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We first consider a massless spin-1 particle moving in the z-direction with four-momentum
k* = E(1;0,0, 1). The textbook expressions for the helicity +1 polarization vectors of a
massless spin-1 boson are given by [1-4]:

(2, +1) = % (0;F1, —i, 0) . (1)

Note that the e#(2, \) are normalized eigenvectors of the spin-1 operator Sz,
(§-2)1,e%(2,)) = Xe"(2,)\),  for A = +1, (2)

where §' = €778, (with i,7,k = 1,2,3 and €% = +1), and the matrix elements of the
4 x 4 matrices Sj; are given by!

(Spa)uu = Z.(gpu Gov — gau gpu) . (3)

To accommodate photons traveling along the k-direction, one can transform (2, \) to
e#(k,\) by employing a three-dimensional rotation R such that k = R 2. Explicitly, the
rotation operator can be parameterized in terms of three Euler angles (e.g., see Refs. [5,6]):

R(¢,0,v)=R(Z,¢)R(g,0)R(Z, ), (4)

The Euler angles can be chosen to lie in the range 0 < § < 7 and 0 < ¢, v < 27. Here,
R(7, 0) is a 3 x 3 orthogonal matrix that represents a rotation by an angle 6 about a fixed
axis 7,

R9(fv, 0) = exp(—ifn-8) = n'n? + (09 — n'n’) cos 0 — €7*nFsin 6 | (5)
where the § = (S, 5%, $%) are three 3 x 3 matrices whose matrix elements are given by
(S%)% = —ie* [i.e., the lower right hand 3 x 3 block of the matrices S¢ defined above eq. (3)].

Thus, the polarization vector for a massless spin-1 boson of energy F moving in the
direction k = (sinf cos ¢, sinf@sin ¢, cosf) is obtained as follows:

ek, \) = A (6,0, 7) €%(2, ), (6)

'Recall that the most general proper orthochronous Lorentz transformation (which is continuously con-
nected to the identity), corresponding to a rotation by an angle 6 about an axis n [0 = 6n] and a boost
vector ¢ = o tanh ™' B [where © = §/|¥| and 8 = |¥]], is a 4 x 4 matrix given by:

A =exp (—%i@pgspg) = exp (—ié-g— 1576) ,
where % = 2ek0;,, (¢ = 070 = —0%, S' = LeFS;, Kf = 8% = —8 and the (S,,)", are given by eq. (3).

The Sjj, correspond to the generators of rotation and thus provide the relevant matrix representations for
the spin-1 operators.



where

AOO =1, AiO = Aoi = 07 and Aij = RU(¢ ; 07 7) ) (7)

and R(¢,0, ) is the rotation matrix introduced in eq. (4). Actually, the angle v can
be chosen arbitrarily, since the desired rotation is accomplished by employing the angles
and ¢. In the literature, one typically finds conventions where v = —¢ [1,2,7] or v = 0 [3].
Ultimately, the dependence of the polarization vectors on the angle v yields an unimportant
overall phase factor. A simple computation yields:

~ 1 )
et(k,£1) = ﬁem (0; Fcosbcosp+ising, Fcoshsing —icosgp, £sinf) . (8)

Note that e#(k, +1) depends only on the direction of k and not on its magnitude E = |k|.
One can easily check that the 5“(12:, +1) are normalized eigenstates of Sk with correspond-
ing eigenvalues +1. The positive and negative helicity massless spin-1 polarization vectors
satisfy:
kee(k, \) =0, ek, N)-e(k, N = =6y . (9)
Consider again the case of a massless spin-1 particle moving in the z-direction with
four-momentum

kK =FE(1;0,0,1). (10)

The positive and negative helicity polarization vectors are given in eq. (1). We now introduce
a fixed timelike four-vector,
n*=(1;0,0,0). (11)

To construct the polarization sum over the physical (positive and negative helicity) polar-
ization states, it is convenient to introduce two additional (unphysical) polarization vectors,

e"(2,0)=n"=(1;0,0,0), (12)
e"(2,3) =k"/E—n"=(0;0,0, 1), (13)

where k* is given by eq. (10). It then follows that?

6(]{7, >\)€(l€, )\/)* = 7])\(5)\)\/ s (14)
where
+1 for A\=0
_ ) ’ 15
n {—1, for A = +1 and 3. (15)

2 Alternatively, one can choose the physical polarization states to be linear combinations of the positive
and negative helicity states given in eq. (1) with

e"(2,1)=(0;1,0,0), e"(2,2)=(0;0,1,0).
in which case, eq. (14) can be written as
E(kv )\)G(k, )\/)* =g\,

where gyy = diag(1, =1, —1, —1) is the Minkowski metric tensor [8].
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That is, the four polarization vectors, £#(2,0), e#(2,+1), and £(2,3) constitute an or-
thonormal basis for four-vectors in Minkowski space. Consequently, they must obey the
following completeness relation,

eu(£,0)2,(2,00" = Y 42 Nen(2,0)" = g (16)
A==+1,3

We can therefore isolate the sum over the physical polarization states,

D en(2.Men(2.0) = —gu +£4(2,0)2,(2,0)" — £,(£,3)e,(2,3)" (17)
A==+1

It is convenient to rewrite eq. (17) with the help of egs. (12) and (13). Noting that k-n = E
[cf. egs. (10) and (11)], it follows that

