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The complex inverse trigonometric and hyperbolic functions

In these notes, we examine the inverse trigonometric and hyperbolic functions, where
the arguments of these functions can be complex numbers. These are all multivalued
functions. We also carefully define the corresponding single-valued principal values of
the inverse trigonometric and hyperbolic functions following the conventions employed
by the computer algebra software system, Mathematica. These conventions are outlined
in section 2.2.5 of Ref. 1.

The principal value of a multivalued complex function f(z) of the complex variable z,
which we denote by F (z), is defined in such a way that it is continuous in all regions of
the complex plane, except on a specific line (or lines) called branch cuts. The function
F (z) has a discontinuity when z crosses a branch cut. Branch cuts end at a branch
point, which is unambiguous for each function F (z). But the choice of branch cuts is
a matter of convention. Thus, if one needs to use mathematics software to analyze the
function F (z), you need to know their conventions for the location of the branch cuts.
The mathematical software needs to precisely define the principal value of f(z) in order
that it can produce a unique answer when the user types in F (z) for a particular complex
number z. There are often different possible candidates for F (z) that differ only in the
values assigned to them when z lies on the branch cut(s). These notes address these
issues as they apply to the complex inverse trigonometric and hyperbolic functions.

1. The inverse trigonometric functions: arctan and arccot

We begin by examining the solution to the equation

z = tanw =
sinw

cosw
=

1

i

(

eiw − e−iw

eiw + e−iw

)

=
1

i

(

e2iw − 1

e2iw + 1

)

.

We now solve for e2iw,

iz =
e2iw − 1

e2iw + 1
=⇒ e2iw =

1 + iz

1− iz
.

Taking the complex logarithm of both sides of the equation, we can solve for w,

w =
1

2i
ln

(

1 + iz

1− iz

)

.

The solution to z = tanw is w = arctan z. Hence,

arctan z =
1

2i
ln

(

1 + iz

1− iz

)

(1)
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Since the complex logarithm is a multivalued function, it follows that the arctangent
function is also a multivalued function. Using the definition of the multivalued complex
logarithm,

arctan z =
1

2i
Ln

∣

∣

∣

∣

1 + iz

1− iz

∣

∣

∣

∣

+ 1
2

[

Arg

(

1 + iz

1− iz

)

+ 2πn

]

, n = 0 , ±1 , ±2 , . . . , (2)

where Arg is the principal value of the argument function.
Similarly,

z = cotw =
cosw

sinw
=

(

i(eiw + e−iw

eiw − e−iw

)

=

(

i(e2iw + 1

e2iw − 1

)

.

Again, we solve for e2iw,

−iz =
e2iw + 1

e2iw − 1
=⇒ e2iw =

iz − 1

iz + 1
.

Taking the complex logarithm of both sides of the equation, we conclude that

w =
1

2i
ln

(

iz − 1

iz + 1

)

=
1

2i
ln

(

z + i

z − i

)

,

after multiplying numerator and denominator by −i to get a slightly more convenient
form. The solution to z = cotw is w = arccotz. Hence,

arccotz =
1

2i
ln

(

z + i

z − i

)

(3)

Thus, the arccotangent function is a multivalued function,

arccotz =
1

2i
Ln

∣

∣

∣

∣

z + i

z − i

∣

∣

∣

∣

+ 1
2

[

Arg

(

z + i

z − i

)

+ 2πn

]

, n = 0 , ±1 , ±2 , . . . , (4)

Using the definitions given by eqs. (1) and (3), the following relation is easily derived:

arccot(z) = arctan

(

1

z

)

. (5)

Note that eq. (5) can be used as the definition of the arccotangent function. It is
instructive to derive another relation between the arctangent and arccotangent functions.
First, we first recall the property of the multivalued complex logarithm,

ln(z1z2) = ln(z1) + ln(z2) , (6)

as a set equality. It is convenient to define a new variable,

v =
i− z

i+ z
, =⇒ −1

v
=

z + i

z − i
. (7)
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It follows that:

arctan z + arccot z =
1

2i

[

ln v + ln

(

−1

v

)]

=
1

2i
ln

(−v

v

)

=
1

2i
ln(−1) .

Since ln(−1) = i(π + 2πn) for n = 0,±1,±2 . . ., we conclude that

arctan z + arccot z = 1
2
π + πn , for n = 0,±1,±2, . . . (8)

Finally, we mention two equivalent forms for the multivalued complex arctangent
and arccotangent functions. Recall that the complex logarithm satisfies

ln

(

z1
z2

)

= ln z1 − ln z2 , (9)

where this equation is to be viewed as a set equality, where each set consists of all possible
results of the multivalued function. Thus, the multivalued arctangent and arccotangent
functions given in eqs. (1) and (5), respectively, are equivalent to

arctan z =
1

2i

[

ln(1 + iz)− ln(1− iz)

]

, (10)

arccot z =
1

2i

[

ln

(

1 +
i

z

)

− ln

(

1− i

z

)]

, (11)

2. The principal values Arctan and Arccot

It is convenient to define principal values of the inverse trigonometric functions,
which are single-valued functions, which will necessarily exhibit a discontinuity across
some appropriately chosen line in the complex plane. In Mathematica, the principal
values of the complex arctangent and arccotangent functions, denoted by Arctan and
Arccot respectively (with an upper case A), are defined by employing the principal values
of the complex logarithms in eqs. (10) and (11),

Arctan z =
1

2i

[

Ln(1 + iz)− Ln(1− iz)

]

, z 6= ±i (12)

and

Arccot z = Arctan

(

1

z

)

=
1

2i

[

Ln

(

1 +
i

z

)

− Ln

(

1− i

z

)]

, z 6= ±i , z 6= 0 (13)

One useful feature of these definitions is that they satisfy:

Arctan(−z) = −Arctan z , for z 6= ±i,

Arccot(−z) = −Arccot z , for z 6= ±i and z 6= 0. (14)
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Because the principal value of the complex logarithm Ln does not satisfy eq. (9) in all
regions of the complex plane, it follows that the definitions of the complex arctangent and
arccotangent functions adopted by Mathematica do not coincide with some alternative
definitions employed by some of the well known mathematical reference books [for further
details, see Appendix A]. Note that the points z = ±i are excluded from the above
definitions, as the arctangent and arccotangent are divergent at these two points. The
definition of the principal value of the arccotangent given in eq. (13) is deficient in one
respect since it is not well-defined at z = 0. We shall address this problem shortly.

