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Eigenvalues and eigenvectors of rotation matrices

These notes are a supplement to a previous class handout entitled, Rotation Matrices

in two, three and many dimensions. In these notes, we shall focus on the eigenvalues and
eigenvectors of proper and improper rotation matrices in two and three dimensions.

1. The eigenvalues and eigenvectors of proper and improper rotation matrices
in two dimensions

In the previous class handout cited above, we showed that the most general proper
rotation matrix in two-dimensions is of the form,

R(θ) =

(

cos θ − sin θ
sin θ cos θ

)

, where 0 ≤ θ < 2π , (1)

which represents a proper counterclockwise rotation by an angle θ in the x–y plane.
Consider the eigenvalue problem,

R(θ)~v = λ~v . (2)

Since R(θ) rotates the vector ~v by an angle θ, we conclude that for θ 6= 0 (mod π), there
are no real eigenvectors ~v that are solutions to eq. (2). This can be easily checked by an
explicit calculation as follows.

det(R(θ)− λI) = 0 =⇒ det

(

cos θ − λ − sin θ
sin θ cos θ − λ

)

= 0 , (3)

which yields the characteristic equation,

(cos θ − λ)2 + sin2 θ = 0 . (4)

This equation simplifies to
λ2 − 2λ cos θ + 1 = 0 , (5)

which yields the eigenvalues,

λ = cos θ ±
√
cos2 θ − 1 = cos θ ± i sin θ = e±iθ . (6)

Thus, we ave confirmed that the eigenvalues are not real if θ 6= 0 (mod π). For the special
cases of R = I and R = −I, corresponding to θ = 0 and π, respectively, we obtain real
eigenvalues as expected. In particular, the case of θ = π corresponds to a two dimension
inversion ~x → −~x, which implies that the eigenvalue of R(π) is doubly degenerate and
equal to −1.
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The case of improper rotations in two dimensions is more interesting. In the previous
class handout cited above, we noted that the most general improper rotation matrix in
two-dimensions is of the form,

R(θ) =

(

cos θ sin θ
sin θ − cos θ

)

, where 0 ≤ θ < 2π , (7)

which can be expressed as the product of a proper rotation and a reflection,

R =

(

cos θ − sin θ
sin θ cos θ

)(

1 0
0 −1

)

. (8)

However, it is easy to show that the action of R(θ) is equivalent to a pure reflection
through a line that passes through the origin. This can be seen by considering the
eigenvalue problem,

R(θ)~v = λ~v . (9)

We can again determine the eigenvalues of R(θ) by solving its characteristic equation,

det(R(θ)− λI) = 0 =⇒ det

(

cos θ − λ sin θ
sin θ − cos θ − λ

)

= 0 , (10)

which is equivalent to

(cos θ − λ)(− cos θ − λ)− sin2 θ = 0 . (11)

This equation simplifies to
λ2 − 1 = 0 , (12)

which yields the eigenvalues, λ = ±1.
The interpretation of this result is immediate. The matrix R(θ) when operating on

a vector ~v represents a reflection of that vector through a line of reflection that passes
through the origin. In the case of λ = 1 we have R(θ)~v = ~v, which means that ~v is a
vector that lies parallel to the line of reflection (and is thus unaffected by the reflection).
In the case of λ = −1 we have R(θ)~v = −~v, which means that ~v is a vector that is
perpendicular to the line of reflection (and is thus is transformed, ~v → −~v, by the
reflection).

