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Elementary row operations and some applications

1. Elementary row operations

Given an N ×N matrix A, we can perform various operations that modify some
of the rows of A. There are three classes of elementary row operations, which we shall
denote using the following notation:

1. Rj ↔ Rk. This means that we interchange the jth row and kth row of A.

2. Rj → cRj, where c 6= 0 is a real or complex number. This means that we
multiply all elements of the jth row by the same constant c.

3. Rj → Rj + cRk, where c 6= 0 is a real or complex number. This means that we
add c times each element in the kth row to the corresponding element of the
jth row.

To perform an elementary row operation, it suffices to multiply the matrix A from
the left by the corresponding elementary matrix. These matrices have the following
structure. For Rj ↔ Rk, the corresponding elementary matrix E(1) has nonzero
matrix elements given by:

ajk = ajk = ann = 1 , for 1 ≤ n ≤ N and n 6= j, n 6= k ,

with all other matrix elements equal to zero. That is, E(1) can be obtained from the
N ×N identity matrix by replacing the jj and kk elements (originally equal to 1) by
0 and by replacing the jk and kj elements (originally equal to 0) by 1.

For Rj → cRj , the corresponding elementary matrix E(2) has nonzero matrix
elements given by:

ann = 1 , for 1 ≤ n ≤ N and n 6= j , and ajj = c ,

with all other matrix elements equal to zero. That is, E(2) can be obtained from the
N ×N identity matrix by replacing the jj element (originally equal to 1) by c.

For Rj → Rj+cRk, the corresponding elementary matrix E(3) has nonzero matrix
elements given by:

ann = 1 , for 1 ≤ n ≤ N , and ajk = c ,

with all other matrix elements equal to zero. That is, E(3) can be obtained from the
N ×N identity matrix by replacing the jk element (originally equal to 0) by c.
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You should check that for any matrix A,

1. E(1)A is a matrix obtained from A by interchanging the jth and kth rows of A.

2. E(2)A is a matrix obtained from A by multiplying the jth rows of A by c.

3. E(3)A is a matrix obtained from A by adding c times the kth row of A to the
jth row of A .

The following properties of the elementary matrices are noteworthy:

detE(1) = −1 , detE(2) = c , detE(3) = 1 . (1)

Using the fact that det (AB) = (det A)(detB), it immediately follows from eq. (1)
that

1. Under, Rj ↔ Rk, the determinant of A changes by an overall sign.

2. Under Rj → cRj, the determinant of A changes by a multiplicative factor of c.

3. Under Rj → Rj + cRk, the determinant of A is unchanged.

2. Reduced row echelon form

Given an m × n matrix A (where m is not necessarily equal to n), we can per-
form a series of elementary row operations by multiplication on the left by a series
of elementary matrices (of the three types introduced in Section 1 above). By an
appropriate set of steps, one can always reduce A into what is called reduced row

echelon form (see the Appendix for the definition of the related row echelon form).
A matrix that is in reduced row echelon form possesses the following properties:

1. All zero rows∗ appear in the bottom position of the matrix. That is, no nonzero
row can appear below a row of zeros.

2. Reading from left to right, the first nonzero element in a nonzero row† is a 1,
which we shall call the leading 1.

3. For j = 2, 3, 4, . . . , n, the leading 1 in row j (if it exists) appears to the right of
the leading 1 in row j − 1.

4. Any column that contains a leading 1 has all other elements in that column
equal to zero.

∗A zero row is defined to be a row of a matrix where all elements of the row are equal to zero. If
at least one element of a row is nonzero, we call that row a nonzero row.

†In modern books on matrices and linear algebra, the first nonzero element in a nonzero row is
called the pivot. This nomenclature will not be employed further in these notes.
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To illustrate the concept, we show five matrices that are in reduced row echelon form:

(

1 0 4
0 1 2

)

,





1 0
0 1
0 0



 ,

(

0 1 1
0 0 0

)

,

(

1 2 0
0 0 1

)

,





1 0 0
0 1 0
0 0 1



 . (2)

Starting from an arbitrarym×n matrix A = [aij ], one can achieve the reduced row
echelon form by the following series of steps known as the Gauss-Jordan elimination

procedure. Start with column 1. If a11 6= 0, then perform R1 → R1/a11 to get the
leading 1 in the first row. If a11 = 0, then choose another row with a nonzero element
of the first column (suppose this is row k > 1) and perform the row interchange R1 ↔
Rk. Then, one can perform the row operations Rj → Rj −aj1R1 for j = 2, 3, 4, . . . , m
to obtain zeros in all remaining elements of the first column. Note that if all the
elements of the first column are zero, then there is no leading 1 in the first column.