First, we shall identify the location of the discontinuity of the principal values of
the complex arctangent and arccotangent functions in the complex plane. The principal
value of the complex arctangent function is single-valued for all z 6= ±i. These two
points, called branch points, must be excluded as the arctangent function is singular
there. Moreover, the the principal-valued logarithms, Ln (1 ± iz) are discontinuous
as z crosses the lines 1 ± iz < 0, respectively. We conclude that Arctan z must be
discontinuous when z = x+ iy crosses lines on the imaginary axis such that

x = 0 and −∞ < y < −1 and 1 < y < ∞ . (15)

These two lines that lie along the imaginary axis are called the branch cuts of Arctan z.
Note that Arctan z is single-valued on the branch cut itself, since it inherits this

property from the principal value of the complex logarithm. In particular, for values of
z = iy (|y| > 1) that lie on the branch cut of Arctan z, eq. (12) yields,

Arctan(iy) =







1
2i
Ln

(

y−1
y+1

)

− 1
2
π , for −∞ < y < −1 ,

1
2i
Ln

(

y−1
y+1

)

+ 1
2
π , for 1 < y < ∞ .

(16)

Likewise, the principal value of the complex arccotangent function is single-valued
for all complex z excluding the branch points z 6= ±i. Moreover, the the principal-valued
logarithms, Ln

(

1± i
z

)

are discontinuous as z crosses the lines 1 ± i
z
< 0, respectively.

We conclude that Arccot z must be discontinuous when z = x + iy crosses the branch
cuts located on the imaginary axis such that

x = 0 and − 1 < y < 1 . (17)

In particular, due to the presence of the branch cut,

lim
x→0−

Arccot(x+ iy) 6= lim
x→0+

Arccot(x+ iy) , for −1 < y < 1 ,

for real values of x, where 0+ indicates that the limit is approached from positive real axis
and 0− indicates that the limit is approached from negative real axis. If z 6= 0, eq. (13)
provides unique values for Arccotz for all z 6= ±i in the complex plane, including on the
branch cut. Using eq. (13), one can easily show that if z is a nonzero complex number
infinitesimally close to 0, then it follow that,
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Arccot z =
z→0 , z 6=0



















1
2
π , for Re z > 0 ,

1
2
π , for Re z = 0 and Im z < 0 ,

−1
2
π , for Re z < 0 ,

−1
2
π , for Re z = 0 and Im z > 0 .

(18)

It is now apparent why the point z = 0 is problematical in eq. (13), since there is no
well defined way of defining Arccot(0). Indeed, for values of z = iy (−1 < y < 1) that
lie on the branch cut of Arccotz, eq. (13) yields,

Arccot(iy) =







1
2i
Ln

(

1+y
1−y

)

+ 1
2
π , for −1 < y < 0 ,

1
2i
Ln

(

1+y
1−y

)

− 1
2
π , for 0 < y < 1 .

(19)

Mathematica supplements the definition of the principal value of the complex arccotan-
gent given in eq. (13) by declaring that

Arccot(0) = 1
2
π . (20)

With the definitions given in eqs. (12), (13) and (20), Arctan z and Arccot z are
single-valued functions in the entire complex plane, excluding the branch points z = ±i
and are continuous functions as long as the complex number z does not cross the branch
cuts specified in eqs. (15) and (17), respectively.

Having defined precisely the principal values of the complex arctangent and arccotan-
gent functions, let us check that they reduce to the conventional definitions when z is
real. First consider the principal value of the real arctangent function, which satisfies

−1
2
π ≤ Arctan x ≤ 1

2
π , for −∞ ≤ x ≤ ∞ , (21)

where x is a real variable. The definition given by eq. (12) does reduce to the conventional
definition of the principal value of the real-valued arctangent function when z is real. In
particular, for real values of x,

Arctan x =
1

2i

[

Ln(1 + ix)− Ln(1− ix)

]

= 1
2

[

Arg(1 + ix)− Arg(1− ix)

]

, (22)

after noting that Ln|1 + ix| = Ln|1 − ix| = 1
2
Ln(1 + x2). Geometrically, the quantity

Arg(1 + ix)−Arg(1− ix) is the angle between the complex numbers 1 + ix and 1− ix
viewed as vectors lying in the complex plane. This angle varies between −π and π over
the range −∞ < x < ∞. Moreover, the values ±π are achieved in the limit as x → ±∞,
respectively. Hence, we conclude that the principal interval of the real-valued arctangent
function is indeed given by eq. (21). For all possible values of x excluding x = −∞,
one can check that it is permissible to subtract the two principal-valued logarithms (or
equivalently the two Arg functions) using eq. (9). In the case of x → −∞, we see that
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Arg(1 + ix) − Arg(1 − ix) → −π, in which case N− = −1 [cf. eq. (78) below1] and an
extra term appears when combining the two logarithms that is equal to 2πiN− = −2πi.
The end result is,

Arctan(−∞) =
1

2i
[ln(−1)− 2πi] = −1

2
π ,

as required. As a final check, we can use the results of Tables 1 and 2 in the class handout,
The Argument of a Complex Number, to conclude that Arg(a + bi) = Arctan(b/a) for
a > 0. Setting a = 1 and b = x then yields:

Arg (1 + ix) = Arctanx , Arg (1− ix) = Arctan(−x) = −Arctan x .

Subtracting these two results yields eq. (22).
In contrast to the real arctangent function, there is no generally agreed definition

for the principal range of the real-valued arccotangent function. However, a growing
consensus among computer scientists has led to the following choice for the principal
range of the real-valued arccotangent function,

−1
2
π < Arccotx ≤ 1

2
π , for −∞ ≤ x ≤ ∞ , (23)

where x is a real variable. Note that the principal value of the arccotangent function
does not include the endpoint −1

2
π [contrast this with eq. (21) for Arctan]. The reason

for this behavior is that Arccotx is discontinuous at x = 0. In particular,

lim
x→0−

Arccot x = −1
2
π , lim

x→0+
Arccotx = 1

2
π , (24)

as a consequence of eq. (18). In particular, eq. (23) corresponds to the convention in
which Arccot(0) = 1

2
π [cf. eq. (20)]. Thus, as x increases from negative to positive

values, Arccotx never reaches −1
2
π but jumps discontinuously to 1

2
π at x = 0.

Finally, we examine the the analog of eq. (8) for the corresponding principal val-
ues. Employing the Mathematica definitions for the principal values of the complex
arctangent and arccotangent functions, we find that

Arctanz+Arccotz =



















1
2
π , for Re z > 0 ,

1
2
π , for Re z = 0 , and Im z > 1 or −1 < Im z ≤ 0 ,

−1
2
π , for Re z < 0 ,

−1
2
π , for Re z = 0 , and Im z < −1 or 0 < Im z < 1 .