One can therefore determine the line of reflection by computing the eigenvector that
corresponds to λ = 1,

(

cos θ sin θ
sin θ − cos θ

)(

x
y

)

=

(

x
y

)

. (13)

If θ = 0 (mod 2π), then any vector of the form ( x
0 ) is an eigenvector corresponding to the

eigenvalue λ = 1. This implies that the line of reflection is the x-axis, which corresponds
to the equation y = 0. In general (for any value of θ), the solution to eq. (13) is

x cos θ + y sin θ = x , (14)
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or equivalently,
x(1− cos θ)− y sin θ = 0 . (15)

It is convenient to use trigonometric identities to rewrite eq. (15) as

2x sin2
(

1

2
θ
)

− 2y sin
(

1

2
θ
)

cos
(

1

2
θ
)

= 0 . (16)

If θ 6= 0 (mod 2π), then we can divide both sides of eq. (16) by sin
(

1

2
θ
)

to obtain1

x sin
(

1

2
θ
)

− y cos
(

1

2
θ
)

= 0 . (17)

We recognize eq. (17) as an equation for a straight line that passes through the origin
with a slope equal to tan

(

1

2
θ
)

. Thus, we have demonstrated that the most general

2 × 2 orthogonal matrix with determinant equal to −1 given by R(θ) represents a pure
reflection through a straight line of slope tan

(

1

2
θ
)

that passes through the origin.

Finally, it is worth noting that since R(θ) is both an orthogonal matrix, R(θ)R(θ)T= I,
and a symmetric matrix, R(θ)T = R(θ), it follows that

[

R(θ)
]2

= I , (18)

which is property that must be satisfied by a reflection matrix since two consecutive
reflections are equivalent to the identity operation when acting on a vector.

3. The eigenvalues and eigenvectors of proper rotation matrices in three
dimensions

The most general three-dimensional proper rotation matrix, which we henceforth
denote by R(n̂, θ), can be specified by an axis of rotation pointing in the direction
of the unit vector n̂, and a rotation angle θ. Conventionally, a positive rotation angle
corresponds to a counterclockwise rotation. The direction of the axis is determined by the
right hand rule. Namely, curl the fingers of your right hand around the axis of rotation,
where your fingers point in the θ direction. Then, your thumb points perpendicular to
the plane of rotation in the direction of n̂. All possible proper rotations correspond to
0 ≤ θ ≤ π and the unit vector n̂ pointing in any direction.

To learn more about the properties of a general three-dimensional rotation, consider
the matrix representation R(n̂, θ) with respect to the standard basis Bs = {i , j , k}. We
can define a new coordinate system in which the unit vector n̂ points in the direction
of the new z-axis; the corresponding new basis will be denoted by B′. The matrix
representation of the rotation with respect to B′ is then given by

R(k, θ) ≡





cos θ − sin θ 0
sin θ cos θ 0
0 0 1



 , (19)

where the axis of rotation points in the z-direction (i.e., along the unit vector k).
1Note that for θ = 0 (mod 2π), eq. (17) reduces to y = 0 which is the equation for the x-axis, as

expected.
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Using the formalism developed in the class handout, Vector coordinates, matrix ele-

ments, changes of basis, and matrix diagonalization, there exists an invertible matrix P
such that

R(n̂, θ) = PR(k, θ)P−1 , (20)

where R(k, θ) is given by eq. (19). In Appendix A, we will determine an explicit form
for the matrix P . However, the mere existence of the matrix P in eq. (20) is sufficient
to provide a simple algorithm for determining the rotation axis n̂ (up to an overall sign)
and the rotation angle θ that characterize a general three-dimensional rotation matrix.

To determine the rotation angle θ, we note that the properties of the trace imply that
Tr(PRP−1) = Tr(P−1PR) = TrR, since one can cyclically permute the matrices within
the trace without modifying its value. Hence, it immediately follows from eq. (20) that

Tr R(n̂, θ) = Tr R(k, θ) = 2 cos θ + 1 , (21)

after taking the trace of eq. (19). By convention, 0 ≤ θ ≤ π, which implies that sin θ ≥ 0.
Hence, the rotation angle is uniquely determined by eq. (21) To identify n̂, we observe
that any vector that is parallel to the axis of rotation is unaffected by the rotation itself.
This last statement can be expressed as an eigenvalue equation,

R(n̂, θ)n̂ = n̂ . (22)