N A k.k, k,n, + k,n
> eulle, Ney (kN = —g,u — (kf_‘n)z g S TR (18)

A==1

Although eq. (18) was derived for the case of k = 2, it is straightforward to check that
eq. (18) is also valid for the case where k points in an arbitrary direction.?
An alternative form for eq. (18) is obtained by introducing the four-vector

' =2(k-n)n* — k" (19)

More explicitly, if k* = (E; E), where E = |l_$| for a massless particle, then k-n = E and
k' = (E; —k). Then, it follows that

R . kK + kK
> enlk, Ny (b, \)* = =gy, + = (20)

A==%1

Indeed, using the fact that k-k = 2(k-n)? [since k? = 0 for a massless particle], one can
easily verify that egs. (18) and (20) are equivalent.

It should be appreciated that the sum over physical massless spin-1 polarization states
is not Lorentz covariant, since n* is fixed and does not transform under a Lorentz transfor-
mation.* That is, the sum over physical massless spin-1 polarization states depends on the
frame of reference of the spin-1 particle. Nevertheless, in scattering or decay processes in-
volving massless spin-1 particles, the dependence on the four-vector n* (or equivalently, the
four-vector EH) must drop out of any expression for a physical (i.e., measurable) observable.

3 After raising the indices p and v in eq. (18), one simply multiplies both sides of the resulting equation
by A“ MAﬁ v, where the matrix elements of A are specified in eq. (7). In particular, let us denote the four-
momentum defined in eq. (10) by k# = E(1; 0,0, 1). Then it follows that k* = A®,k# = E(1; k). In
addition, in light of eq. (11), we have A% ,n* = n® and k-n = E independently of the direction of k.

‘However, the polarization sum is covariant with respect to three-dimensional rotations, since n* is
rotationally invariant. In contrast, n* (which by definition remains fixed under a Lorentz transformation)
does not behave like a four-vector with respect to Lorentz boosts.



The results above should be contrasted with the case of a spin-1 particle of mass m # 0.
The expressions given by eqs. (1) and (8) also apply in the case of a massive spin-1 particle.
In addition, there exists an helicity A = 0 polarization vector that depends on the magnitude
of the momentum as well as its direction:

e'(|k|2, 0) = (k|/m3 0,0, E/m), (21)

where E = (|k|>+m?)"/2. One can use eq. (6) to obtain the helicity zero polarization vector
for a massive spin-1 particle moving in an arbitrary direction

ek, 0) = % <|l_$| ; E'sinfcos¢, Esinfsing, Ecos@) : (22)
Note that both the massless and massive spin-1 polarization vectors satisfy:®
é(k,\)* = (=D e (k,—N). (23)
One can check that the e“(E, A) of a massive spin-one particle also satisfy,
kee(k, \) =0, e(k, N)-e(k, N)* =~ (24)

for helicity states A = —1,0,+1.
To construct the polarization sum for a massive spin-1 particle, we introduce a fourth
unphysical polarization vector,

—

ek, S)=k'/m, (25)
where S stands for the unphysical “scalar” mode. Note that since k? = m? for a particle
of mass m, it follows that e#(k, S)-e*(k, S)* = 1. In addition, e#(k, S)-c*(k, \)* = 0
for A = —1,0,+1. Hence the four polarization vectors 5“(12, A), A=5,-1,0,+1 form an
orthonormal basis for four-vectors in Minkowski space. It then follows that the corresponding
completeness relation,

en(k, ek, 8 = Y eulk, Neu(k, N = g, (26)
A=-1,0,+1

must be satisfied. In light of eq. (25), we obtain the following expression for the sum over
physical polarization states of a spin-1 particle of mass m # 0,
Z Eu(k> )‘) Eu(ka )‘)* = —9w + k;l—]zy . (27)
A=—1,0,+1
In contrast to the case of the massless spin-1 particle, the polarization sum for a massive
spin-1 particle given in eq. (27) is Lorentz covariant.

There is no smooth limit as m — 0 for the polarization states of a spin-1 particle. This
is because the massive spin-1 particle exhibits three possible helicities, whereas the massless
spin-1 particle exhibits two possible helicities. Further details on polarization vectors for
both massless and massive spin-1 states can be found in Refs. [8,10].

®Some authors introduce polarization vectors where the sign factor (—1)* in eq. (23) is omitted. One
motivation for eq. (23) is to maintain consistency with the Condon-Shortley phase conventions [9] for the

eigenfunctions of the spin-1 angular momentum operators S2 and S.. In particular, if we denote the unit
three-vector in the radial direction by #, then the relation #-é"(2,+1) = (47/3)'/2Y] 11(6, ¢) between the
polarization three-vectors and the ¢ = 1 spherical harmonics holds without any additional sign factors.
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