(25)

The derivation of this result will be given in Appendix B. In Mathematica, one can
confirm eq. (25) with many examples.

1See eqs. (12), (13) and (55) of the class handout entitled, The complex logarithm, exponential and

power functions.
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3. The inverse trigonometric functions: arcsin and arccos

The arcsine function is the solution to the equation:

z = sinw =
eiw − e−iw

2i
.

Letting v ≡ eiw , we solve the equation

v − 1

v
= 2iz .

Multiplying by v, one obtains a quadratic equation for v,

v2 − 2izv − 1 = 0 . (26)

The solution to eq. (26) is:
v = iz + (1− z2)1/2 . (27)

Since z is a complex variable, (1 − z2)1/2 is the complex square-root function. This is
a multivalued function with two possible values that differ by an overall minus sign.
Hence, we do not explicitly write out the ± sign in eq. (27). To avoid ambiguity, we
shall write

v = iz + (1− z2)1/2 = iz + e
1

2
ln(1−z2) = iz + e

1

2 [Ln|1−z2|+i arg(1−z2)]

= iz + |1− z2|1/2e i

2
arg(1−z2) .

In particular, note that

e
i

2
arg(1−z2) = e

i

2
Arg(1−z2)einπ = ±e

i

2
Arg(1−z2) , for n = 0, 1 ,

which exhibits the two possible sign choices.
By definition, v ≡ eiw, from which it follows that

w =
1

i
ln v =

1

i
ln
(

iz + |1− z2|1/2e i

2
arg(1−z2)

)

.

The solution to z = sinw is w = arcsin z. Hence,

arcsin z =
1

i
ln
(

iz + |1− z2|1/2e i

2
arg(1−z2)

)

The arccosine function is the solution to the equation:

z = cosw =
eiw + e−iw

2
.

Letting v ≡ eiw , we solve the equation

v +
1

v
= 2z .
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Multiplying by v, one obtains a quadratic equation for v,

v2 − 2zv + 1 = 0 . (28)

The solution to eq. (28) is:
v = z + (z2 − 1)1/2 .

Following the same steps as in the analysis of arcsine, we write

w = arccos z =
1

i
ln v =

1

i
ln
[

z + (z2 − 1)1/2
]

, (29)

where (z2 − 1)1/2 is the multivalued square root function. More explicitly,

arccos z =
1

i
ln
(

z + |z2 − 1|1/2e i

2
arg(z2−1)

)

. (30)

It is sometimes more convenient to rewrite eq. (30) in a slightly different form. Recall
that

arg(z1z2) = arg z + arg z2 , (31)

as a set equality. We now substitute z1 = z and z2 = −1 into eq. (31) and note that
arg(−1) = π + 2πn (for n = 0,±1,±2, . . .) and arg z = arg z + 2πn as a set equality. It
follows that arg(−z) = π + arg z , as a set equality. Thus,

e
i
2
arg(z2−1) = eiπ/2 e

i
2
arg(1−z2) = ie

i
2
arg(1−z2) ,

and we can rewrite eq. (29) as follows:

arccos z =
1

i
ln
(

z + i
√
1− z2

)

, (32)

which is equivalent to the more explicit form,

arccos z =
1

i
ln
(

z + i|1− z2|1/2e i

2
arg(1−z2)

)

The arcsine and arccosine functions are related in a very simple way. Using eq. (27),

i

v
=

i

iz +
√
1− z2

=
i(−iz +

√
1− z2)

(iz +
√
1− z2)(−iz +

√
1− z2)

= z + i
√
1− z2 ,

which we recognize as the argument of the logarithm in the definition of the arccosine
[cf. eq. (32)]. Using eq. (6), it follows that

arcsin z + arccos z =
1

i

[

ln v + ln

(

i

v

)]

=
1

i
ln

(

iv

v

)

=
1

i
ln i .

Since ln i = i(1
2
π + 2πn) for n = 0,±1,±2 . . ., we conclude that

arcsin z + arccos z = 1
2
π + 2πn , for n = 0,±1,±2, . . .
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4. The principal values Arcsin and Arccos

In Mathematica, the principal value of the arcsine function is obtained by employing
the principal value of the logarithm and the principle value of the square-root function
(which corresponds to employing the principal value of the argument). Thus,

Arcsin z =
1

i
Ln

(

iz + |1− z2|1/2e i

2
Arg(1−z2)

)

(33)

We now examine the principal value of the arcsine for real-valued arguments. Setting
z = x, where x is real,

Arcsin x =
1

i
Ln

(

ix+ |1− x2|1/2e i

2
Arg(1−x2)

)

.

For |x| < 1, Arg(1 − x2) = 0 and |1 − x2| =
√
1− x2 defines the positive square root.

Thus,

Arcsin x =
1

i
Ln

(

ix+
√
1− x2

)

=
1

i

[

Ln
∣

∣

∣
ix+

√
1− x2

∣

∣

∣
+ iArg

(

ix+
√
1− x2

)]

= Arg
(

ix+
√
1− x2

)

, (34)

since ix +
√
1− x2 is a complex number with magnitude equal to 1. Moreover, ix +√

1− x2 lives either in the first or fourth quadrant of the complex plane, since Re(ix+√
1− x2) ≥ 0. It follows that:

−π

2
≤ Arcsin x ≤ π

2
, for |x| ≤ 1 .

In Mathematica, the principal value of the arccosine is defined by:

Arccos z = 1
2
π − Arcsin z . (35)

We will demonstrate below that this definition is equivalent to choosing the principal
value of the complex logarithm and the principal value of the square root in eq. (32).
That is,

Arccos z =
1

i
Ln

(

z + i|1− z2|1/2e i

2
Arg(1−z2)

)

(36)

It is straightforward to check that the principal values of arcsin and arccos satisfy,

Arcsin(−z) = −Arcsin z ,

Arccos(−z) = π −Arccos z . (37)
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We now examine the principal value of the arccosine for real-valued arguments. Set-
ting z = x, where x is real,

Arccosx =
1

i
Ln

(

x+ i|1− x2|1/2e i

2
Arg(1−x2)

)

.