Thus, n̂ is an eigenvector of R(n̂, θ) corresponding to the eigenvalue 1. In particular, the
eigenvalue 1 is nondegenerate for any θ 6= 0, in which case n̂ can be determined up to an
overall sign by computing the eigenvalues and the normalized eigenvectors of R(n̂, θ). A
simple proof of this result is given in Appendix B. Here, we shall establish this assertion
by noting that the eigenvalues of any matrix are invariant with respect to a similarity
transformation. In light of eq. (20), it follows that the eigenvalues of R(n̂, θ) are identical
to the eigenvalues of R(k, θ). The latter can be obtained from the characteristic equation,

(1− λ)
[

(cos θ − λ)2 + sin2 θ
]

= 0 ,

which simplifies to:
(1− λ)(λ2 − 2λ cos θ + 1) = 0 ,

after using sin2 θ + cos2 θ = 1. Using the results of eqs. (5) and (6), it follows that the
three eigenvalues of R(k, θ) are given by,

λ1 = 1 , λ2 = eiθ , λ3 = e−iθ , for 0 ≤ θ ≤ π .

There are three distinct cases:

Case 1: θ = 0 λ1 = λ2 = λ3 = 1 , R(n̂, 0) = I ,

Case 2: θ = π λ1 = 1 , λ2 = λ3 = −1 , R(n̂, π) ,

Case 3: 0 < θ < π λ1 = 1, λ2 = eiθ , λ3 = e−iθ , R(n̂, θ) ,

where the corresponding rotation matrix is indicated for each of the three cases.
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For θ 6= 0 the eigenvalue 1 is nondegenerate, as expected from the geometric interpre-
tation that led to eq. (22). Moreover, the other two eigenvalues are complex conjugates
of each other, whose real part is equal to cos θ, which uniquely fixes the rotation angle
in the convention where 0 ≤ θ ≤ π. Case 1 corresponds to the identity (i.e. no rotation)
and Case 2 corresponds to a 180◦ rotation about the axis n̂. In Case 2, the interpre-
tation of the the doubly degenerate eigenvalue −1 is clear. Namely, the corresponding
two linearly independent eigenvectors span the plane that passes through the origin and
is perpendicular to n̂. In particular, the two eigenvectors corresponding to the doubly
degenerate eigenvalues, as well as any linear combination of these eigenvectors (which we
shall denote generically by ~v) that lies in the plane perpendicular to n̂, are inverted by
the 180◦ rotation and hence must satisfy R(n̂, π)~v = −~v.

Since n̂ is a real vector of unit length, it is determined only up to an overall sign
by eq. (22) when its corresponding eigenvalue 1 is nondegenerate. This sign ambiguity
is immaterial in Case 2 given that R(n̂, π) = R(−n̂, π). The sign ambiguity in the
determination of n̂ in Case 3 cannot be resolved without examining the explicit form of
the three dimensional proper rotation matrix R(n̂, θ).

4. The eigenvalues and eigenvectors of improper rotation matrices in three
dimensions

An improper rotation matrix is an orthogonal matrix, R, such that det R = −1.
The most general three-dimensional improper rotation, denoted by R(n̂, θ), consists of
a product of a proper rotation matrix, R(n̂, θ), and a mirror reflection through a plane
normal to the unit vector n̂, which we denote by R(n̂). In particular, the reflection plane
passes through the origin and is perpendicular to n̂. In equations,

R(n̂, θ) ≡ R(n̂, θ)R(n̂) = R(n̂)R(n̂, θ) . (23)

Note that the improper rotation defined in eq. (23) does not depend on the order in
which the proper rotation and reflection are applied. The matrix R(n̂) is called a reflec-

tion matrix, since it is a representation of a mirror reflection through a fixed plane. In
particular,

R(n̂) = R(−n̂) = R(n̂, 0) , (24)

after using R(n̂, 0) = I. Thus, the overall sign of n̂ for a reflection matrix has no physical
meaning. Note that all reflection matrices are orthogonal matrices with detR(n̂) = −1,
with the property that [R(n̂)]2 = I, or equivalently, [R(n̂)]−1 = R(n̂).

