y with the equation [
d

dx
− 1

x

]
y = u = c1 e−x

2/2 .

y′ − 1

x
y = c1 e−x

2/2

d

dx

(
x−1y

)
= c1x

−1 e−x
2/2

y = c1x

∫
x−1 e−x

2/2 dx+ c2x

If we were able to solve for a and b in Equation 18.1 in terms of p and q then we would be able to solve any second
order differential equation. Equating the two operators,

d2

dx2
+ p

d

dx
+ q =

[
d

dx
+ a

] [
d

dx
+ b

]
=

d2

dx2
+ (a+ b)

d

dx
+ (b′ + ab).

Thus we have the two equations
a+ b = p, and b′ + ab = q.

Eliminating a,

b′ + (p− b)b = q

b′ = b2 − pb+ q

Now we have a nonlinear equation for b that is no easier to solve than the original second order linear equation.

Riccati Equations. Equations of the form

y′ = a(x)y2 + b(x)y + c(x)
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are called Riccati equations. From the above derivation we see that for every second order differential equation there
is a corresponding Riccati equation. Now we will show that the converse is true.

We make the substitution

y = − u′

au
, y′ = −u

′′

au
+

(u′)2

au2
+
a′u′

a2u
,

in the Riccati equation.

y′ = ay2 + by + c

−u
′′

au
+

(u′)2

au2
+
a′u′

a2u
= a

(u′)2

a2u2
− b

u′

au
+ c

−u
′′

au
+
a′u′

a2u
+ b

u′

au
− c = 0

u′′ −
(
a′

a
+ b

)
u′ + acu = 0

Now we have a second order linear equation for u.

Result 18.2.1 The substitution y = − u′

au transforms the Riccati equation

y′ = a(x)y2 + b(x)y + c(x)

into the second order linear equation

u′′ −
(
a′

a
+ b

)
u′ + acu = 0.

Example 18.2.2 Consider the Riccati equation

y′ = y2 +
1

x
y +

1

x2
.
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With the substitution y = −u′

u
we obtain

u′′ − 1

x
u′ +

1

x2
u = 0.

This is an Euler equation. The substitution u = xλ yields

λ(λ− 1)− λ+ 1 = (λ− 1)2 = 0.

Thus the general solution for u is

u = c1x+ c2x log x.

Since y = −u′

u
,

y = −c1 + c2(1 + log x)

c1x+ c2x log x

y = −1 + c(1 + log x)

x+ cx log x

18.3 Exchanging the Dependent and Independent Variables

Some differential equations can be put in a more elementary form by exchanging the dependent and independent
variables. If the new equation can be solved, you will have an implicit solution for the initial equation. We will consider
a few examples to illustrate the method.

Example 18.3.1 Consider the equation

y′ =
1

y3 − xy2
.
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Instead of considering y to be a function of x, consider x to be a function of y. That is, x = x(y), x′ = dx
dy

.

dy

dx
=

1

y3 − xy2

dx

dy
= y3 − xy2

x′ + y2x = y3

Now we have a first order equation for x.

d

dy

(
ey

3/3 x
)

= y3 ey
3/3

x = e−y
3/3

∫
y3 ey

3/3 dy + c e−y
3/3

Example 18.3.2 Consider the equation

y′ =
y

y2 + 2x
.

Interchanging the dependent and independent variables yields

1

x′
=

y

y2 + 2x

x′ = y + 2
x

y

x′ − 2
x

y
= y

d

dy
(y−2x) = y−1

y−2x = log y + c

x = y2 log y + cy2
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Result 18.3.1 Some differential equations can be put in a simpler form by exchanging the
dependent and independent variables. Thus a differential equation for y(x) can be written as
an equation for x(y). Solving the equation for x(y) will give an implicit solution for y(x).

18.4 Autonomous Equations

Autonomous equations have no explicit dependence on x. The following are examples.

• y′′ + 3y′ − 2y = 0

• y′′ = y + (y′)2

• y′′′ + y′′y = 0

The change of variables u(y) = y′ reduces an nth order autonomous equation in y to a non-autonomous equation
of order n− 1 in u(y). Writing the derivatives of y in terms of u,

y′ = u(y)

y′′ =
d

dx
u(y)

=
dy

dx

d

dy
u(y)

= y′u′

= u′u

y′′′ = (u′′u+ (u′)2)u.

Thus we see that the equation for u(y) will have an order of one less than the original equation.

