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Overview

● Refresh on Young diagrams

● Realisations of Lie algebras

● Bosonic Realisations & examples

● Fermionic Realisations & example
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Young diagrams pt 1

● Lie algebras have irreps characterized by labels (quantum numbers)

● Semisimple Lie algebras: numbers of labels is equal to the rank

● For some tensor of rank t,

● Different types for different Lie algebras (recall trace of O(n) tensor)
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Young diagrams pt 2

● u(n): 

● su(n) has (n-1) total labels

● Equivalence relations among these sets of labels
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Subalgebra chains

● Characterizing the algebra with sets of quantum numbers,

● Solved for some chains of algebras by Gel’fand and Cetlin, (canonical chains) e.g.

● For physics interest, often necessary to decompose Lie algebras into other algebras outside the 

canonical chain.
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Subalgebra chains - Gel’fand pattern

● For the chain:  

● Labels organised like so: 

● Inequality relations on the labels, e.g. 
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Realisations of Lie Algebras

●

● Ado’s theorem: any compact Lie algebra is a subalgebra of u(n) 
○ Realise other algebras by taking correct combos of elements
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Boson & Fermion Realisations

● Using bosonic/fermionic operators construct Lie algebras

● Only the totally (anti) symmetric parts
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Action on the basis

u(2) 

su(2)
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Boson Realisations

10



Boson Realisations
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Boson Realisations - u(1)
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Boson Realisations - u(2) containing u(1)
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Boson Realisations - u(2) containing so(2)
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Boson Realisations - u(2) containing so(2)
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● New operators as expected,

●

Fermion realisations
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Fermion realisations - u(2)
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Fermion realisations - u(2)
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