The matrix R(n̂, π) is special. Geometric considerations will convince you that

R(n̂, π) = R(n̂, π)R(n̂) = R(n̂)R(n̂, π) = −I . (25)

That is, R(n̂, π) represents an inversion, which is a linear operator that transforms all
vectors ~x → −~x. In particular, R(n̂, π) is independent of the unit vector n̂. Eq. (25) is
equivalent to the statement that an inversion is equivalent to a mirror reflection through
a plane that passes through the origin and is perpendicular to an arbitrary unit vector n̂,
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followed by a proper rotation of 180◦ around the axis n̂. Sometimes, R(n̂, π) is called a
point reflection through the origin (to distinguish it from a reflection through a plane).
Just like a reflection matrix, the inversion matrix satisfies [R(n̂, π)]2 = I. In general, any
improper 3 × 3 rotation matrix R with the property that R 2 = I is a representation of
either an inversion or a reflection through a plane that passes through the origin.

Two important differences between improper rotations in two and three dimensions
are noteworthy. First, the inversion transformation, −I, is a proper rotation in two dimen-
sions, whereas in three dimensions it is an improper rotation. Second, in two dimensions,
all improper rotation matrices satisfy [R(θ)]2 = I [cf. eq. (18)] and thus correspond to a
pure reflection through a line that passes through the origin. In three dimensions, only
some of the improper rotation matrices satisfy [R(n̂, θ)]2 = I and therefore correspond
to a pure reflection.

To learn more about the properties of a general three-dimensional improper rotation,
we again consider the matrix representation R(n̂, θ) with respect to the standard basis
Bs = {i , j , k}. We can define a new coordinate system in which the unit normal to the
reflection plane n̂ points in the direction of the new z-axis; the corresponding new basis
will be denoted by B′. The matrix representation of the improper rotation with respect
to B′ is then given by

R(k, θ) = R(k, θ)R(k) =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1









1 0 0
0 1 0
0 0 −1





=





cos θ − sin θ 0
sin θ cos θ 0
0 0 −1



 .

Using the formalism developed in the class handout, Vector coordinates, matrix elements,

changes of basis, and matrix diagonalization, there exists an invertible matrix P such that

R(n̂, θ) = PR(k, θ)P−1 . (26)

The rest of the analysis mirrors the discussion of Section 3. It immediately follows that

Tr R(n̂, θ) = Tr R(k, θ) = 2 cos θ − 1 , (27)

after taking the trace of eq. (26). By convention, 0 ≤ θ ≤ π, which implies that sin θ ≥ 0.
Hence, the rotation angle is uniquely determined by eq. (27) To identify n̂ (up to an
overall sign), we observe that any vector that is parallel to n̂ (which points along the
normal to the reflection plane) is inverted. This last statement can be expressed as an
eigenvalue equation,

R(n̂, θ)n̂ = −n̂ . (28)

Thus, n̂ is an eigenvector of R(n̂, θ) corresponding to the eigenvalue −1. In particular,
the eigenvalue −1 is nondegenerate for any θ 6= π, in which case n̂ can be determined
up to an overall sign by computing the corresponding normalized eigenvector of R(n̂, θ).

6



A simple proof of this result is given in Appendix A. Here, we shall establish this assertion
by noting that the eigenvalues of any matrix are invariant with respect to a similarity
transformation. Using eq. (26), it follows that the eigenvalues of R(n̂, θ) are identical to
the eigenvalues of R(k, θ). The latter can be obtained from the characteristic equation,

−(1 + λ)
[

(cos θ − λ)2 + sin2 θ
]

= 0 ,

which simplifies to:
(1 + λ)(λ2 − 2λ cos θ + 1) = 0 .

Using the results of eqs. (5) and (6), it follows that the three eigenvalues of R(k, θ) are
given by,

λ1 = −1 , λ2 = eiθ , λ3 = e−iθ , for 0 ≤ θ ≤ π .

