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We first consider a massless spin-1 particle moving in the z-direction with four-momentum
kµ = E(1 ; 0 , 0 , 1). The textbook expressions for the helicity ±1 polarization vectors of a
massless spin-1 boson are given by [1–4]:

εµ(ẑ,±1) =
1√
2
(0 ; ∓1 , −i , 0) . (1)

Note that the εµ(ẑ, λ) are normalized eigenvectors of the spin-1 operator ~S·ẑ,

( ~S·ẑ)µν ε
ν(ẑ, λ) = λ εµ(ẑ, λ) , for λ = ±1, (2)

where Si ≡ 1

2
ǫijkSjk (with i, j, k = 1, 2, 3 and ǫ123 = +1), and the matrix elements of the

4× 4 matrices Sjk are given by1

(Sρσ)
µ
ν = i(gρ

µ gσν − gσ
µ gρν) . (3)

To accommodate photons traveling along the k̂-direction, one can transform εµ(ẑ, λ) to
εµ(k̂, λ) by employing a three-dimensional rotation R such that k̂ = R ẑ. Explicitly, the
rotation operator can be parameterized in terms of three Euler angles (e.g., see Refs. [5,6]):

R(φ , θ , γ) ≡ R(ẑ , φ)R(ŷ , θ)R(ẑ , γ) , (4)

The Euler angles can be chosen to lie in the range 0 ≤ θ ≤ π and 0 ≤ φ , γ < 2π. Here,
R(n̂ , θ) is a 3× 3 orthogonal matrix that represents a rotation by an angle θ about a fixed
axis n̂,

Rij(n̂ , θ) = exp(−iθn̂·~S) = ninj + (δij − ninj) cos θ − ǫijknk sin θ , (5)

where the ~S = (S1 , S2 , S3) are three 3 × 3 matrices whose matrix elements are given by
(Si)jk = −iǫijk [i.e., the lower right hand 3×3 block of the matrices Si defined above eq. (3)].

Thus, the polarization vector for a massless spin-1 boson of energy E moving in the
direction k̂ = (sin θ cosφ , sin θ sinφ , cos θ) is obtained as follows:

εµ(k̂, λ) = Λµ
ν(φ , θ , γ) εν(ẑ, λ) , (6)

1Recall that the most general proper orthochronous Lorentz transformation (which is continuously con-

nected to the identity), corresponding to a rotation by an angle θ about an axis n̂ [~θ ≡ θn̂] and a boost

vector ~ζ ≡ v̂ tanh−1 β [where v̂ ≡ ~v/|~v| and β ≡ |~v|], is a 4× 4 matrix given by:

Λ = exp
(
− 1

2
i θρσSρσ

)
= exp

(
−i~θ· ~S − i~ζ · ~K

)
,

where θi ≡ 1

2
ǫijkθjk, ζ

i ≡ θi0 = −θ0i, Si ≡ 1

2
ǫijkSjk, Ki ≡ S0i = −Si0 and the (Sρσ)

µ
ν are given by eq. (3).

The Sjk correspond to the generators of rotation and thus provide the relevant matrix representations for
the spin-1 operators.
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where
Λ0

0 = 1 , Λi
0 = Λ0

i = 0 , and Λi
j = Rij(φ , θ , γ) , (7)

and R(φ , θ , γ) is the rotation matrix introduced in eq. (4). Actually, the angle γ can
be chosen arbitrarily, since the desired rotation is accomplished by employing the angles θ
and φ. In the literature, one typically finds conventions where γ = −φ [1, 2, 7] or γ = 0 [3].
Ultimately, the dependence of the polarization vectors on the angle γ yields an unimportant
overall phase factor. A simple computation yields:

εµ(k̂,±1) =
1√
2
e∓iγ (0 ; ∓ cos θ cosφ+ i sinφ , ∓ cos θ sinφ− i cosφ , ± sin θ) . (8)