Result 18.4.1 Consider an autonomous differential equation for y(x), (autonomous equa-
tions have no explicit dependence on x.) The change of variables u(y) = y′ reduces an nth

order autonomous equation in y to a non-autonomous equation of order n− 1 in u(y).

992



Example 18.4.1 Consider the equation
y′′ = y + (y′)2.

With the substitution u(y) = y′, the equation becomes

u′u = y + u2

u′ = u+ yu−1.

We recognize this as a Bernoulli equation. The substitution v = u2 yields

1

2
v′ = v + y

v′ − 2v = 2y

d

dy

(
e−2y v

)
= 2y e−2y

v(y) = c1 e2y + e2y

∫
2y e−2y dy

v(y) = c1 e2y + e2y

(
−y e−2y +

∫
e−2y dy

)
v(y) = c1 e2y + e2y

(
−y e−2y−1

2
e−2y

)
v(y) = c1 e2y−y − 1

2
.

Now we solve for u.

u(y) =

(
c1 e2y−y − 1

2

)1/2

.

dy

dx
=

(
c1 e2y−y − 1

2

)1/2
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This equation is separable.

dx =
dy(

c1 e2y−y − 1
2

)1/2
x+ c2 =

∫
1(

c1 e2y−y − 1
2

)1/2 dy
Thus we finally have arrived at an implicit solution for y(x).

Example 18.4.2 Consider the equation
y′′ + y3 = 0.

With the change of variables, u(y) = y′, the equation becomes

u′u+ y3 = 0.

This equation is separable.

u du = −y3 dy

1

2
u2 = −1

4
y4 + c1

u =

(
2c1 −

1

2
y4

)1/2

y′ =

(
2c1 −

1

2
y4

)1/2

dy

(2c1 − 1
2
y4)1/2

= dx

Integrating gives us the implicit solution ∫
1

(2c1 − 1
2
y4)1/2

dy = x+ c2.
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18.5 *Equidimensional-in-x Equations

Differential equations that are invariant under the change of variables x = c ξ are said to be equidimensional-in-x. For
a familiar example from linear equations, we note that the Euler equation is equidimensional-in-x. Writing the new
derivatives under the change of variables,

x = c ξ,
d

dx
=

1

c

d

dξ
,

d2

dx2
=

1

c2
d2

dξ2
, . . . .

Example 18.5.1 Consider the Euler equation

y′′ +
2

x
y′ +

3

x2
y = 0.

Under the change of variables, x = c ξ, y(x) = u(ξ), this equation becomes

1

c2
u′′ +

2

c ξ

1

c
u′ +

3

c2 ξ2
u = 0

u′′ +
2

ξ
u′ +

3

ξ2
u = 0.

Thus this equation is invariant under the change of variables x = c ξ.

Example 18.5.2 For a nonlinear example, consider the equation

y′′ y′ +
y′′

x y
+
y′

x2
= 0.

With the change of variables x = c ξ, y(x) = u(ξ) the equation becomes

u′′

c2
u′

c
+

u′′

c3 ξ u
+

u′

c3 ξ2
= 0

u′′ u′ +
u′′

ξ u
+
u′

ξ2
= 0.

We see that this equation is also equidimensional-in-x.
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You may recall that the change of variables x = et reduces an Euler equation to a constant coefficient equation. To
generalize this result to nonlinear equations we will see that the same change of variables reduces an equidimensional-in-x
equation to an autonomous equation.

Writing the derivatives with respect to x in terms of t,

x = et,
d

dx
=

dt

dx

d

dt
= e−t

d

dt

x
d

dx
=

d

dt

x2 d2

dx2
= x

d

dx

(
x

d

dx

)
− x

d

dx
=

d2

dt2
− d

dt
.

Example 18.5.3 Consider the equation in Example 18.5.2

y′′ y′ +
y′′

x y
+
y′

x2
= 0.

Applying the change of variables x = et, y(x) = u(t) yields an autonomous equation for u(t).

x2 y′′ x y′ +
x2 y′′

y
+ x y′ = 0

(u′′ − u′)u′ +
u′′ − u′

u
+ u′ = 0

Result 18.5.1 A differential equation that is invariant under the change of variables x = c ξ

is equidimensional-in-x. Such an equation can be reduced to autonomous equation of the
same order with the change of variables, x = et.
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18.6 *Equidimensional-in-y Equations

A differential equation is said to be equidimensional-in-y if it is invariant under the change of variables y(x) = c v(x).
Note that all linear homogeneous equations are equidimensional-in-y.

