Physics 210 Homework \#4

Hanwen Qin

December 8, 2016

1 Simple Harmonic Oscillator, Hamilton-Jacobi Approach

The difficulty of checking a solution goes like the reciprocal of finding the solution. Let me compute up front the total derivative of $S(q, \alpha, t)$,

$$
\mathrm{d} S=m \omega \frac{q \cos (\omega t)-\alpha}{\sin (\omega t)} \mathrm{d} q+m \omega \frac{\alpha \cos (\omega t)-q}{\sin (\omega t)} \mathrm{d} \alpha+\frac{m \omega^{2}}{2} \frac{2 q \alpha \cos (\omega t)-\left(q^{2}+\alpha^{2}\right)}{\sin (\omega t)^{2}} \mathrm{~d} t
$$

As with any generating function, the differential action

$$
p \mathrm{~d} q-\mathcal{H} \mathrm{d} t=\beta \mathrm{d} \alpha-K \mathrm{~d} t+\mathrm{d} S
$$

must be preserved. The $\mathrm{d} q$ term tells me, implicitly, how to transform the coordinate α,

$$
p=\frac{\partial S}{\partial q}=m \omega \frac{q \cos (\omega t)-\alpha}{\sin (\omega t)}
$$

the $\mathrm{d} \alpha$ terms tells me how to transform the momentum β,

$$
\begin{equation*}
\beta=-\frac{\partial S}{\partial \alpha}=-m \omega \frac{\alpha \cos (\omega t)-q}{\sin (\omega t)} \tag{1.1}
\end{equation*}
$$

and the $\mathrm{d} t$ term tells me how to transform the Hamiltonian K,

$$
\begin{aligned}
K & =\mathcal{H}\left(q, p=\frac{\partial S}{\partial q}\right)+\frac{\partial S}{\partial t} \\
& =\frac{1}{2 m}\left[m \omega \frac{q \cos (\omega t)-\alpha}{\sin (\omega t)}\right]^{2}+\frac{m \omega^{2}}{2} q^{2}+\frac{m \omega^{2}}{2} \frac{2 q \alpha \cos (\omega t)-\left(q^{2}+\alpha^{2}\right)}{\sin (\omega t)^{2}}
\end{aligned}
$$

When I expand the square, all terms cancel out, leaving the new Hamiltonian identically zero. So $S(q, \alpha, t)$ indeed solves the Hamilton-Jacobi equation. Moreover, both α and β and conserved, so I can invert the definition of $\beta(1.1)$ to find the physical coordinate

$$
q(t)=\alpha \cos (\omega t)+\frac{\beta}{m \omega} \sin (\omega t)
$$

which I recognize as the general solution to the simple harmonic oscillator. In particular, $\alpha=q(0)$ is the initial position and $\beta=m \dot{q}(0)$ is the initial momentum.

2 Damped Harmonic Oscillator, Canonical Approach

Part (a) The Hamiltonian Newton's Second Law directly yields the equation of motion,

$$
\begin{equation*}
-V^{\prime}(q)-2 m \gamma \dot{q}=m \ddot{q} \tag{2.1}
\end{equation*}
$$

Now I take the Lagrangian

$$
\mathcal{L}(q, \dot{q}, t)=\mathrm{e}^{2 \gamma t}\left[\frac{m \dot{q}^{2}}{2}-V(q)\right]
$$

and compute the conjugate momentum

$$
\begin{equation*}
p=\frac{\partial \mathcal{L}}{\partial \dot{q}}=\mathrm{e}^{2 \gamma t} m \dot{q} \tag{2.2}
\end{equation*}
$$

its rate of change

$$
\dot{p}=\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial \mathcal{L}}{\partial \dot{q}}=\mathrm{e}^{2 \gamma t}(2 \gamma m \dot{q}+m \ddot{q})
$$

and the generalized force

$$
\frac{\partial \mathcal{L}}{\partial q}=-\mathrm{e}^{2 \gamma t} V^{\prime}(q)
$$

Clearly the resulting Euler-Lagrange equation

$$
\ddot{q}=-\frac{V^{\prime}(q)}{m}-2 \gamma \dot{q}
$$

is equivalent to Newton's Second Law (2.1), so the proposed Lagrangian is valid. Next, to derive the Hamiltonian, I solve equation (2.2) for the velocity $\dot{q}=(p / m) \mathrm{e}^{-2 \gamma t}$, and take the Legendre transform,

$$
\begin{aligned}
& \mathcal{H}=p \dot{q}-\mathcal{L}=\mathrm{e}^{2 \gamma t}\left[\frac{m \dot{q}^{2}}{2}+V(q)\right] \\
& \mathcal{H}(q, p, t)=\mathrm{e}^{-2 \gamma t} \frac{p^{2}}{2 m}+\mathrm{e}^{2 \gamma t} V(q)
\end{aligned}
$$