One can now move to the second column. If there is no leading 1 in the first
column, then one repeats the previous analysis in column 2 (e.g. if a21 6= 0, then
perform R1 → R1/a21 to get the leading 1 in the second row, etc.). If there is
a leading 1 in the first column, then one begins with the second row and second
column. If a22 6= 0, then perform R2 → R2/a22 to get the leading 1 in the second
row. If a22 = 0, then choose another row below the second row (suppose this is row
ℓ > 2) and perform the row interchange R2 ↔ Rℓ. Then, one can perform the row
operations Rj → Rj − aj2R2 for j = 1, 3, 4, . . . , m to obtain zeros in all remaining
elements of the second column. Note that if aj2 = 0 for j = 2, 3, 4, . . . , m, then one
is left with a potentially nonzero a12. But this is consistent with the reduced row
echelon form, as in this case there would be no leading 1 in the second column.

One can now move to the third column. It should now be obvious how to proceed
until the end. When one has carried this procedure through to the nth column, what
remains after the final elementary row operations have been performed is the reduced
row echelon form. Two important consequence of the procedure described above are:

1. The reduced row echelon form of a given matrix is unique.

2. If A is an n×n invertible matrix, then its reduced row echelon form is the n×n
identity matrix.

To exhibit the procedure outlined above, we shall compute the reduced row echelon
form of the matrix A given by:

A =





2 3 −1 −2
1 2 −1 4
4 7 −3 11



 (3)

First, we interchange the first two rows, corresponding to the elementary row opera-
tion R1 ↔ R2 to obtain





1 2 −1 4
2 3 −1 −2
4 7 −3 11



 .
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Next, we perform the elementary row operations R2 → R2−2R1 and R3 → R3−4R1

to obtain




1 2 −1 4
0 −1 1 −10
0 −1 1 −5



 .

Next, we perform the elementary row operations R3 → R2 − R2 to obtain




1 2 −1 4
0 −1 1 −10
0 0 0 5



 .

Next, we perform the elementary row operations, R2 → −R2 and R3 →
1
5
R3, followed

by R1 → R1 − 2R2 to obtain




1 0 1 −16
0 1 −1 10
0 0 0 1



 .

Finally, we finish by performing the elementary row operations R1 → R1 + 16R3 and
R2 → R2 − 10R3 to obtain





1 0 1 0
0 1 −1 0
0 0 0 1



 . (4)

We have therefore successfully achieved the reduced row echelon form.
We end this section with a few observations about the reduced row echelon form.

An examination of eq. (4) shows that the following properties are common to all
matrices in reduced row echelon form. Let k be the number of nonzero rows of the
reduced row echelon form (in the above example, k = 3). Then, the number of
leading 1’s is also equal to k. Moreover, if we treat the rows of A as the components
of vectors, then the maximal number of linearly independent row vectors is also equal
to k. Finally, we define the basic columns of A to be the columns corresponding
to the columns of the reduced row echelon form that contain leading 1’s (these are
the first, second and fourth columns in the example given above). If we treat the
columns of A as components of vectors, then the basic column vectors are a maximal
set of linearly independent column vectors. Thus, the maximal number of linearly
independent column vectors is also equal to k. This number k is called the rank of
the matrix A. As an example, the computation presented at the end of Section 2
implies that the rank of the matrix A defined in eq. (3) is equal to three. Similarly,
the ranks of the five matrices exhibited in in eq. (2) are easily obtained and are 2, 2,
1, 2, and 3, respectively.

In Section 4, we shall provide proofs of the statements made in the previous
paragraph. Further details can be found in the references quoted at the end of these
notes.
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3. A method for computing the inverse of an n × n matrix

We present below the Gauss-Jordan elimination method for computing the inverse
of a matrix. Consider an n × n invertible matrix A. Then its reduced row echelon
form is the n×n identity matrix (denoted by I), as noted in Section 2. That is, there
exist a sequence of elementary matrices E1, E2,E3. . .Eℓ such that:

Eℓ · · ·E3E2E1A = I .