Example 18.6.1 Consider the linear equation

y′′ + p(x)y′ + q(x)y = 0.

With the change of variables y(x) = cv(x) the equation becomes

cv′′ + p(x)cv′ + q(x)cv = 0

v′′ + p(x)v′ + q(x)v = 0

Thus we see that the equation is invariant under the change of variables.

Example 18.6.2 For a nonlinear example, consider the equation

y′′y + (y′)2 − y2 = 0.

Under the change of variables y(x) = cv(x) the equation becomes.

cv′′cv + (cv′)2 − (cv)2 = 0

v′′v + (v′)2 − v2 = 0.

Thus we see that this equation is also equidimensional-in-y.

The change of variables y(x) = eu(x) reduces an nth order equidimensional-in-y equation to an equation of order
n− 1 for u′. Writing the derivatives of eu(x),

d

dx
eu = u′ eu

d2

dx2
eu = (u′′ + (u′)2) eu

d3

dx3
eu = (u′′′ + 3u′′u′′ + (u′)3) eu .
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Example 18.6.3 Consider the linear equation in Example 18.6.1

y′′ + p(x)y′ + q(x)y = 0.

Under the change of variables y(x) = eu(x) the equation becomes

(u′′ + (u′)2) eu +p(x)u′ eu +q(x) eu = 0

u′′ + (u′)2 + p(x)u′ + q(x) = 0.

Thus we have a Riccati equation for u′. This transformation might seem rather useless since linear equations are
usually easier to work with than nonlinear equations, but it is often useful in determining the asymptotic behavior of
the equation.

Example 18.6.4 From Example 18.6.2 we have the equation

y′′y + (y′)2 − y2 = 0.

The change of variables y(x) = eu(x) yields

(u′′ + (u′)2) eu eu +(u′ eu)2 − (eu)2 = 0

u′′ + 2(u′)2 − 1 = 0

u′′ = −2(u′)2 + 1
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Now we have a Riccati equation for u′. We make the substitution u′ = v′

2v
.

v′′

2v
− (v′)2

2v2
= −2

(v′)2

4v2
+ 1

v′′ − 2v = 0

v = c1 e
√

2x +c2 e−
√

2x

u′ = 2
√

2
c1 e

√
2x−c2 e−

√
2x

c1 e
√

2x +c2 e−
√

2x

u = 2

∫
c1
√

2 e
√

2x−c2
√

2 e−
√

2x

c1 e
√

2x +c2 e−
√

2x
dx+ c3

u = 2 log
(
c1 e

√
2x +c2 e−

√
2x
)

+ c3

y =
(
c1 e

√
2x +c2 e−

√
2x
)2

ec3

The constants are redundant, the general solution is

y =
(
c1 e

√
2x +c2 e−

√
2x
)2

Result 18.6.1 A differential equation is equidimensional-in-y if it is invariant under the
change of variables y(x) = cv(x). An nth order equidimensional-in-y equation can be re-
duced to an equation of order n− 1 in u′ with the change of variables y(x) = eu(x).
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18.7 *Scale-Invariant Equations

Result 18.7.1 An equation is scale invariant if it is invariant under the change of variables,
x = cξ, y(x) = cαv(ξ), for some value of α. A scale-invariant equation can be transformed
to an equidimensional-in-x equation with the change of variables, y(x) = xαu(x).

Example 18.7.1 Consider the equation
y′′ + x2y2 = 0.

Under the change of variables x = cξ, y(x) = cαv(ξ) this equation becomes

cα

c2
v′′(ξ) + c2x2c2αv2(ξ) = 0.

Equating powers of c in the two terms yields α = −4.
Introducing the change of variables y(x) = x−4u(x) yields

d2

dx2

[
x−4u(x)

]
+ x2(x−4u(x))2 = 0

x−4u′′ − 8x−5u′ + 20x−6u+ x−6u2 = 0

x2u′′ − 8xu′ + 20u+ u2 = 0.

We see that the equation for u is equidimensional-in-x.
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18.8 Exercises

Exercise 18.1
1. Find the general solution and the singular solution of the Clairaut equation,

y = xp+ p2.

2. Show that the singular solution is the envelope of the general solution.

Hint, Solution

Bernoulli Equations

Exercise 18.2 (mathematica/ode/techniques nonlinear/bernoulli.nb)
Consider the Bernoulli equation

dy

dt
+ p(t)y = q(t)yα.

