G	Conditions on $\mathbf{A} \in \mathcal{G}$	£	Conditions on $\mathbf{a} \in \mathcal{L}$	n
$\operatorname{GL}(N,\mathbb{C})$	-	$gl(N,\mathbb{C})$		$2N^2$
$GL(N, \mathbb{R})$	\mathbf{A} real	$gl(N, \mathbb{R})$	a real	N^2
$SL(N, \mathbb{C})$	$\det \mathbf{A} = 1$	$sl(N, \mathbb{C})$	tr a = 0	$2N^2 - 2$
$\mathrm{SL}(N, \mathrm{I\!R})$	$\begin{cases} \mathbf{A} \text{ real}, \\ \det \mathbf{A} = 1 \end{cases}$	$sl(N, {\rm I\!R})$	$\begin{cases} \mathbf{a} \text{ real,} \\ \mathbf{tr} \mathbf{a} = 0 \end{cases}$	$N^{2} - 1$
U(<i>N</i>)	$\mathbf{A}^{\dagger} = \mathbf{A}^{-1}$	u(<i>N</i>)	$\mathbf{a}^{\dagger} = -\mathbf{a}$	N^2
SU(N)	$\begin{cases} \mathbf{A}^{\dagger} = \mathbf{A}^{-1}, \\ \det \mathbf{A} = 1 \end{cases}$	su(N)	$\begin{cases} \mathbf{a}^{\dagger} = -\mathbf{a}, \\ \mathbf{tr} \mathbf{a} = 0 \end{cases}$	$N^{2} - 1$
$\mathrm{U}(p,q)$	$\mathbf{A}^{\dagger}\mathbf{g} = \mathbf{g}\mathbf{A}^{-1}$	$\mathrm{u}(p,q)$	$\mathbf{\hat{a}^{\dagger}g} = -\mathbf{ga}$	N^2
$\mathrm{SU}(p,q)$	$\begin{cases} \mathbf{A}^{\dagger}\mathbf{g} = \mathbf{g}\mathbf{A}^{-1}, \\ \det \mathbf{A} = 1 \end{cases}$	$\operatorname{su}(p,q)$	$\begin{cases} \mathbf{a}^{\dagger}\mathbf{g} = -\mathbf{g}\mathbf{a}, \\ \mathrm{tr}\mathbf{a} = 0 \end{cases}$	$N^{2} - 1$
$\mathrm{O}(N,\mathbb{C})$	$\mathbf{\tilde{A}} = \mathbf{A}^{-1}$	$\mathrm{so}(N,\mathbb{C})$	ā = −a	$N^2 - N$
$\mathrm{SO}(N,\mathbb{C})$	$\begin{cases} \tilde{\mathbf{A}} = \mathbf{A}^{-1}, \\ \det \mathbf{A} = 1 \end{cases}$	$\mathrm{so}(N,\mathbb{C})$	$\mathbf{\tilde{a}} = -\mathbf{a}$	$N^2 - N$
O(N)	$\begin{cases} \tilde{\mathbf{A}} = \mathbf{A}^{-1}, \\ \mathbf{A} \text{ real} \end{cases}$	so(N)	$\left\{ egin{array}{ll} ilde{\mathbf{a}}=-\mathbf{a}, \ \mathbf{a} \ \mathrm{real} \end{array} ight.$	$\frac{1}{2}(N^2-N)$
$\mathrm{SO}(N)$	$\begin{cases} \bar{\mathbf{A}} = \mathbf{A}^{-1}, \\ \mathbf{A} \text{ real}, \\ \det \mathbf{A} = 1 \end{cases}$	$\mathrm{so}(N)$	$\left\{ egin{array}{lll} \mathbf{ ilde{a}}=-\mathbf{a}, \ \mathbf{a} \ \mathrm{real} \end{array} ight.$	$\frac{1}{2}(N^2-N)$
$\mathcal{O}(p,q)$	$\begin{cases} \mathbf{\tilde{A}}\mathbf{g} = \mathbf{g}\mathbf{A}^{-1}, \\ \mathbf{A} \text{ real} \end{cases}$	$\mathrm{so}(p,q)$	$\begin{cases} \mathbf{\tilde{a}g} = -\mathbf{ga}, \\ \mathbf{a} \text{ real} \end{cases}$	$\tfrac{1}{2}(N^2-N)$
$\mathrm{SO}(p,q)$	$\begin{cases} \mathbf{\tilde{A}g} = \mathbf{gA}, \\ \mathbf{A}^{-1} \text{ real}, \\ \det \mathbf{A} = 1 \end{cases}$	$\mathrm{so}(p,q)$	$\begin{cases} \mathbf{\tilde{a}g} = -\mathbf{ga}, \\ \mathbf{a} \text{ real} \end{cases}$	$\frac{1}{2}(N^2-N)$
$\mathrm{SO}^{\star}(N)$	$\begin{cases} \tilde{\mathbf{A}} = \mathbf{A}^{-1}, \\ \mathbf{A}^{\dagger} \mathbf{J} \mathbf{A} = \mathbf{J} \end{cases}$	so*(<i>N</i>)	$\left\{ \begin{array}{l} \mathbf{\tilde{a}}=-\mathbf{a},\\ \mathbf{a}^{\dagger}\mathbf{J}=-\mathbf{J}\mathbf{a} \end{array} \right.$	$\tfrac{1}{2}(N^2-N)$
$\operatorname{Sp}(\frac{N}{2},\mathbb{C})$	$\tilde{A}JA = J$	$\operatorname{sp}(\frac{N}{2},\mathbb{C})$	ãJ = −Ja	$N^{2} + N$
$\operatorname{Sp}(\frac{N}{2}, \mathrm{I\!R})$	$\begin{cases} \tilde{\mathbf{A}}\mathbf{J}\mathbf{A} = \mathbf{J}, \\ \mathbf{A} \text{ real} \end{cases}$	$\operatorname{sp}(\frac{N}{2}, \mathbb{R})$	$\begin{cases} \tilde{\mathbf{a}}\mathbf{J} = -\mathbf{J}\mathbf{a}, \\ \mathbf{a} \text{ real} \end{cases}$	$\frac{1}{2}(N^2+N)$
$\operatorname{Sp}(\frac{N}{2})$	$\begin{cases} \tilde{\mathbf{A}}\mathbf{J}\mathbf{A} = \mathbf{J}, \\ \mathbf{A}^{\dagger} = \mathbf{A}^{-1} \end{cases}$	$\operatorname{sp}(\frac{N}{2})$	$\begin{cases} \tilde{\mathbf{a}}\mathbf{J} = -\mathbf{J}\mathbf{a}, \\ \mathbf{a}^{\dagger} = -\mathbf{a} \end{cases}$	$\frac{1}{2}(N^2+N)$
$\operatorname{Sp}(r,s)$	$\begin{cases} \mathbf{\tilde{A}}\mathbf{J}\mathbf{A} = \mathbf{J}, \\ \mathbf{A}^{\dagger}\mathbf{G}\mathbf{A} = \mathbf{G} \end{cases}$	$\operatorname{sp}(r,s)$	$\left\{ \begin{array}{l} \mathbf{\tilde{a}J}=-\mathbf{Ja},\\ \mathbf{a}^{\dagger}\mathbf{G}=-\mathbf{Ga} \end{array} \right.$	$\frac{1}{2}(N^2+N)$
$\mathrm{SU}^*(N)$	$\begin{cases} \mathbf{J}\mathbf{A}^{\star} = \mathbf{A}\mathbf{J}, \\ \det \mathbf{A} = 1 \end{cases}$	$\operatorname{su}^{\star}(N)$	$\begin{cases} \mathbf{J}\mathbf{a}^{\star} = \mathbf{a}\mathbf{J}, \\ \mathrm{tr}\mathbf{a} = 0 \end{cases}$	$N^2 - 1$