But the inverse of A satisfies A−1A = I. Hence, we can identify

A−1 = Eℓ · · ·E3E2E1 . (5)

If we apply the identical sequence of elementary row operations to the identity matrix,
then we would find:

Eℓ · · ·E3E2E1I = Eℓ · · ·E3E2E1 = A−1 , (6)

after using eq. (5). Thus, the following procedure can be used to compute the inverse
of A. Write down the matrices A and I next to each other. Then perform a sequence
of row operations to reduce A to reduced row echelon form. Meanwhile, perform the
exact same sequence of elementary row operations on I. If the reduced row echelon
form of A is the identity matrix, then the result of applying the exact same sequence
of elementary row operations on I will yield A−1 as shown in eq. (6). If the reduced
row echelon form of A is not the identity matrix, then it must have at least one row
of zeros, and we conclude that it is not invertible.

To exhibit the Gauss-Jordan elimination procedure for computing the inverse of
a matrix, we start with the matrix B (whose inverse we wish to compute) on the left
and the 3× 3 identity matrix I on the right.

B =





1 0 1
2 1 1
2 1 2



 I =





1 0 0
0 1 0
0 0 1





We now perform an identical set of elementary row operations on B and I in order
to reduce B to its reduced row echelon form. First, we take R2 → R2 − 2R1 and
R3 → R3 − 2R1 to obtain:





1 0 1
0 1 −1
0 1 0









1 0 0
−2 1 0
−2 0 1





Next, we interchange rows, R2 ↔ R3 to obtain




1 0 1
0 1 0
0 1 −1









1 0 0
−2 0 1
−2 1 0




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Next, we take R3 → R3 − R2 and then multiplying the resulting third row by −1 to
obtain





1 0 1
0 1 0
0 0 1









1 0 0
−2 0 1
0 −1 1





Finally, we take R1 → R1 − R3 to obtain

I =





1 0 0
0 1 0
0 0 1



 B−1 =





1 1 −1
−2 0 1
0 −1 1





thereby producing the desired inverse matrix.

4. The rank of a matrix and its transpose

At the end of Section 2, we defined the rank of a matrix A to be the number of
nonzero rows of its reduced row echelon form. Equivalently, the rank is equal to the
number of leading 1’s that appear in the reduced row echelon form.

Given an m×n matrix A it is instructive to consider the elements of each row of A
as the components of an n-component vector. That is, the matrix A consists of m row

vectors. We now pose the following question: what is the maximal number of linearly
independent vectors among the set of m row vectors that comprise the matrix A?
Suppose that there are at most k linearly independent row vectors, which we shall
denote by {~v1 , ~v2 , . . . , ~vk}. This means that each of the remaining row vectors,
{~vk+1 , ~vk+2 , . . . , ~vm} can be expressed as a linear combination of vectors from the
set {~v1 , ~v2 , . . . , ~vk}. We now demonstrate that if one performs any elementary row
operation on A, then the maximal number of linearly independent row vectors of the
new matrix is unchanged. By definition of linear independence, the equation

c1~v1 + c2~v1 + · · ·+ ck~vk = 0 ,

has a unique solution of c1 = c2 = c3 = · · · = ck = 0. Consider the three possible
classes of elementary row operations. It is obvious that Ri ↔ Rj and Ri → cRi do
not modify the maximal number of linearly independent row vectors. Thus, we focus
on Ri → Ri + cRj . If ~vi and ~vj are members of the linearly independent set of row
vectors,‡ then we consider the solution to the equation

c1~v1 + c2~v1 + · · ·+ ci(~vi + c~vj) + · · ·+ cj~vj + · · ·+ ck~vk = 0 , (7)

which can be rewritten as:

c1~v1 + c2~v1 + · · ·+ ci~vi + · · ·+ (cci + cj)~vj + · · ·+ ck~vk = 0 , (8)

‡If ~vi and/or ~vj is not a member of the linearly independent set of row vectors, the arguments
above can be suitably modified to reach the same conclusion. We leave this as an exercise for the
reader.
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Since the vectors {~v1 , ~v2 , . . . , ~vk} are linearly independent, the unique solution to
eqs. (7) and (8) is still c1 = c2 = c3 = · · · = ck = 0, which implies that k row
vectors of the new matrix obtained by the row operation Ri → Ri + cRj are still
linearly independent. Moreover, k is the maximal number of linearly independent
row vectors, since the row vectors {~vk+1 , ~vk+2 , . . . , ~vm} are still expressible as linear
combinations of the k linearly independent row vectors.

