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Taylor Series Expansions

In this short note, a list of well-known Taylor series expansions is provided.
We focus on Taylor series about the point x = 0, the so-called Maclaurin series.
In all cases, the interval of convergence is indicated. The variable x is real.

We begin with the infinite geometric series:

1

1− x
=

∞
∑

n=0

xn , |x| < 1 . (1)

If we change the sign of x, we obtain (−x)n = (−1)n xn, which then yields:

1

1 + x
=

∞
∑

n=0

(−1)nxn , |x| < 1 . (2)

The two expansions above diverge for all |x| ≥ 1.
Next we write down the binomial expansion, assuming at first that p is a

non-negative integer,

(1 + x)p =

p
∑

n=0

(

p

n

)

xn , (3)

where the binomial coefficient is defined as

(

p

n

)

≡
p!

n!(p− n)!
=











1 , if n = 0 ,

p(p− 1)(p− 2) · · · (p− n + 1)

n!
, if n = 1, 2, 3, . . . .

(4)

Inserting eq. (4) into eq. (3), one can obtain an equivalent expression for the
binomial series that is valid (assuming the series converges) for any real number p,

(1 + x)p = 1 +

∞
∑

n=1

p(p− 1) · · · (p− n+ 1)

n!
xn , |x| < 1 . (5)

Of course, if p is a non-negative integer, then the sum in eq. (5) is finite (containing
precisely p+ 1 nonzero terms) and therefore converges trivially for all real values
of x, as expected.∗ Otherwise, the radius of convergence of the binomial series is
R = 1, by virtue of the ratio test. The convergence properties at the endpoints of

∗Strictly speaking, if p = 0 and x = −1, then (1+x)p is not well defined. In the mathematics
literature, it is common to define (1+x)0 = 1 for all real values of x, including the point x = −1.
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the interval of convergence can be determined by a separate analysis. At x = 1,
the series converges absolutely for p ≥ 0, converges conditionally for −1 < p < 0
and diverges for p ≤ −1. At x = −1, the series converges absolutely for p ≥ 0
and diverges for p < 0.

We now list the Taylor series for the exponential and logarithmic functions.

ex =

∞
∑

n=0

xn

n!
, |x| < ∞ ,

ln(1 + x) =

∞
∑

n=1

(−1)n−1
xn

n
, −1 < x ≤ 1 . (6)

Note that the Taylor expansion for ln(1 + x) can be easily derived by integrating
eq. (2).

ln(1 + x) =

∫ x

0

1

1 + t
dt =

∞
∑

n=0

(−1)n
∫ x

0

tn dt =

∞
∑

n=0

(−1)n
xn+1

n+ 1
=

∞
∑

n=1

(−1)n−1
xn

n
,

after shifting the summation index by one unit. The series given in eq. (6) diverges
at x = −1 and is conditionally convergent at x = 1. Likewise, we can obtain the
Taylor series for ln(1− x) by either integrating eq. (1) or by replacing x with −x
in eq. (6). Either way,

ln(1− x) = −
∞
∑

n=1

xn

n
, −1 ≤ x < 1 . (7)

Subtracting eqs. (6) and (7) yields another Taylor series of interest,

1

2
ln

(

1 + x

1− x

)

=
∞
∑

n=0

x2n+1

2n+ 1
, |x| < 1 .

Next, we examine the Taylor series of the trigonometric functions.

sin x =
∞
∑

n=0

(−1)n
x2n+1

(2n+ 1)!
, |x| < ∞ ,

cos x =
∞
∑

n=0

(−1)n
x2n

(2n)!
, |x| < ∞ ,

tan x =

∞
∑

n=0

(−1)nT2n+1

x2n+1

(2n+ 1)!
, |x| < 1

2
π ,

x cot x = 1−

∞
∑

n=1

(−1)n−1 22nB2n

x2n

(2n)!
, |x| < π ,

sec x =

∞
∑

n=0

(−1)nE2n

x2n

(2n)!
, |x| < 1

2
π ,

x csc x = 1 +
∞
∑

n=1

(−1)n−1 2(22n−1 − 1)B2n

x2n

(2n)!
, |x| < π ,
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which defines the tangent numbers T2n+1, the Bernoulli numbers B2n, and the
Euler numbers E2n, for all non-negative integers n.