1. Solve the Bernoulli equation for α = 1.

2. Show that for α 6= 1 the substitution u = y1−α reduces Bernoulli’s equation to a linear equation.

3. Find the general solution to the following equations.

t2
dy

dt
+ 2ty − y3 = 0, t > 0

(a)

dy

dx
+ 2xy + y2 = 0

(b)

Hint, Solution
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Exercise 18.3
Consider a population, y. Let the birth rate of the population be proportional to y with constant of proportionality 1.
Let the death rate of the population be proportional to y2 with constant of proportionality 1/1000. Assume that the
population is large enough so that you can consider y to be continuous. What is the population as a function of time
if the initial population is y0?
Hint, Solution

Exercise 18.4
Show that the transformation u = y1−n reduces the equation to a linear first order equation. Solve the equations

1. t2
dy

dt
+ 2ty − y3 = 0 t > 0

2.
dy

dt
= (Γ cos t+ T ) y − y3, Γ and T are real constants. (From a fluid flow stability problem.)

Hint, Solution

Riccati Equations

Exercise 18.5
1. Consider the Ricatti equation,

dy

dx
= a(x)y2 + b(x)y + c(x).

Substitute

y = yp(x) +
1

u(x)

into the Ricatti equation, where yp is some particular solution to obtain a first order linear differential equation
for u.

2. Consider a Ricatti equation,

y′ = 1 + x2 − 2xy + y2.
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Verify that yp(x) = x is a particular solution. Make the substitution y = yp + 1/u to find the general solution.

What would happen if you continued this method, taking the general solution for yp? Would you be able to find
a more general solution?

3. The substitution

y = − u′

au

gives us the second order, linear, homogeneous differential equation,

u′′ −
(
a′

a
+ b

)
u′ + acu = 0.

The general solution for u has two constants of integration. However, the solution for y should only have one
constant of integration as it satisfies a first order equation. Write y in terms of the solution for u and verify tha
y has only one constant of integration.

Hint, Solution

Exchanging the Dependent and Independent Variables

Exercise 18.6
Solve the differential equation

y′ =

√
y

xy + y
.

Hint, Solution

Autonomous Equations
*Equidimensional-in-x Equations
*Equidimensional-in-y Equations
*Scale-Invariant Equations
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18.9 Hints
Hint 18.1

Bernoulli Equations

Hint 18.2

Hint 18.3
The differential equation governing the population is

dy

dt
= y − y2

1000
, y(0) = y0.

This is a Bernoulli equation.

Hint 18.4

Riccati Equations

Hint 18.5

Exchanging the Dependent and Independent Variables

Hint 18.6
Exchange the dependent and independent variables.

Autonomous Equations
*Equidimensional-in-x Equations
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*Equidimensional-in-y Equations
*Scale-Invariant Equations
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18.10 Solutions

Solution 18.1
We consider the Clairaut equation,

y = xp+ p2. (18.2)

1. We differentiate Equation 18.2 with respect to x to obtain a second order differential equation.

y′ = y′ + xy′′ + 2y′y′′

y′′(2y′ + x) = 0

Equating the first or second factor to zero will lead us to two distinct solutions.

y′′ = 0 or y′ = −x
2

If y′′ = 0 then y′ ≡ p is a constant, (say y′ = c). From Equation 18.2 we see that the general solution is,

y(x) = cx+ c2. (18.3)

Recall that the general solution of a first order differential equation has one constant of integration.

If y′ = −x/2 then y = −x2/4 + const. We determine the constant by substituting the expression into Equa-
tion 18.2.

−x
2

4
+ c = x

(
−x

2

)
+
(
−x

2

)2

Thus we see that a singular solution of the Clairaut equation is

y(x) = −1

4
x2. (18.4)

Recall that a singular solution of a first order nonlinear differential equation has no constant of integration.
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-4 -2 2 4

-4

-2

2

Figure 18.1: The Envelope of y = cx+ c2.

2. Equating the general and singular solutions, y(x), and their derivatives, y′(x), gives us the system of equations,

cx+ c2 = −1

4
x2, c = −1

2
x.

Since the first equation is satisfied for c = −x/2, we see that the solution y = cx+ c2 is tangent to the solution
y = −x2/4 at the point (−2c,−|c|). The solution y = cx + c2 is plotted for c = . . . ,−1/4, 0, 1/4, . . . in
Figure 18.1.