As previously noted, for |x| < 1 we have Arg(1−x2) = 0, and |1−x2| =
√
1− x2 defines

the positive square root. Thus,

Arccosx =
1

i
Ln

(

x+ i
√
1− x2

)

=
1

i

[

Ln
∣

∣

∣
x+ i

√
1− x2

∣

∣

∣
+ iArg

(

x+ i
√
1− x2

)]

= Arg
(

x+ i
√
1− x2

)

, (38)

since x + i
√
1− x2 is a complex number with magnitude equal to 1. Moreover, the

quantity x+ i
√
1− x2 lives either in the first or second quadrant of the complex plane,

since Im(x+ i
√
1− x2) ≥ 0. It follows that:

0 ≤ Arccosx ≤ π , for |x| ≤ 1 .

We now verify that eq. (35) is a consequence of eq. (36). Using the principal value
of the square root, we define:

v = iz + |1− z2|1/2e i

2
Arg(1−z2) ,

i

v
= z + i|1− z2|1/2e i

2
Arg(1−z2) .

Then,

Arcsin z +Arccos z =
1

i

[

Ln|v|+ Ln

(

1

|v|

)

+ iArg v + iArg

(

i

v

)]

= Arg v +Arg

(

i

v

)

. (39)

In particular, since Re (±iz) = ∓Im z for any complex number z,

Re v = −Im z + |1− z2|1/2 cos
[

1
2
Arg(1− z2)

]

, (40)

Re

(

1

v

)

= Im z + |1− z2|1/2 cos
[

1
2
Arg(1− z2)

]

. (41)

One can now prove that
Re v ≥ 0 , (42)

for any complex number z by considering separately the cases of Im z ≤ 0 and Im z > 0.
Note that −π < Arg(1− z2) ≤ π implies that cos

[

1
2
Arg(1− z2)

]

≥ 0. Thus if Im z ≤ 0,
then it immediately follows from eq. (40) that Re v ≥ 0. Likewise, if Im z > 0, then it
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immediately follows from eq. (41) that Re (1/v) > 0. However, the sign of the real part
of any complex number z is the same as the sign of the real part of 1/z, since

1

x+ iy
=

x− iy

x2 + y2
.

Hence, we again conclude that Re v > 0, and eq. (42) is proven.
It is straightforward to check that:

Arg v +Arg

(

i

v

)

= 1
2
π , for Re v ≥ 0 .

Hence, eq. (39) yields:
Arcsin z +Arccos z = 1

2
π ,

as claimed.
The principal value of the complex arcsine and arccosine functions are single-valued

for all complex z. Moreover, due to the branch cut of the principal value square root
function,2 it follows that Arcsin z and Arccos z are both discontinuous when z = x+ iy
crosses lines on the real axis such that

y = 0 and −∞ < x < −1 and 1 < x < ∞ . (43)

These two lines comprise the branch cuts of Arcsin z and Arccosz; each branch cut ends
at a branch point located at x = −1 and x = 1, respectively (although the square root
function is not divergent at these points).

5. The inverse hyperbolic functions: arctanh and arccoth

Consider the solution to the equation

z = tanhw =
sinhw

coshw
=

(

ew − e−w

ew + e−w

)

=

(

e2w − 1

e2w + 1

)

.

We now solve for e2w,

z =
e2w − 1

e2w + 1
=⇒ e2w =

1 + z

1− z
.

Taking the complex logarithm of both sides of the equation, we can solve for w,

w =
1

2
ln

(

1 + z

1− z

)

.

2One can check that the branch cut of the Ln function in eqs. (33) and (36) is never encountered
for any value of z. For example, in the case of Arcsin z, the branch cut of Ln can only be reached if
iz +

√
1− z2 is real and negative. But this never happens since if iz +

√
1− z2 is real then z = iy for

some real value of y, in which case iz +
√
1− z2 = −y +

√

1 + y2 > 0.
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The solution to z = tanhw is w = arctanhz. Hence,

arctanh z =
1

2
ln

(

1 + z

1− z

)

(44)

Similarly, by considering the solution to the equation

z = cothw =
coshw

sinhw
=

(

ew + e−w

ew − e−w

)

=

(

e2w + 1

e2w − 1

)

.

we end up with:

arccothz =
1

2
ln

(

z + 1

z − 1

)

(45)

The above results then yield:

arccoth(z) = arctanh

(

1

z

)

,

as a set equality.
Finally, we note the relation between the inverse trigonometric and the inverse hy-

perbolic functions:

arctanh z = i arctan(−iz) ,

arccoth z = i arccot(iz) .

As in the discussion at the end of Section 1, one can rewrite eqs. (44) and (45) in an
equivalent form:

arctanh z = 1
2
[ln(1 + z)− ln(1− z)] , (46)

arccoth z = 1
2

[

ln

(

1 +
1

z

)

− ln

(

1− 1

z

)]

. (47)

6. The principal values Arctanh and Arccoth

Mathematica defines the principal values of the inverse hyperbolic tangent and inverse
hyperbolic cotangent, Arctanh and Arccoth, by employing the principal value of the
complex logarithms in eqs. (46) and (47). We can define the principal value of the
inverse hyperbolic tangent function by employing the principal value of the logarithm,

Arctanh z = 1
2
[Ln(1 + z)− Ln(1− z)] (48)

and

Arccoth z = Arctanh

(

1

z

)

=
1

2

[

Ln

(

1 +
1

z

)

− Ln

(

1− 1

z

)]

(49)
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Note that the branch points at z = ±1 are excluded from the above definitions, as
Arctanhz and Arccothz are divergent at these two points. The definition of the principal
value of the inverse hyperbolic cotangent given in eq. (49) is deficient in one respect since
it is not well-defined at z = 0. For this special case, Mathematica defines

Arccoth(0) = 1
2
iπ . (50)

Of course, this discussion parallels that of Section 2. Moreover, alternative defini-
tions of Arctanh z and Arccoth z analogous to those defined in Appendix A for the
corresponding inverse trigonometric functions can be found in Refs. 2 and 3. In some
sense there is no need to repeat all this since a comparison of eqs. (12) and (13) with
eqs. (48) and (49) show that the inverse trigonometric and inverse hyperbolic tangent
and cotangent functions are related by:

Arctanh z = iArctan(−iz) ,

Arccoth z = iArccot(iz) .

Using these results, all other properties of the inverse hyperbolic tangent and cotangent
functions can be easily derived from the properties of the corresponding arctangent and
arccotangent functions.

For example the branch cuts of these functions are easily obtained from eqs. (15)
and (17). Arctanh z is discontinuous when z = x + iy crosses the branch cuts located
on the real axis such that

y = 0 and −∞ < x < −1 and 1 < x < ∞ . (51)

Arccoth z is discontinuous when z = x + iy crosses the branch cuts located on the real
axis such that

y = 0 and − 1 < x < 1 . (52)

7. The inverse hyperbolic functions: arcsinh and arccosh

The inverse hyperbolic sine function is the solution to the equation:

z = sinhw =
ew − e−w

2
.