There are three distinct cases:

Case 1: θ = 0 λ1 = λ2 = λ3 = −1 , R(n̂, π) = −I ,

Case 2: θ = π λ1 = −1 , λ2 = λ3 = 1 , R(n̂, 0) ≡ R(n̂) ,

Case 3: 0 < θ < π λ1 = −1, λ2 = eiθ , λ3 = e−iθ , R(n̂, θ) ,

where the corresponding improper rotation matrix is indicated for each of the three
cases. Indeed, for θ 6= π, the eigenvalue −1 is nondegenerate. Moreover, the other two
eigenvalues are complex conjugates of each other, whose real part is equal to cos θ, which
uniquely fixes the rotation angle in the convention where 0 ≤ θ ≤ π.

Case 1 corresponds to inversion, ~v → −~v. Note that in this case, R(n̂, π) = −I,
independently of the direction of n̂.

Case 2 corresponds to a mirror reflection through a plane that is perpendicular to n̂

and passes through the origin. In this case, although the unit vector n̂ is determined
only up to an overall sign by eq. (28), this sign ambiguity is immaterial in light of
eq. (24). The doubly degenerate eigenvalue +1 in Case 2 is a consequence of the two
linearly independent eigenvectors that span the reflection plane. In particular, any linear
combination ~v of these eigenvectors that lies in the reflection plane is unaffected by the
reflection and thus satisfies R(n̂)~v = ~v.

In the class handout entitled Rotation Matrices in two, three and many dimensions,
the most general form of R(n̂) was exhibited,

Rij(n̂) =





1− 2n2
1 −2n1n2 −2n1n3

−2n1n2 1− 2n2
2 −2n2n3

−2n1n3 −2n2n3 1− 2n2
3



 . (29)

As expected for a pure reflection,
[

R(n̂)
]2

= I, which can be verified by performing the
matrix multiplication and using the fact that the unit vector n̂ satisfies n2

1 + n2
2 + n2

3 = 1.
One can also check that the following two vectors are eigenvectors of Rij(n̂), each with
eigenvalue +1,





n3

0
−n1



 ,





0
n3

−n2



 .
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Thus, any linear combination of the above two vectors lies in the reflection plane,

n1x+ n2y + n3z = 0 , (30)

since the latter equation is satisfied by any linear combination of the two vectors above.
Finally, we note that the improper rotation matrices of Case 3 do not possess an

eigenvalue of +1, since the vectors that lie in the reflection plane transform non-trivially
under the proper rotation R(n̂, θ). Moreover, the unit vector n̂ is determined only up
to an overall sign by eq. (28). The sign ambiguity in the determination of n̂ in Case 3
cannot be resolved without examining the explicit form of the three dimensional improper
rotation matrix R(n̂, θ).

The following example is instructive. First, we express n̂ in terms of its polar and
azimuthal angles (θn and φn, respectively) with respect to a fixed z-axis,

n1 = sin θn cosφn ,

n2 = sin θn sinφn ,

n3 = cos θn .

Consider an example in which θn = 1

2
π and φn = 1

2
(π+θ). In this case, the unit vector n̂

is given by,
n̂ =

(

− sin(1
2
θ) , cos(1

2
θ) , 0

)

. (31)

Plugging this result into eq. (29) yields,

Rij(n̂) =





cos θ sin θ 0
sin θ − cos θ 0
0 0 1



 . (32)

We recognize this matrix as the generalization of eq. (7) to three dimensions, where the
line of reflection in two dimensions has been promoted to a reflection plane in three
dimensions. Employing eqs. (30) and (31), the equation for the reflection plane is given
by

−x sin
(

1

2
θ
)

+ y cos
(

1

2
θ
)

= 0 , (33)

which is equivalent to eq. (17). Indeed, eq. (33) is the equation for a plane whose
intersection with the x–y plane is a straight line of slope tan

(

1

2
θ
)

that passes through
the origin.