The envelope of a one-parameter family F (x, y, c) = 0 is given by the system of equations,

F (x, y, c) = 0, Fc(x, y, c) = 0.

For the family of solutions y = cx+ c2 these equations are

y = cx+ c2, 0 = x+ 2c.

Substituting the solution of the second equation, c = −x/2, into the first equation gives the envelope,

y =

(
−1

2
x

)
x+

(
−1

2
x

)2

= −1

4
x2.

1007



Thus we see that the singular solution is the envelope of the general solution.

Bernoulli Equations

Solution 18.2
1.

dy

dt
+ p(t)y = q(t)y

dy

y
= (q − p) dt

ln y =

∫
(q − p) dt+ c

y = c e
R

(q−p) dt

2. We consider the Bernoulli equation,
dy

dt
+ p(t)y = q(t)yα, α 6= 1.

We divide by yα.

y−αy′ + p(t)y1−α = q(t)

This suggests the change of dependent variable u = y1−α, u′ = (1− α)y−αy′.

1

1− α

d

dt
y1−α + p(t)y1−α = q(t)

du

dt
+ (1− α)p(t)u = (1− α)q(t)

Thus we obtain a linear equation for u which when solved will give us an implicit solution for y.
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3. (a)

t2
dy

dt
+ 2ty − y3 = 0, t > 0

t2
y′

y3
+ 2t

1

y2
= 1

We make the change of variables u = y−2.

−1

2
t2u′ + 2tu = 1

u′ − 4

t
u = − 2

t2

The integrating factor is
µ = e

R
(−4/t) dt = e−4 ln t = t−4.

We multiply by the integrating factor and integrate to obtain the solution.

d

dt

(
t−4u

)
= −2t−6

u =
2

5
t−1 + ct4

y−2 =
2

5
t−1 + ct4

y = ± 1√
2
5
t−1 + ct4

y = ±
√

5t√
2 + ct5

(b)

dy

dx
+ 2xy + y2 = 0

y′

y2
+

2x

y
= −1
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We make the change of variables u = y−1.

u′ − 2xu = 1

The integrating factor is
µ = e

R
(−2x) dx = e−x

2

.

We multiply by the integrating factor and integrate to obtain the solution.

d

dx

(
e−x

2

u
)

= e−x
2

u = ex
2

∫
e−x

2

dx+ c ex
2

y =
e−x

2∫
e−x2 dx+ c

Solution 18.3
The differential equation governing the population is

dy

dt
= y − y2

1000
, y(0) = y0.

We recognize this as a Bernoulli equation. The substitution u(t) = 1/y(t) yields

−du

dt
= u− 1

1000
, u(0) =

1

y0

.

u′ + u =
1

1000

u =
1

y0

e−t +
e−t

1000

∫ t

0

eτ dτ

u =
1

1000
+

(
1

y0

− 1

1000

)
e−t
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Solving for y(t),

y(t) =

(
1

1000
+

(
1

y0

− 1

1000

)
e−t
)−1

.

As a check, we see that as t→∞, y(t) → 1000, which is an equilibrium solution of the differential equation.

dy

dt
= 0 = y − y2

1000
→ y = 1000.

Solution 18.4
1.

t2
dy

dt
+ 2ty − y3 = 0

dy

dt
+ 2t−1y = t−2y3

We make the change of variables u(t) = y−2(t).

u′ − 4t−1u = −2t−2

This gives us a first order, linear equation. The integrating factor is

I(t) = e
R
−4t−1 dt = e−4 log t = t−4.

We multiply by the integrating factor and integrate.

d

dt

(
t−4u

)
= −2t−6

t−4u =
2

5
t−5 + c

u =
2

5
t−1 + ct4
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Finally we write the solution in terms of y(t).

y(t) = ± 1√
2
5
t−1 + ct4

y(t) = ±
√

5t√
2 + ct5

2.

dy

dt
− (Γ cos t+ T ) y = −y3

We make the change of variables u(t) = y−2(t).

u′ + 2 (Γ cos t+ T )u = 2

This gives us a first order, linear equation. The integrating factor is

I(t) = e
R

2(Γ cos t+T ) dt = e2(Γ sin t+Tt)

We multiply by the integrating factor and integrate.

d

dt

(
e2(Γ sin t+Tt) u

)
= 2 e2(Γ sin t+Tt)

u = 2 e−2(Γ sin t+Tt)

(∫
e2(Γ sin t+Tt) dt+ c

)
Finally we write the solution in terms of y(t).