Letting v ≡ ew , we solve the equation

v − 1

v
= 2z .

Multiplying by v, one obtains a quadratic equation for v,

v2 − 2zv − 1 = 0 . (53)

13



The solution to eq. (53) is:
v = z + (1 + z2)1/2 . (54)

Since z is a complex variable, (1 + z2)1/2 is the complex square-root function. This is
a multivalued function with two possible values that differ by an overall minus sign.
Hence, we do not explicitly write out the ± sign in eq. (54). To avoid ambiguity, we
shall write

v = z + (1 + z2)1/2 = z + e
1
2
ln(1+z2) = z + e

1
2 [Ln|1+z2|+i arg(1+z2)]

= z + |1 + z2|1/2e i

2
arg(1+z2) .

By definition, v ≡ ew, from which it follows that

w = ln v = ln
(

z + |1 + z2|1/2e i

2
arg(1+z2)

)

.

The solution to z = sinhw is w = arcsinhz. Hence,

arcsinhz = ln
(

z + |1 + z2|1/2e i

2
arg(1+z2)

)

(55)

The inverse hyperbolic cosine function is the solution to the equation:

z = cosw =
ew + e−w

2
.

Letting v ≡ ew , we solve the equation

v +
1

v
= 2z .

Multiplying by v, one obtains a quadratic equation for v,

v2 − 2zv + 1 = 0 . (56)

The solution to eq. (56) is:
v = z + (z2 − 1)1/2 .

Following the same steps as in the analysis of inverse hyperbolic sine function, we write

w = arccosh z = ln v = ln
[

z + (z2 − 1)1/2
]

, (57)

where (z2 − 1)1/2 is the multivalued square root function. More explicitly,

arccosh z = ln
(

z + |z2 − 1|1/2e i

2
arg(z2−1)

)

The multivalued square root function satisfies:

(z2 − 1)1/2 = (z + 1)1/2(z − 1)1/2 .

14



Hence, an equivalent form for the multivalued inverse hyperbolic cosine function is:

arccosh z = ln
[

z + (z + 1)1/2(z − 1)1/2
]

,

where we again remind the reader that the multivalued square-root functions are em-
ployed above. More precisely,

arccosh z = ln
(

z + |z2 − 1|1/2e i

2
arg(z+1)e

i

2
arg(z−1)

)

. (58)

Finally, we note the relations between the inverse trigonometric and the inverse
hyperbolic functions:

arcsinh z = i arcsin(−iz) , (59)

arccosh z = i arccos z , (60)

where the above equalities are interpreted as set inequalities for the multivalued func-
tions. In deriving the second relation above, we have employed eqs. (29) and (57).

8. The principal values Arcsinh and Arccosh

The principal value of the inverse hyperbolic sine function, Arcsinh z, defined by
Mathematica is obtained from eq. (55) by replacing the complex logarithm and argument
functions by their principal value. This is equivalent to choosing the principal value of
the square-root function in eq. (54). That is,

Arcsinh z = Ln
(

z + |1 + z2|1/2e i

2
Arg(1+z2)

)

(61)

For the principal value of the inverse hyperbolic cosine function Arccoshz, Mathematica
chooses eq. (58) with the complex logarithm and argument functions replaced by their
principal values. That is,

Arccosh z = Ln
(

z + |z2 − 1|1/2e i

2
Arg(z+1)e

i

2
Arg(z−1)

)

(62)

The relation between the principal values of the inverse trigonometric and the inverse
hyperbolic sine functions is given by

Arcsinh z = iArcsin(−iz) ,

as one might expect in light of eq. (59). Unfortunately, a comparison of eqs. (36) and
(62) reveals that in contrast to the simple behavior of eq. (60),

Arccoshz =

{

iArccos z , for either Im z > 0 or for Im z = 0 and Re z ≤ 1 ,

−iArccos z , for either Im z < 0 or for Im z = 0 and Re z ≥ 1 .
(63)
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Note that both formulae above are true for the case of Im z = 0 and Re z = 1, since for
this special point,

Arccosh(1) = Arccos(1) = 0 . (64)

For a derivation of eq. (63), see Appendix C.
The principal value of the inverse hyperbolic sine and cosine functions are single-

valued for all complex z. Moreover, due to the branch cut of the principal value square
root function,3 it follows that Arcsinh z is discontinuous when z = x + iy crosses lines
on the imaginary axis such that

x = 0 and −∞ < y < −1 and 1 < y < ∞ . (65)

These two lines comprise the branch cuts of Arcsinh z, and each branch cut ends at
a branch point located at z = −i and z = i, respectively (although the square root
function is not divergent at these points). The branch cut for Arccoshz derives from the
branch cuts of the square root function and the branch cut of the complex logarithm. In
particular, for real z satisfying |z| < 1, we have a branch cut due to (z + 1)1/2(z− 1)1/2,
whereas for real z satisfying −∞ < z ≤ −1, the branch cut of the complex logarithm
takes over. Hence, it follows that Arccosh z is discontinuous when z = x + iy crosses
lines on the real axis such that

y = 0 and −∞ < x < 1 . (66)

This branch cut ends at a branch point located at z = 1.

APPENDIX A: Alternative definitions for Arctan and Arccot

The well-known reference book for mathematical functions by Abramowitz and Ste-
gun (see Ref. 2) and the more recent NIST Handbook of Mathematical Functions (see
Ref. 3) define the principal values of the complex arctangent and arccotangent functions
as follows,

Arctan z = 1
2
iLn

(

1− iz

1 + iz

)

, (67)

Arccot z = Arctan

(

1

z

)

= 1
2
iLn

(

z − i

z + i

)

. (68)

With these definitions, the branch cuts are still given by eqs. (15) and (17), respectively.
Comparing the above definitions with those of eqs. (12) and (13), one can check that
the two definitions differ only on the branch cuts. One can use eqs. (67) and (68) to

3One can check that the branch cut of the Ln function in eq. (61) is never encountered for any value
of z. In particular, the branch cut of Ln can only be reached if z +

√
1 + z2 is real and negative. But

this never happens since if z +
√
1 + z2 is real then z is also real. But for any real value of z, we have

z +
√
1 + z2 > 0.
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define the single-valued functions by employing the standard conventions for evaluating
the complex logarithm on its branch cut [namely, by defining Arg(−x) = π for any real
positive number x].4 For example, for values of z = iy (|y| > 1) that lie on the branch
cut of Arctan z, eq. (67) yields,5