Appendix A: An explicit formula for the matrix P introduced in eq. (20)

Suppose we wish to determine the explicit form of the rotation matrix R(n̂, θ). Here
is one possible strategy. The matrix R(n̂, θ) is specified with respect to the standard
basis Bs = {i , j , k}. Given that the explicit form for R(n̂,k) is known [cf. eq. (19)]
suggests that we should transform to a new orthonormal basis, B′ = {i′ , j ′ , k′}, in which
new positive z-axis points in the direction of n̂. That is,

k′ = n̂ ≡ (n1, n2, n3) , where n2

1 + n2

2 + n2

3 = 1 .

8



The new positive y-axis can be chosen to lie along

j ′ =

(

−n2
√

n2
1 + n2

2

,
n1

√

n2
1 + n2

2

, 0

)

,

since by construction, j ′ is a unit vector orthogonal to k′. We complete the new right-
handed coordinate system by choosing:

i′ = j ′×k′ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

−n2
√

n2
1 + n2

2

n1
√

n2
1 + n2

2

0

n1 n2 n3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

(

n3n1
√

n2
1 + n2

2

,
n3n2

√

n2
1 + n2

2

, −
√

n2
1 + n2

2

)

.

Following the class handout entitled, Vector coordinates, matrix elements, changes of

basis, and matrix diagonalization, we determine the matrix P whose matrix elements are
defined by

b′j =
n
∑

i=1

Pijêi ,

where the êi = {i, j,k} are the basis vectors of Bs and the b′j are the basis vectors of B′.
The columns of P are the coefficients of the expansion of the new basis vectors in terms
of the old basis vectors. Thus,

P =



















n3n1
√

n2
1 + n2

2

−n2
√

n2
1 + n2

2

n1

n3n2
√

n2
1 + n2

2

n1
√

n2
1 + n2

2

n2

−
√

n2
1 + n2

2 0 n3



















. (34)

The inverse P−1 is easily computed since the columns of P are orthonormal, which implies
that P is an orthogonal matrix, i.e. P−1 = PT.

According to eq. (16) of the class handout, Vector coordinates, matrix elements,

changes of basis and matrix diagonalization,

[R]B′ = P−1 [R]Bs
P . (35)

where [R]Bs
is the matrix R with respect to the standard basis, and [R]B′ is the matrix

R with respect to the new basis (in which n̂ points along the new positive z-axis). In
particular,

[R]B = R(n̂, θ) , [R]B′ = R(k, θ) =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1



 .
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Hence, eq. (35) yields2

R(n̂, θ) = PR(k, θ)P−1 , (36)

where P is given by eq. (34) and P−1 = PT.
For ease of notation, we define

N12 ≡
√

n2
1 + n2

2 . (37)

Note that N2
12 + n2

3 = 1, since n̂ is a unit vector. Writing out the matrices in eq. (36),

R(n̂, θ) =





n3n1/N12 −n2/N12 n1

n3n2/N12 n1/N12 n2

−N12 0 n3









cos θ − sin θ 0
sin θ cos θ 0
0 0 1









n3n1/N12 n3n2/N12 −N12

−n2/N12 n1/N12 0
n1 n2 n3





=













n3n1/N12 −n2/N12 n1

n3n2/N12 n1/N12 n2

−N12 0 n3

























n3n1 cos θ+n2 sin θ
N12

n3n2 cos θ−n1 sin θ
N12

−N12 cos θ

n3n1 sin θ−n2 cos θ
N12

n3n2 sin θ+n1 cos θ
N12

−N12 sin θ

n1 n2 n3













.

Using N2
12 = n2

1 + n2
2 and n2

3 = 1−N2
12, the final matrix multiplication then yields,

R(n̂, θ) =





cos θ + n2
1(1− cos θ) n1n2(1− cos θ)− n3 sin θ n1n3(1− cos θ) + n2 sin θ

n1n2(1− cos θ) + n3 sin θ cos θ + n2
2(1− cos θ) n2n3(1− cos θ)− n1 sin θ

n1n3(1− cos θ)− n2 sin θ n2n3(1− cos θ) + n1 sin θ cos θ + n2
3(1− cos θ)





(38)
which coincides with the result previously exhibited in the class handout entitled Rotation

matrices in two, three and many dimensions.