Note that εµ(k̂,±1) depends only on the direction of ~k and not on its magnitude E = |~k|.
One can easily check that the εµ(k̂,±1) are normalized eigenstates of ~S·k̂ with correspond-
ing eigenvalues ±1. The positive and negative helicity massless spin-1 polarization vectors
satisfy:

k ·ǫ(k̂ , λ) = 0 , ǫ(k , λ)·ǫ(k̂ , λ′)∗ = −δλλ′ . (9)

Consider again the case of a massless spin-1 particle moving in the z-direction with
four-momentum

kµ = E(1 ; 0 , 0 , 1) . (10)

The positive and negative helicity polarization vectors are given in eq. (1). We now introduce
a fixed timelike four-vector,

nµ = (1 ; 0 , 0 , 0) . (11)

To construct the polarization sum over the physical (positive and negative helicity) polar-
ization states, it is convenient to introduce two additional (unphysical) polarization vectors,

εµ(ẑ, 0) = nµ = (1 ; 0 , 0 , 0) , (12)

εµ(ẑ, 3) = kµ/E − nµ = (0 ; 0 , 0 , 1) , (13)

where kµ is given by eq. (10). It then follows that2

ǫ(k , λ)·ǫ(k , λ′)∗ = ηλδλλ′ , (14)

where

ηλ =

{
+1 , for λ = 0,

−1 , for λ = ±1 and 3.
(15)

2Alternatively, one can choose the physical polarization states to be linear combinations of the positive
and negative helicity states given in eq. (1) with

εµ(ẑ, 1) = (0 ; 1 , 0 , 0) , εµ(ẑ, 2) = (0 ; 0 , 1 , 0) .

in which case, eq. (14) can be written as

ǫ(k , λ)·ǫ(k , λ′)∗ = gλλ′ ,

where gλλ′ = diag(1 , −1 , −1 , −1) is the Minkowski metric tensor [8].
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That is, the four polarization vectors, εµ(ẑ, 0), εµ(ẑ,±1), and εµ(ẑ, 3) constitute an or-
thonormal basis for four-vectors in Minkowski space. Consequently, they must obey the
following completeness relation,

εµ(ẑ, 0)εν(ẑ, 0)
∗ −

∑

λ=±1,3

εµ(ẑ, λ)εν(ẑ, λ)
∗ = gµν . (16)

We can therefore isolate the sum over the physical polarization states,

∑

λ=±1

εµ(ẑ, λ)εν(ẑ, λ)
∗ = −gµν + εµ(ẑ, 0)εν(ẑ, 0)

∗ − εµ(ẑ, 3)εν(ẑ, 3)
∗ . (17)

It is convenient to rewrite eq. (17) with the help of eqs. (12) and (13). Noting that k ·n = E
[cf. eqs. (10) and (11)], it follows that

∑

λ=±1

εµ(k̂, λ)εν(k̂, λ)
∗ = −gµν −

kµkν
(k ·n)2 +

kµnν + kνnµ

k ·n . (18)

Although eq. (18) was derived for the case of k̂ = ẑ, it is straightforward to check that
eq. (18) is also valid for the case where k̂ points in an arbitrary direction.3

An alternative form for eq. (18) is obtained by introducing the four-vector

k
µ ≡ 2(k ·n)nµ − kµ . (19)

More explicitly, if kµ = (E ; ~k), where E = |~k| for a massless particle, then k ·n = E and

k
µ
= (E ; −~k). Then, it follows that

∑

λ=±1

εµ(k̂, λ)εν(k̂, λ)
∗ = −gµν +

kµkν + kνkµ

k ·k
. (20)

Indeed, using the fact that k ·k = 2(k ·n)2 [since k2 = 0 for a massless particle], one can
easily verify that eqs. (18) and (20) are equivalent.

It should be appreciated that the sum over physical massless spin-1 polarization states
is not Lorentz covariant, since nµ is fixed and does not transform under a Lorentz transfor-
mation.4 That is, the sum over physical massless spin-1 polarization states depends on the
frame of reference of the spin-1 particle. Nevertheless, in scattering or decay processes in-
volving massless spin-1 particles, the dependence on the four-vector nµ (or equivalently, the
four-vector k

µ
) must drop out of any expression for a physical (i.e., measurable) observable.