Thus, for any series of elementary row operations (which correspond to multi-
plication on the left by a series of elementary matrices En · · ·E3E2E1), the matrix
En · · ·E3E2E1A also possesses k linearly independent row vectors. In Section 2, we
showed that one can perform elementary row operations to reduce A to reduced row
echelon form,

AE ≡ PA , where P ≡ En · · ·E3E2E1 , (9)

by employing an appropriate series of elementary matrices. Thus, the reduced row
echelon form of A must also possess k linearly independent row vectors. However, by
using properties 2–4 of the reduced row echelon form, it follows that the row vectors
corresponding to the nonzero rows are linearly independent. Thus, we can identify k
with the number of nonzero rows of the reduced row echelon form, which by definition
is equal to the rank of A. Hence, it follows that the rank of A is equal to the maximal

number of linearly independent row vectors.

Likewise, we can consider the elements of each column of A as the components of
an m-component vector. That is, the matrix A consists of n column vectors. Consider
what happens when we row-reduce A to its reduced row-echelon form, AE = PA,
where P is a product of elementary matrices [cf. eq. (9)]. Using the properties of the
reduced row echelon form, it follows that the column vectors of AE that contain a
leading 1, called the basic columns, are linearly independent. We denote this linearly
independent set by {~w1 , ~w2 , . . . , ~wk}, where we have noted that the number of
basic column vectors is equal to the number of leading 1’s, i.e. k =rank A. Moreover,
it is easy to verify that any column vector without a leading 1 can be expressed
as a linear combination of the basic column vectors. Since all elementary matrices
are invertible, it follows that P is also invertible, and we can write A = P−1AE .
Hence, {P−1 ~w1 , P

−1 ~w2 , . . . , P
−1 ~wk} can be identified as k linearly independent

basic column vectors of A. The linear independence of these vectors can be verified
by solving the equation:

c1P
−1

~w1 + c2P
−1

~w1 + · · ·+ ckP
−1

~wk = 0 .

Multiplying this equation on the left by P yields

c1 ~w1 + c2 ~w1 + · · ·+ ck ~wk = 0 ,

which possesses a unique solution, c1 = c2 = · · · ck = 0, by virtue of the fact that
the set of vectors {~w1 , ~w2 , . . . , ~wk} is linearly independent. Moreover, the set of
basic column vectors {P−1 ~w1 , P

−1 ~w2 , . . . , P
−1 ~wk} contains the maximal number
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of linearly independent column vectors of A.§ Thus, we have proven that the rank of

A is equal to the maximal number of linearly independent column vectors.

The analysis presented above constitutes a proof of the Rank Theorem, which
states that for any m×n matrix A, the maximal number of linearly independent row
vectors is equal to the number of linearly independent column vectors. In both cases,
this number is identified as the rank of A. This is a remarkable result, especially
considering the fact that the total number of row vectors m is generally not equal to
the total number of column vectors n. Another way to present the Rank Theorem is
to introduce the transpose of the matrix A, which is denoted by AT. By definition,
the rows of A are the columns of AT and vice versa. Clearly, the maximal number
of linearly independent row vectors of A is equal to the maximal number of linearly
independent column vectors of AT and vice versa, by the definition of the transpose.
It immediately follows from the Rank Theorem that:

rankA = rankAT .

One consequence of this result is that the rank of the m×n matrix A can be no larger
than the minimum of the two numbers m and n.

Appendix: The row echelon form

The reduced row echelon form of a matrix is a special case of the row echelon
form. A matrix that is in row echelon from possesses the following two properties:

1. All zero rows appear in the bottom position of the matrix. That is, no nonzero
row can appear below a row of zeros.

2. If the first nonzero entry (reading from left to right) the ith row lies in the jth
column, then all entries below the ith row in columns 1, 2, . . . j are zero.

In particular, in contrast to the reduced row echelon form, the first nonzero element
in the ith row that appears in the jth column does not have to be a 1, and the
elements lying above the ith row in the jth column do not have to be zero. As in the
case of the reduced echelon form, the row echelon form can be achieved by applying
a series of elementary row operations. The series of steps employed to generate the
row echelon form is called the Gaussian elimination procedure.

In solving a set of n linear equations with n unknowns, the Gaussian elimination
procedure is sufficient to generate the the unique solution (if it exists) without need
of performing the full Gauss-Jordan elimination procedure to obtain the reduced row
echelon form described in these notes. Further details can be found in Ref. 1.

§This is true since the other columns of A (if any) are of the form P−1wk+1, where wk+1 is one
of the columns of the reduced row echelon form that does not contain a leading 1. But, we have
already noted above that wk+1 is some linear combination of {~w1 , ~w2 , . . . , ~wk}. It immediately
follows that P−1wk+1 is the same linear combination of {P−1 ~w1 , P

−1 ~w2 , . . . , P
−1 ~wk}.
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