Appendix B: The eigenvalues of a 3 × 3 orthogonal matrix3

Given any matrix A, the eigenvalues are the solutions to the characteristic equation,

det (A− λI) = 0 . (39)

Suppose that A is an n × n real orthogonal matrix. The eigenvalue equation for A and
its complex conjugate transpose are given by:

Av = λv , v∗TAT = λ∗ v∗T .

Hence multiplying these two equations together yields

λ∗λ v∗Tv = v∗TATAv = v∗Tv , (40)

2Eq. (36) is a special case of a more general result, R(n̂, θ) = PR(n̂′, θ)P−1, where n̂ = P n̂′.
3A nice reference to the results of this appendix can be found in L. Mirsky, An Introduction to Linear

Algebra (Dover Publications, Inc., New York, 1982).
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since an orthogonal matrix satisfies ATA = I. Since eigenvectors must be nonzero, it
follows that v∗Tv 6= 0. Hence, eq. (40) yields |λ| = 1. Thus, the eigenvalues of a real
orthogonal matrix must be complex numbers of unit modulus. That is, λ = eiα for
some α in the interval 0 ≤ α < 2π.

Consider the following product of matrices, where A satisfies ATA = I,

AT(I−A) = AT − I = −(I− A)T .

Taking the determinant of both sides of this equation, it follows that4

detA det(I−A) = (−1)ndet(I− A) , (41)

since for the n × n identity matrix, det(−I) = (−1)n. For a proper odd-dimensional
orthogonal matrix, we have detA = 1 and (−1)n = −1. Hence, eq. (41) yields5

det(I− A) = 0 , for any proper odd-dimensional orthogonal matrix A. (42)

Comparing with eq. (39), we conclude that λ = 1 is an eigenvalue of A. Since detA is
the product of its three eigenvalues and each eigenvalue of A is a complex number of unit
modulus,6 it follows that the eigenvalues of any proper 3× 3 orthogonal matrix must be
1, eiθ and e−iθ for some value of θ that lies in the interval 0 ≤ θ ≤ π.7

Next, we consider the following product of matrices, where A satisfies ATA = I,

AT(I+ A) = AT + I = (I+ A)T .

Taking the determinant of both sides of this equation, it follows that

detA det(I+ A) = det(I+ A) , (43)

For any improper orthogonal matrix, we have detA = −1. Hence, eq. (43) yields

det(I+ A) = 0 , for any improper orthogonal matrix A.

Comparing with eq. (39), we conclude that λ = −1 is an eigenvalue of A. Since detA
is the product of its three eigenvalues and each eigenvalue is a complex number of unit
modulus, it follows that the eigenvalues of any improper 3 × 3 orthogonal matrix must
be −1, eiθ and e−iθ for some value of θ that lies in the interval 0 ≤ θ ≤ π (cf. footnote 7).

4Here, we make use of the well known properties of the determinant, namely det(AB) = detAdetB
and det(AT) = detA.

5Eq. (42) is also valid for any improper even-dimensional orthogonal matrix A since in this case
detA = −1 and (−1)n = 1.

6If ATA = I and A~v = λ~v, then 〈~v, ~v〉 = 〈ATA~v , ~v〉 = 〈A~v, A~v〉 = 〈λ~v, λ~v〉 = λ∗λ〈~v, ~v〉, under
the assumption that A is a real matrix. For more details on the property of the inner product, see
Section 4 of the class handout entitled Vector coordinates, matrix elements, changes of basis, and matrix

diagonalization. Hence, it follows that λ∗λ = 1 or equivalently |λ| = 1.
7There is no loss of generality in restricting the interval of the angle to satisfy 0 ≤ θ ≤ π. In particular,

under θ → 2π − θ, the two eigenvalues eiθ and e−iθ are simply interchanged.
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