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Does a power series converge on its circle of convergence?

Consider a power series expansion of a complex function,

f(z) =
∞
∑

n=0

anz
n . (1)

The radius of convergence can usually be found by applying the ratio test. Namely,
we require that
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where the radius of convergence R is defined by
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Then eq. (2) implies that as a consequence of the ratio test, the power series given
by eq. (1) converges if |z| < R.

Suppose that the radius of convergence satisfies 0 < R < ∞. Then, the ratio test
is inconclusive for values of z on the circle of convergence, which satisfy |z| = R (or
equivalently, values of z = Reiθ for −π < θ ≤ π). In this short note, I will state and
prove a theorem that addresses the question of whether a power series converges on
its circle of convergence.

Without loss of generality, one can restrict the discussion to the case of R = 1
as follows. If the power series given by eq. (1) has a radius of convergence R (where
0 < R < ∞), then one can introduce a new complex variable w = z/R. Hence, eq. (1)
is equivalent to a power series with radius of convergence equal to 1,

f(w) =

∞
∑

n=0

bnw
n ,

where bn ≡ Rnan.

Theorem: If the power series f(z) =
∑∞

n=0
anz

n respects the following three prop-
erties:

1. There exists a nonnegative integer n0 such that the coefficients an are real and
nonnegative for all n ≥ n0.

2. an ≥ an+1 for all non-negative integers, n = n0, n0 + 1, n0 + 2, n0 + 3, . . .

3. an → 0 as n → ∞

then the power series converges at all points on the circle |z| = 1 in the complex
plane, with the possible exception of z = 1.
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The second and third properties of the coefficients specified by the theorem imply
that R−1 ≤ 1 in light of eq. (3), which means that R ≥ 1. If R > 1, then the
power series converges for all |z| = 1 due to the ratio test. In contrast, the theorem
is nontrivial when R = 1 since in this case |z| = 1 corresponds to the circle of
convergence, where the ratio test is inconclusive.

Note that one or more properties of the coefficients specified in the statement of
the theorem are not satisfied and R = 1, then the convergence properties of f(z) for
|z| = 1 must be determined by some other means.

Proof of the theorem: One can rewrite eq. (1) as,

f(z) =

N
∑

n=0

anz
n +RN (z) , (4)

where N > n0 and

RN(z) =

∞
∑

n=N+1

anz
n . (5)

It then follows that

(z − 1)RN(z) = −aN+1z
N+1 + (aN+1 − aN+2)z

N+2 + (aN+2 − aN+3)z
N+3 + . . . , (6)

where all the coefficients on the right hand side of eq. (6) that multiply a power of z,
with the exception of the first term, are nonnegative.

We can now apply a generalization of the triangle inequality∗ to eq. (6) to obtain,

|z− 1| |RN(z)| ≤ aN+1|z|
N+1+(aN+1− aN+2)|z|

N+2+(aN+2− aN+3)|z|
N+3+ . . . (7)

One can now set |z| = 1 in eq. (7). Due to the telescoping nature of the infinite series
above [starting with the second term on the right hand side of eq. (7)], we end up
with

|z − 1| |RN(z)| ≤ 2aN+1 . (8)

Assuming that z 6= 1, it follows that

|RN(z)| ≤
2aN+1

|z − 1|
. (9)

Since aN → 0 and N → ∞, it follows that

lim
N→∞

RN (z) = 0 , for |z| = 1 and z 6= 1. (10)

This result is equivalent to the statement that the power series for f(z) converges for
|z| = 1 and z 6= 1.† Thus, the theorem is proved.

∗See the class handout entitled Complex conjugation, Modulus, and Inequalities for a discussion
of the triangle inequality.

†Recall that one definition of convergence states that given a positive error bound ǫ, then one
can always find an N such that |Rn(z)| < ǫ for any n ≥ N .
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Applying the theorem to a real power series with R = 1, it follows that the series
for f(−1) converges. In this case, the theorem is equivalent to the one underlying the
alternating series test (see the class handout entitled The Alternating Series Test).

Three examples are instructive. First, the geometric series

1

1− z
=

∞
∑

n=0

zn , (11)

converges for |z| < 1 and diverges for all |z| = 1. This is not a counterexample, since
the geometric series does not satisfy the third property specified in the theorem.

Second, the principal value of the complex logarithm has the following power series
expansion,

Ln(1− z) = −
∞
∑

n=0

zn

n
. (12)

This series converges for |z| ≤ 1, z 6= 1, as a consequence of the theorem. Of course,
the power series diverges at z = 1 since the resulting series is the negative of the
harmonic series, which is known to be divergent. Note that this result also implies
that the series

Ln(1 + z) =

∞
∑

n=0

(−1)n+1
zn

n
, (13)

converges for |z| ≤ 1, z 6= −1, since one can simply replace the complex variable z
with −z in eq. (12).

Third, the dilogarithm function introduced in eq. (18) of the class handout, en-
titled Theorems About Power Series, can be extended to a complex function, whose
principal value is given by

Li2(z) =

∞
∑

n=1

zn

n2
. (14)

This power series converges for all |z| ≤ 1. That is, eq. (14) converges at all points
on the circle of convergence. Although the theorem cannot be used to prove that
eq. (14) converges at z = 1, we know from the p-series test mentioned in problem
6-15 on p. 13 of Boas that the series for Li2(1) converges. Indeed, Li2(1) =

1

6
π2 is a

very well known result.
The last two examples confirm that the theorem does not address the convergence

property at z = 1, since the power series given in eqs. (12) and (14) satisfy the con-
ditions of the theorem, and yet eq. (12) diverges at z = 1 whereas eq. (14) converges
at z = 1.

Reference

The theorem discussed in these notes is known as Picard’s theorem. The proof of
this theorem is inspired by Mario O. González, Classical Complex Analysis (Marcel
Dekker, Inc., New York, NY, 1992). In particular, see Theorem 8.14 on pp. 556–557.
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