Arctan(iy) =
i

2
Ln

(

y + 1

y − 1

)

− 1
2
π , for |y| > 1 . (69)

This result differs from eq. (16) when 1 < y < ∞.
It is convenient to define a new variable,

v =
1− iz

1 + iz
=

i+ z

i− z
, =⇒ −1

v
=

z − i

z + i
. (70)

Then, we can write:

Arctan z +Arccot z =
i

2

[

Ln v + Ln

(

−1

v

)]

=
i

2

[

Ln|v|+ Ln

(

1

|v|

)

+ iArg v + iArg

(

−1

v

)]

= −1

2

[

Arg v +Arg

(

−1

v

)]

. (71)

It is straightforward to check that for any nonzero complex number v,

Arg v +Arg

(

−1

v

)

=

{

π , for Im v ≥ 0 ,

−π , for Im v < 0 .
(72)

Using eq. (70), we can evaluate Im v by computing

i+ z

i− z
=

(i+ z)(−i − z∗)

(i− z)(−i− z∗)
=

1− |z|2 − 2iRe z

|z|2 + 1− 2 Im z
.

Writing |z|2 = (Re z)2 + (Im z)2 in the denominator,

i+ z

i− z
=

1− |z|2 − 2iRe z

(Re z)2 + (1− Im z)2
.

Hence,

Im v ≡ Im

(

i+ z

i− z

)

=
−2Re z

(Re z)2 + (1− Im z)2
.

4Ref. 3 does not assign a unique value to Arctan or Arccot for values of z that lie on the branch
cut. However, computer programs such as Mathematica do not have this luxury since it must return a
unique value for the corresponding functions evaluated at any complex number z.

5In light of footnote 4, the result obtained in eq. (4.23.27) of Ref. 3 for Arctan(iy) is not single-valued,
in contrast to eq. (69).
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We conclude that

Im v ≥ 0 =⇒ Re z ≤ 0 , Im v < 0 =⇒ Re z > 0 .

Therefore, eqs. (71) and (72) yield:

Arctan z +Arccot z =







−1
2
π , for Re z ≤ 0 and z 6= ±i ,

1
2
π , for Re z > 0 and z 6= ±i .

(73)

which differs from eq. (25) when z lives on one of the branch cuts, for Re z = 0 and
z 6= ±i. Moreover, there is no longer any ambiguity in how to define Arccot(0). Indeed,
for values of z = iy (−1 < y < 1) that lie on the branch cut of Arccot z, eq. (68) yields,

Arccot(iy) =
i

2
Ln

(

1− y

1 + y

)

− 1
2
π , for |y| < 1, (74)

which differs from the result of eq. (19) when −1 < y < 0. That is, by employing the
definition of the principal value of the arccotangent function given by eq. (68), Arccot(iy)
is a continuous function of y on the branch cut. In particular, plugging z = 0 into eq. (68)
yields,

Arccot(0) = 1
2
iLn(−1) = −1

2
π . (75)

Unfortunately, this result is the negative of the convention proposed in eq. (20).
One disadvantage of the definition of the principal value of the arctangent given by

eq. (67) concerns the value of Arctan(−∞). In particular, if z = x is real,
∣

∣

∣

∣

1− ix

1 + ix

∣

∣

∣

∣

= 1 . (76)

Since Ln 1 = 0, it would follow from eq. (67) that for all real x,

Arctanx = −1
2
Arg

(

1− ix

1 + ix

)

. (77)

Indeed, eq. (77) is correct for all finite real values of x. It also correctly implies that
Arctan (−∞) = −1

2
Arg(−1) = −1

2
π, as expected. However, if we take x → ∞ in

eq. (77), we would also get Arctan (∞) = −1
2
Arg(−1) = −1

2
π, in contradiction with

the conventional definition of the principal value of the real-valued arctangent function,
where Arctan (∞) = 1

2
π. This slight inconsistency is not surprising, since the principal

value of the argument of any complex number z must lie in the range −π < Arg z ≤ π.
Consequently, eq. (77) implies that −1

2
π ≤ Arctanx < 1

2
π, which is not quite consistent

with eq. (21) as the endpoint at 1
2
π is missing.

Some authors finesse this defect by defining the value of Arctan (∞) as the limit of
Arctan (x) as x → ∞. Note that

lim
x→∞

Arg

(

1− ix

1 + ix

)

= −π ,
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since for any finite real value of x > 1, the complex number (1 − ix)/(1 + ix) lies in
Quadrant III6 and approaches the negative real axis as x → ∞. Hence, eq. (77) yields

lim
x→∞

Arctan (x) = 1
2
π .

With this interpretation, eq. (67) is consistent with the definition for the principal value
of the real arctangent function.7

It is instructive to consider the difference of the two definitions of Arctan z given by
eqs. (12) and (67). Using eqs. (13) and (55) of the class handout entitled, The complex

logarithm, exponential and power functions, it follows that

Ln

(

1− iz

1 + iz

)

− [Ln(1− iz)− Ln(1 + iz)] = 2πiN− ,

where

N− =











−1 , if Arg(1− iz)− Arg(1 + iz) > π ,

0 , if −π < Arg(1− iz)− Arg(1 + iz) ≤ π ,

1 , if Arg(1− iz)− Arg(1 + iz) ≤ −π .

(78)

To evaluate N− explicitly, we must examine the quantity Arg(1 − iz) − Arg(1 + iz) as
a function of the complex number z = x + iy. Hence, we shall focus on the quantity
Arg(1 + y − ix) − Arg(1 − y + ix) as a function of x and y. If we plot the numbers
1 + y − ix and 1 − y + ix in the complex plane, it is evident that for finite values of x
and y and x 6= 0 then

−π < Arg(1 + y − ix)− Arg(1− y + ix) < π .

The case of x = 0 is easily treated separately, and we find that

Arg(1 + y)− Arg(1− y) =











−π , if y > 1 ,

0 , if −1 < y < 1 ,

π , if y < −1 .

Note that we have excluded the points x = 0, y = ±1, which correspond to the branch
points where the arctangent function diverges. Hence, it follows that in the finite complex

6This is easily verified. We write:

z ≡ 1− ix

1 + ix
=

1− ix

1 + ix
· 1− ix

1− ix
=

1− x2 − 2ix

1 + x2
.