Table 8.1: The real Lie algebras \mathcal{L} of some important linear Lie groups \mathcal{G} . **A** and **a** are $N \times N$ matrices, which are complex unless otherwise stated; **g** is an $N \times N$ diagonal matrix with p diagonal elements +1 and q (= N - p) diagonal elements -1, $p \ge q \ge 1$. In the last six entries N is even, and **J** and **G** are the $N \times N$ matrices defined in Equations (8.35) and (8.36).

In the above table, **A** is an invertible matrix, whereas no such condition is imposed on the matrix **a**. In addition, the transpose of a matrix is denoted by placing a tilde above the corresponding symbol, the matrix adjoint is denoted by a dagger, and the complex conjugate of the matrix is denoted by a star. Table 8.1 lists the details of the real Lie algebras belonging to a number of important linear Lie groups that can be obtained this way. In Table 8.1 J and G are the $N \times N$ matrices defined by

$$\mathbf{J} = \begin{bmatrix} \mathbf{0} & \mathbf{1}_{N/2} \\ -\mathbf{1}_{N/2} & \mathbf{0} \end{bmatrix},\tag{8.35}$$

 and

$$\mathbf{G} = \begin{bmatrix} -\mathbf{1}_r & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1}_s & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & -\mathbf{1}_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1}_s \end{bmatrix},$$
(8.36)

where $1 \le r \le \frac{1}{2}N$ and $s = \frac{1}{2}N - r$.

That the exponential mapping remains invaluable even for *non-compact* linear Lie groups is demonstrated by the following theorem.

Theorem VIII Every element of the connected subgroup of any linear Lie group \mathcal{G} can be expressed as a *finite* product of exponentials of its real Lie algebra \mathcal{L} .

Proof See, for example, Appendix E, Section 2, of Cornwell (1984).

These results may be summarized by the statement that the matrix exponential function always provides a mapping of \mathcal{L} into \mathcal{G} . This is onto if \mathcal{G} connected and compact, and even when \mathcal{G} is connected but non-compact every element of \mathcal{G} is expressible as a finite product of exponentials of members of \mathcal{L} .

These two pages are taken from J.F. Cornwell, "Group Theory in Physics: An Introduction," (Academic Press, San Diego, CA, 1997).