† A table of the these numbers
for n ≤ 8 is provided below.

n T2n+1 B2n E2n

0 1 1 1

1 −2 1

6
−1

2 16 − 1

30
5

3 −272 1

42
−61

4 7936 − 1

30
1385

5 −353792 5

66
−50521

6 22368256 − 691

2730
2702765

7 −1903757312 7

6
−199360981

8 209865342976 −3617

510
19391512145

The theory of these numbers is quite interesting. Here, I shall simply summa-
rize a number of simple facts. First, the tangent numbers can be expressed simply
in terms of the Bernoulli numbers,‡

T2k+1 = 22k+2(22k+2 − 1)
B2k+2

2k + 2
, k = 0, 1, 2, 3, . . . . (8)

It follows that

tan x =

∞
∑

n=1

(−1)n−1 22n(22n − 1)B2n

x2n−1

(2n)!
, |x| < 1

2
π .

You will also notice that whereas tangent numbers and Euler numbers are integers,
the Bernoulli numbers (for n 6= 0) are non-integer rational numbers. In addition,
T2n+1 and E2n are positive [negative] for even [odd] n, whereas the Bernoulli
numbers B2n (for n 6= 0) are positive [negative] for odd [even] n.

†One can generalize the definitions of these numbers for all non-negative subscripts, n, by
defining B2n+1 = T2n = E2n−1 = 0 for n = 1, 2, 3, . . ., and B1 = − 1

2
. But, we will have no need

for these more general definitions here.
‡It is common in the mathematical literature (see e.g. Ref. 2) to define the tangent numbers

such that the T2n+1 are all positive. In this convention, what is denoted in these notes by
(−1)nT2n+1 should be replaced by T2n+1. I prefer to define the tangent numbers such that the
Taylor series for tanx explicitly exhibits the factor of (−1)n, which is common to the Taylor
expansions of all the other trigonometric functions.
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The Taylor series for the hyperbolic functions are closely related to those of
the trigonometric functions.

sinh x =
∞
∑

n=0

x2n+1

(2n+ 1)!
, |x| < ∞ ,

cosh x =

∞
∑

n=0

x2n

(2n)!
, |x| < ∞ ,

tanh x =

∞
∑

n=0

T2n+1

x2n+1

(2n+ 1)!
, |x| < 1

2
π ,

x coth x = 1 +

∞
∑

n=1

22nB2n

x2n

(2n)!
, |x| < π ,

sech x =
∞
∑

n=0

E2n

x2n

(2n)!
, |x| < 1

2
π ,

x csch x = 1−
∞
∑

n=1

2(22n−1 − 1)B2n

x2n

(2n)!
, |x| < π .

Finally, we examine the Taylor series of the inverse trigonometric and inverse
hyperbolic functions. We list only those functions that possess Taylor series about
x = 0.

arcsin x = 1

2
π − arccos x =

∞
∑

n=0

(2n)!

22n(n!)2(2n+ 1)
x2n+1 , |x| ≤ 1 ,

arctan x =

∞
∑

n=0

(−1)n

2n+ 1
x2n+1 , |x| ≤ 1 ,

arcsinh x =

∞
∑

n=0

(−1)n (2n)!

22n(n!)2(2n+ 1)
x2n+1 , |x| ≤ 1 ,

arctanh x =
∞
∑

n=0

x2n+1

2n+ 1
, |x| < 1 .

The Taylor series above for arcsin x, arccos x and arctan x correspond to the
corresponding principal values of these functions, respectively. In our conventions,
arccot x ≡ arctan(1/x) is not continuous at x = 0 and thus does not possess a
Taylor series about x = 0. For further details, see the class handout on the inverse
trigonometric and hyperbolic functions.

To end these notes, I will provide two simple algorithms for generating the
Bernoulli numbers and Euler numbers. Tangent numbers can then be obtained
from eq. (8). All Bernoulli numbers can be evaluated starting with B2 by using

N
∑

n=1

(

2N

2n− 1

)

B2n

2n
=

2N − 1

2(2N + 1)
, N = 1, 2, 3, . . . , (9)
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and all Euler numbers can be evaluated starting with E2 by using

N
∑

n=1

(

2N

2n

)

E2n = −1 , N = 1, 2, 3, . . . , (10)

where the binomial coefficient above is defined in eq. (4). Eqs. (9) and (10) can
be used to build up the table of Bernoulli and Euler numbers presented earlier in
this note.

You may wonder why I have not presented a formula for directly computing
the Bernoulli and Euler numbers. Such formulae do exist, but they are not simple.
Here is one example:

Bn =

n+1
∑

k=1

(−1)k−1

k

(

n + 1

k

) k−1
∑

j=0

jn .

The only formulae that exist for computing a particular Bernoulli or Euler number
necessarily involve at least a double sum.
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