3After raising the indices µ and ν in eq. (18), one simply multiplies both sides of the resulting equation
by Λα

µΛ
β
ν , where the matrix elements of Λ are specified in eq. (7). In particular, let us denote the four-

momentum defined in eq. (10) by kµz = E(1 ; 0 , 0 , 1). Then it follows that kα = Λα
µk

µ
z = E(1 ; k̂). In

addition, in light of eq. (11), we have Λα
µn

µ = nα and k ·n = E independently of the direction of k̂.
4However, the polarization sum is covariant with respect to three-dimensional rotations, since nµ is

rotationally invariant. In contrast, nµ (which by definition remains fixed under a Lorentz transformation)
does not behave like a four-vector with respect to Lorentz boosts.
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The results above should be contrasted with the case of a spin-1 particle of mass m 6= 0.
The expressions given by eqs. (1) and (8) also apply in the case of a massive spin-1 particle.
In addition, there exists an helicity λ = 0 polarization vector that depends on the magnitude
of the momentum as well as its direction:

εµ(|~k|ẑ , 0) = (|~k|/m ; 0 , 0 , E/m) , (21)

where E = (|~k|2+m2)1/2. One can use eq. (6) to obtain the helicity zero polarization vector
for a massive spin-1 particle moving in an arbitrary direction

εµ(~k , 0) =
1

m

(
|~k| ; E sin θ cosφ , E sin θ sinφ , E cos θ

)
. (22)

Note that both the massless and massive spin-1 polarization vectors satisfy:5

ǫµ(~k , λ)∗ = (−1)λǫµ(~k ,−λ) . (23)

One can check that the ǫµ(~k, λ) of a massive spin-one particle also satisfy,

k ·ǫ(~k , λ) = 0 , ǫ(~k , λ)·ǫ(~k , λ′)∗ = −δλλ′ , (24)

for helicity states λ = −1, 0,+1.
To construct the polarization sum for a massive spin-1 particle, we introduce a fourth

unphysical polarization vector,
εµ(~k , S) = kµ/m , (25)

where S stands for the unphysical “scalar” mode. Note that since k2 = m2 for a particle
of mass m, it follows that εµ(~k , S)·εµ(~k , S)∗ = 1. In addition, εµ(~k , S)·εµ(~k , λ)∗ = 0

for λ = −1, 0,+1. Hence the four polarization vectors εµ(~k , λ), λ = S,−1, 0,+1 form an
orthonormal basis for four-vectors in Minkowski space. It then follows that the corresponding
completeness relation,

εµ(~k , S)εν(~k , S)∗ −
∑

λ=−1,0,+1

εµ(~k , λ)εν(~k , λ)∗ = gµν , (26)

must be satisfied. In light of eq. (25), we obtain the following expression for the sum over
physical polarization states of a spin-1 particle of mass m 6= 0,

∑

λ=−1,0,+1

εµ(~k , λ) εν(~k , λ)∗ = −gµν +
kµkν
m2

. (27)

In contrast to the case of the massless spin-1 particle, the polarization sum for a massive
spin-1 particle given in eq. (27) is Lorentz covariant.

There is no smooth limit as m → 0 for the polarization states of a spin-1 particle. This
is because the massive spin-1 particle exhibits three possible helicities, whereas the massless
spin-1 particle exhibits two possible helicities. Further details on polarization vectors for
both massless and massive spin-1 states can be found in Refs. [8, 10].

5Some authors introduce polarization vectors where the sign factor (−1)λ in eq. (23) is omitted. One
motivation for eq. (23) is to maintain consistency with the Condon-Shortley phase conventions [9] for the

eigenfunctions of the spin-1 angular momentum operators ~S2 and Sz. In particular, if we denote the unit
three-vector in the radial direction by r̂, then the relation r̂·ε̂µ(ẑ,±1) = (4π/3)1/2Y1,±1(θ, φ) between the
polarization three-vectors and the ℓ = 1 spherical harmonics holds without any additional sign factors.
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