Thus, for real values of x > 1, it follows that Re z < 0 and Im z < 0, i.e. the complex number z lies in
Quadrant III. Moreover, as x → ∞, we see that Re z → −1 and Im z → 0−, where 0− indicates that
one is approaching 0 from the negative side. Some authors write limx→∞(1− ix)/(1+ ix) = −1− i0 to
indicate this behavior, and then define Arg(−1− i0) = −π.

7This is strategy adopted in Ref. 3 since this reference does not assign a unique value to Arctan z
and Arccot z on their respective branch cuts.
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plane excluding the branch points at z = ±i,

N− =

{

1 , if Re z = 0 and Im z > 1 ,

0 , otherwise.

This means that in the finite complex plane, the two possible definitions for the principal
value of the arctangent function given by eqs. (12) and (67) differ only on the branch
cut along the positive imaginary axis above z = i. That is, for finite z 6= ±i,

1
2
iLn

(

1− iz

1 + iz

)

=











−π + 1
2
i [Ln(1− iz)− Ln(1 + iz)] , if Re z = 0 and Im z > 1 ,

1
2
i [Ln(1− iz)− Ln(1 + iz)] , otherwise .

(79)
Additional discrepancies between the two definitions can arise when x and/or y become
infinite. For example, since Arg(a + i∞) = 1

2
π and Arg(a − i∞) = −1

2
π for any real

number a, it follows that N− = 1 for x = ∞.
Likewise one can determine the difference of the two definitions of Arccot z given by

eqs. (13) and (68). Using the relation Arccotz = Arctan(1/z) [which holds for both sets
of definitions], eq. (79) immediately yields:

1
2
iLn

(

z − i

z + i

)

=



















−π +
i

2

[

Ln

(

1− i

z

)

− Ln

(

1 +
i

z

)]

, if Re z = 0 and −1 < Im z < 0 ,

i

2

[

Ln

(

1− i

z

)

− Ln

(

1 +
i

z

)]

, otherwise .

(80)
It follows that the two possible definitions for the principal value of the arccotangent
function given by eqs. (13) and (68) differ only on the branch cut along the negative
imaginary axis above z = −i.

So which set of conventions is best? Of course, there is no one right or wrong answer
to this question. As a practical matter, I always employ the Mathematica definitions, as
this is a program that I often use in my research. In contrast, the authors of Refs. 4–6
argue for choosing eq. (12) to define the principal value of the arctangent but use a slight
variant of eq. (68) to define the principal value of the arccotangent function,8

Arccot z =
1

2i
Ln

(

z + i

z − i

)

. (81)

This new definition has the benefit of ensuring that Arccot(0) = 1
2
π [in contrast to

eq. (75)]. But, adopting eq. (81) will lead to modifications of Arccot z (compared to
alternative definitions previously considered) when evaluated on the branch cut, Re z =
0 and |Im z| < 1. For example, with the definitions of Arctan z and Arccot z given by
eqs. (12) and (81), respectively, it is straightforward to show that a number of relations,
such as Arccot z = Arctan(1/z), are modified.

8The right hand side of eq. (81) can be identified with −Arccot(−z) in the convention where Arccotz
is defined by eq. (68).
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For example, one can easily derive,

Arccot z =

{

π +Arctan
(

1
z

)

, if Re z = 0 and 0 < Im z < 1 ,

Arctan
(

1
z

)

, otherwise ,

excluding the branch points z = ±i where Arctanz and Arccotz both diverge. Likewise,
the expression for Arctan z +Arccot z previously obtained will also be modified,

Arctan z +Arccot z =



















1
2
π , for Re z > 0 ,

1
2
π , for Re z = 0 , and Im z > −1 ,

−1
2
π , for Re z < 0 ,

−1
2
π , for Re z = 0 , and Im z < −1 .

(82)

Other modifications of the results of this Appendix in the case where eq. (81) is
adopted as the definition of the principal value of the arccotangent function are left as
an exercise for the reader.

� CAUTION!!

The principal value of the arccotangent is given in terms the principal value of the
arctangent,

Arccot z = Arctan

(

1

z

)

, (83)

for both the Mathematica definition [eq. (13)] or the alternative definition presented in
eq. (68). However, many books define the principal value of the arccotangent differently
via the relation,

Arccot z = 1
2
π −Arctan z . (84)

This relation should be compared with the corresponding relations, eqs. (25), (73) and
(82), that are satisfied with the definitions of the principal value of the arccotangent
introduced in eqs. (13), (68) and (81), respectively. Eq. (84) has been adopted by the
Maple computer algebra system (see Ref. 7), which is one of the main competitors of
Mathematica.

The main motivation for eq. (84) is that the principal value of the real cotangent
function satisfies 0 ≤ Arccot x ≤ π , instead of the interval quoted in eq. (23). One
advantage of this latter definition is that for real values of x, Arccot x is continuous
at x = 0, in contrast to eq. (83) which exhibits a discontinuity at x = 0. Note that
if one adopts eq. (84) as the the definition of the principal value of the arccotangent,
then the branch cuts of Arccot z are the same as those of Arctan z [cf. eq. (15)]. The
disadvantages of the definition given in eq. (84) are discussed in detail in Refs. 4 and 5.

Which convention does your calculator and/or your favorite mathematics software
use? Try evaluating Arccot(−1). In the convention of eq. (13) or eq. (68), we have
Arccot(−1) = −1

4
π, whereas in the convention of eq. (84), we have Arccot(−1) = 3

4
π.
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APPENDIX B: Derivation of eq. (25)

To derive eq. (25), we will make use of the computations provided in Appendix A.
Start from eq. (73), which is based on the definitions of the principal values of the
arctangent and arccotangent given in eqs. (67) and (68), respectively. We then use
eqs. (79) and (80) which allow us to translate between the definitions of eqs. (67) and
(68) and the Mathematica definitions of the principal values of the arctangent and
arccotangent given in eqs. (12) and (13), respectively. Eqs. (79) and (80) imply that the
result for Arctan z + Arccot z does not change if Re z 6= 0. For the case of Re z = 0,
Arctan z + Arccot z changes from 1

2
π to −1

2
π if 0 < Im z < 1 or Im z < −1. This is

precisely what is exhibited in eq. (25).

APPENDIX C: Derivation of eq. (63)

Consider the multivalued square root function, denoted by z1/2. Let us introduce
the principal value of the square foot function, which we shall denote by the symbol

√
z.