y = ±
eΓ sin t+Tt√

2
(∫

e2(Γ sin t+Tt) dt+ c
)
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Riccati Equations

Solution 18.5
We consider the Ricatti equation,

dy

dx
= a(x)y2 + b(x)y + c(x). (18.5)

1. We substitute

y = yp(x) +
1

u(x)

into the Ricatti equation, where yp is some particular solution.

y′p −
u′

u2
= +a(x)

(
y2
p + 2

yp
u

+
1

u2

)
+ b(x)

(
yp +

1

u

)
+ c(x)

− u
′

u2
= b(x)

1

u
+ a(x)

(
2
yp
u

+
1

u2

)
u′ = − (b+ 2ayp)u− a

We obtain a first order linear differential equation for u whose solution will contain one constant of integration.

2. We consider a Ricatti equation,
y′ = 1 + x2 − 2xy + y2. (18.6)

We verify that yp(x) = x is a solution.
1 = 1 + x2 − 2xx+ x2

Substituting y = yp + 1/u into Equation 18.6 yields,

u′ = − (−2x+ 2x)u− 1

u = −x+ c

y = x+
1

c− x
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What would happen if we continued this method? Since y = x+ 1
c−x is a solution of the Ricatti equation we can

make the substitution,

y = x+
1

c− x
+

1

u(x)
, (18.7)

which will lead to a solution for y which has two constants of integration. Then we could repeat the process,
substituting the sum of that solution and 1/u(x) into the Ricatti equation to find a solution with three constants
of integration. We know that the general solution of a first order, ordinary differential equation has only one
constant of integration. Does this method for Ricatti equations violate this theorem? There’s only one way to
find out. We substitute Equation 18.7 into the Ricatti equation.

u′ = −
(
−2x+ 2

(
x+

1

c− x

))
u− 1

u′ = − 2

c− x
u− 1

u′ +
2

c− x
u = −1

The integrating factor is

I(x) = e2/(c−x) = e−2 log(c−x) =
1

(c− x)2
.

Upon multiplying by the integrating factor, the equation becomes exact.

d

dx

(
1

(c− x)2
u

)
= − 1

(c− x)2

u = (c− x)2 −1

c− x
+ b(c− x)2

u = x− c+ b(c− x)2

Thus the Ricatti equation has the solution,

y = x+
1

c− x
+

1

x− c+ b(c− x)2
.
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It appears that we we have found a solution that has two constants of integration, but appearances can be
deceptive. We do a little algebraic simplification of the solution.

y = x+
1

c− x
+

1

(b(c− x)− 1)(c− x)

y = x+
(b(c− x)− 1) + 1

(b(c− x)− 1)(c− x)

y = x+
b

b(c− x)− 1

y = x+
1

(c− 1/b)− x

This is actually a solution, (namely the solution we had before), with one constant of integration, (namely c−1/b).
Thus we see that repeated applications of the procedure will not produce more general solutions.

3. The substitution

y = − u′

au

gives us the second order, linear, homogeneous differential equation,

u′′ −
(
a′

a
+ b

)
u′ + acu = 0.

The solution to this linear equation is a linear combination of two homogeneous solutions, u1 and u2.

u = c1u1(x) + c2u2(x)

The solution of the Ricatti equation is then

y = − c1u
′
1(x) + c2u

′
2(x)

a(x)(c1u1(x) + c2u2(x))
.
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Since we can divide the numerator and denominator by either c1 or c2, this answer has only one constant of
integration, (namely c1/c2 or c2/c1).

Exchanging the Dependent and Independent Variables

Solution 18.6
Exchanging the dependent and independent variables in the differential equation,

y′ =

√
y

xy + y
,

yields

x′(y) = y1/2x+ y1/2.
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This is a first order differential equation for x(y).

x′ − y1/2x = y1/2

d

dy

[
x exp

(
−2y3/2

3

)]
= y1/2 exp

(
−2y3/2

3

)
x exp

(
−2y3/2

3

)
= − exp

(
−2y3/2

3

)
+ c1

x = −1 + c1 exp

(
2y3/2

3

)
x+ 1

c1
= exp

(
2y3/2

3

)
log

(
x+ 1

c1

)
=

2

3
y3/2

y =

(
3

2
log

(
x+ 1

c1

))2/3

y =

(
c+

3

2
log(x+ 1)

)2/3

Autonomous Equations
*Equidimensional-in-x Equations
*Equidimensional-in-y Equations
*Scale-Invariant Equations
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