1. Consider the power series,

$$
\begin{equation*}
f(x)=\sum_{n=2}^{\infty}(-1)^{n} \frac{x^{n}}{n^{2}-n} \tag{1}
\end{equation*}
$$

where x is a real variable.
(a) Compute the radius of convergence of the power series $f(x)$.
(b) Determine whether the power series given in eq. (1) is absolutely convergent, conditionally convergent, or divergent at the point $x=1$.

HINT: The method of partial fractions is your friend (after factoring the denominator).
(c) If $f(1)$ is convergent, determine its value.
2. Consider the real valued function:

$$
g(x)=\left(\frac{3}{x^{3}}-\frac{1}{x}\right) \sin x-\frac{3}{x^{2}} \cos x
$$

(a) Compute $\lim _{x \rightarrow 0} g(x)$.
(b) Find the behavior of $g(x)$ as $x \rightarrow 0$.
3. Evaluate the following quantities:
(a) $(-1)^{i}$
(b) $\operatorname{Im}\left[i x+\sqrt{1-x^{2}}\right]^{-1}$, where x is a real number and $|x|<1$
(c) $\operatorname{Arg}(\sin i)$

Be sure to indicate all possible values if the quantity in question is multivalued. Simplify your expressions as much as possible.
4. Find all complex number solutions z to the equation, $z^{3}=i$.
5. Consider the system of equations:

$$
\begin{array}{r}
x_{1}+3 x_{2}-x_{3}=4, \\
x_{1}+2 x_{2}+x_{3}=2, \\
3 x_{1}+7 x_{2}+x_{3}=c,
\end{array}
$$

where c is some unspecified real number. There exists one value of c for which there are solutions to the above system of equations. Find that value of c and determine the allowed solutions.