Then, √
z =

√

|z|e 1

2
Arg z , (85)

where
√

|z| denotes the unique positive squared root of the real number |z|. In this
notation,

iArccos z = Ln
(

z + i
√
1− z2

)

, (86)

Arccosh z = Ln
(

z +
√
z + 1

√
z − 1

)

. (87)

Our first task is to relate
√
z + 1

√
z − 1 to

√
z2 − 1. Of course, these two quantities are

equal for all real numbers z ≥ 1. But, as these quantities are principal values of complex
numbers, one must be more careful in the general case. We shall make use of eqs. (13)
and (77) of the class handout entitled, The complex logarithm, exponential and power

functions, in which the following formula is obtained:
√
z1z2 = e

1

2
Ln(z1z2) = e

1

2
(Ln z1+Ln z2+2πiN+) =

√
z1
√
z2 e

πiN+ ,

where

N+ =











−1 , if Arg z1 +Arg z2 > π ,

0 , if −π < Arg z1 +Arg z2 ≤ π ,

1 , if Arg z1 +Arg z2 ≤ −π .

That is, √
z1z2 = ε

√
z1
√
z2 , ε = ±1 , (88)

where the choice of sign is determined by:

ε =

{

+1 , if −π < Arg z1 +Arg z2 ≤ π ,

−1 , otherwise.
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Thus, we must determine in which interval the quantity Arg(z +1)+Arg(z− 1) lies
as a function of z. The special cases of z = ±1 must be treated separately, since Arg 0
is not defined. By plotting the complex points z + 1 and z − 1 in the complex plane,
one can easily show that for z 6= ±1,

−π < Arg (z + 1) + Arg (z − 1) ≤ π , if































Im z > 0 and Re z ≥ 0 ,

or

Im z = 0 and Re z > −1 ,

or

Im z < 0 and Re z > 0 .

If the above conditions do not hold, then Arg(z + 1) +Arg(z − 1) lies outside the range
of the principal value of the argument function. Hence, we conclude that if z1 = z + 1
and z2 = z − 1 then if Im z 6= 0 then ε in eq. (88) is given by:

ε =

{

+1 , if Im z > 0 , Re z ≥ 0 or Im z < 0,Re z > 0 ,

−1 , if Im z > 0 , Re z < 0 or Im z < 0 , Re z ≤ 0 .

In the case of Im z = 0, we must exclude the points z = ±1, in which case we also have

ε =

{

+1 , if Im z = 0 and Re z > −1 with Re z 6= 1 ,

−1 , if Im z = 0 and Re z < −1 .

It follow that Arccosh z = Ln(z ±
√
z2 − 1), where the sign is identified with ε above.

Noting the identity:

z −
√
z2 − 1 =

1

z +
√
z2 − 1

,

we can relate the two logarithms by recalling that [cf. eq.(57) from the class handout on
the complex logarithm]

Ln(1/z) =

{

−Ln(z) + 2πi , if z is real and negative ,

−Ln(z) , otherwise .

Since z+
√
z2 − 1 is real and negative if and only if Im z = 0 and Re z ≤ −1,9 one finds:

Ln(z −
√
z2 − 1) =

{

2πi− Ln(z +
√
z2 − 1) , for Im z = 0 and Re z ≤ −1 ,

−Ln(z +
√
z2 − 1) , otherwise .

9Let w = z +
√
z2 − 1, and assume that Im w = 0 and Re w 6= 0. That is, w is real and nonzero, in

which case Im w2 = 0. But

0 = Im w2 = Im
[

2z2 − 1 + 2z
√

z2 − 1
]

= Im (2zw − 1) = 2wIm z ,

which confirms that Im z = 0, i.e. z must be real. If we require in addition that that Re w < 0, then
we also must have Re z ≤ −1.
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To complete this part of the analysis, we must consider separately the points z = ±1.
At these two points, eq. (87) yields Arccosh(1) = 0 and Arccosh(−1) = Ln(−1) = πi.
Collecting all of the above results then yields:

Arccoshz =























Ln(z +
√
z2 − 1) , if Im z > 0 , Re z ≥ 0 or Im z = 0 , Re z ≥ −1

or Im z < 0,Re z > 0 ,

−Ln(z +
√
z2 − 1) , if Im z > 0 , Re z < 0 or Im z < 0 , Re z ≤ 0 ,

2πi− Ln(z +
√
z2 − 1) , if Im z = 0,Re z ≤ −1 .

(89)
Note that the cases of z = ±1 are each covered twice in eq. (89) but in both respective
cases the two results are consistent.

Our second task is to relate i
√
1− z2 to

√
z2 − 1. To accomplish this, we first note

that for any nonzero complex number z, the principal value of the argument of −z is
given by:

Arg(−z) =

{

Arg z − π , if Arg z > 0 ,

Arg z + π , if Arg z ≤ 0 .
(90)

This result is easily checked by considering the location of the complex numbers z and
−z in the complex plane. Hence, by making use of eqs. (85) and (90) along with i = eiπ/2,
it follows that:

i
√
1− z2 =

√

|z2 − 1|e 1

2 [π+Arg(1−z2)] = η
√
z2 − 1 , η = ±1 ,

where the sign η is determined by:

η =

{

+1 , if Arg(1− z2) ≤ 0 ,

−1 , if Arg(1− z2) > 0 ,

assuming that z 6= ±1. If we put z = x+ iy, then 1 − z2 = 1 − x2 + y2 − 2ixy, and we
deduce that

Arg(1− z2) is











positive , either if xy < 0 or if y = 0 and |x| > 1 ,

zero , either if x = 0 or if y = 0 and |x| < 1 ,

negative , if xy > 0 .

We exclude the points z = ±1 (corresponding to y = 0 and x = ±1) where Arg(1− z2)
is undefined. Treating these two points separately, eq. (86) yields Arccos(1) = 0 and
iArccos(−1) = Ln(−1) = πi. Collecting all of the above results then yields:

iArccosz =



































Ln(z +
√
z2 − 1) , if Im z > 0 , Re z ≥ 0 or Im z < 0 , Re z ≤ 0

or Im z = 0 , |Re z| ≤ 1 ,

−Ln(z +
√
z2 − 1) , if Im z > 0 , Re z < 0 or Im z < 0 , Re z > 0 ,

or Im z = 0 , Re z ≥ 1 ,

2πi− Ln(z +
√
z2 − 1) , if Im z = 0 , Re z ≤ −1 .

(91)

24



Note that the cases of z = ±1 are each covered twice in eq. (91) but in both respective
cases the two results are consistent.

Comparing eqs. (89) and (91), we conclude that:

Arccosh z =

{

iArccos z , for either Im z > 0 or for Im z = 0 and Re z ≤ 1 ,

−iArccos z , for either Im z < 0 or for Im z = 0 and Re z ≥ 1 .

which is identical to eq. (63).
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