Part (b) A Constant of Motion Given $F_{2}(q, P, t)=\mathrm{e}^{\gamma t} q P$, I compute its total derivative,

$$
\mathrm{d} F_{2}=\mathrm{e}^{\gamma t} P \mathrm{~d} q+\mathrm{e}^{\gamma t} q \mathrm{~d} P+\gamma \mathrm{e}^{\gamma t} q P \mathrm{~d} t
$$

and require the differential action

$$
p \mathrm{~d} q-\mathcal{H} \mathrm{d} t=P \mathrm{~d} Q-K \mathrm{~d} t+\mathrm{d} F_{2}
$$

to be preserved. The caveat is F_{2} has a $\mathrm{d} P$ rather than a $\mathrm{d} Q$, so I must subtract the total differential $\mathrm{d}(P Q)=P \mathrm{~d} Q+Q \mathrm{~d} P$ from the right-hand side-that amounts to an integration by parts. Then I collect differentials,

$$
\left(p-\mathrm{e}^{\gamma t} P\right) \mathrm{d} q+\left(Q-\mathrm{e}^{\gamma t} q\right) \mathrm{d} P+\left(K-\mathcal{H}-\gamma \mathrm{e}^{\gamma t} q P\right) \mathrm{d} t=0
$$

and set each term to zero because q, P, t are independent variables. The $\mathrm{d} q$ term tells me the new momentum $P=\mathrm{e}^{-\gamma t} p$, the $\mathrm{d} P$ terms tells me the new coordinate $Q=\mathrm{e}^{\gamma t} q$, and the $\mathrm{d} t$ term tells me the new Hamiltonian,

$$
\begin{gathered}
K=\mathcal{H}+\gamma \mathrm{e}^{\gamma t} q P=\mathrm{e}^{-2 \gamma t} \frac{p^{2}}{2 m}+\mathrm{e}^{2 \gamma t} V(q)+\gamma \mathrm{e}^{\gamma t} q P \\
K(Q, P, t)=\frac{P^{2}}{2 m}+\mathrm{e}^{2 \gamma t} V\left(q=Q \mathrm{e}^{-\gamma t}\right)+\gamma Q P
\end{gathered}
$$

In the case of a harmonic oscillator potential

$$
V(q)=\frac{m \omega^{2} q^{2}}{2} \quad \longrightarrow \quad V\left(q=Q \mathrm{e}^{-\gamma t}\right)=\frac{m \omega^{2}}{2} \mathrm{e}^{-2 \gamma t} Q^{2}
$$

the transformed Hamiltonian becomes independent of time,

$$
\begin{equation*}
K(Q, P)=\frac{P^{2}}{2 m}+\frac{m \omega^{2}}{2} Q^{2}+\gamma Q P \tag{2.3}
\end{equation*}
$$

Whenever the Hamiltonian has no explicit time dependence, it is a constant of motion.
Part (c) The Solution The Hamiltonian produces two canonical equations of motion,

$$
\begin{gather*}
\dot{Q}=\frac{\partial K}{\partial P}=\frac{P}{m}+\gamma Q \tag{2.4}\\
\dot{P}=-\frac{\partial K}{\partial Q}=-m \omega^{2} Q-\gamma P \tag{2.5}
\end{gather*}
$$

Taken together with the statement that K is conserved, one out of three equations is redundant. I am tempted to solve (2.4) and (2.5) since they are first-order linear equations with straightforward initial conditions,

$$
\left\{\begin{array}{l}
Q(0)=q(0)=x_{0} \tag{2.6}\\
P(0)=p(0)=m \dot{q}(0)=m v_{0}
\end{array}\right.
$$

but I am told to use the constant of motion (2.3), so here it goes. I solve for P in terms of Q and K, using the quadratic formula,

$$
P=-m \gamma Q \pm m \sqrt{\frac{2 K}{m}-\left(\omega^{2}-\gamma^{2}\right) Q^{2}}
$$

Two things to notice: first, I don't know yet which sign to pick. Second, in order for P to be real, the quantity under the square root must be non-negative. An underdamped oscillator with $\gamma<\omega$ is therefore subject to the constraint

$$
|Q| \leq \sqrt{\frac{2 K}{m\left(\omega^{2}-\gamma^{2}\right)}}
$$

The maximum allowed Q corresponds to the oscillator's amplitude, which decays exponentially. Now I substitute this expression for P into the equation of motion for Q (2.4), making it separable,

$$
\frac{\dot{Q}}{\sqrt{\frac{2 K}{m}-\left(\omega^{2}-\gamma^{2}\right) Q^{2}}}= \pm 1
$$

Integrating the right-hand side over $(0, t)$ just gives me $\pm t$. The system evolves forward in time, so it's plausible that l'll have to choose the positive sign. Meanwhile, integrating the left-hand side from $Q(0)$ to $Q(t)$ calls for the change of variable $\sqrt{\omega^{2}-\gamma^{2}} Q=\sqrt{2 K / m} \sin \phi$.

$$
\int_{Q(0)}^{Q(t)} \frac{\mathrm{d} Q}{\sqrt{\frac{2 K}{m}-\left(\omega^{2}-\gamma^{2}\right) Q^{2}}}=\frac{1}{\sqrt{\omega^{2}-\gamma^{2}}} \int_{\phi(0)}^{\phi(t)} \mathrm{d} \phi=\frac{\phi(t)-\phi(0)}{\sqrt{\omega^{2}-\gamma^{2}}}
$$

So I obtain $\phi(t)=\phi(0)+\sqrt{\omega^{2}-\gamma^{2}} t$, which looks reassuringly like the phase of oscillation. Changing back to Q,

$$
\begin{aligned}
Q(t) & =\sqrt{\frac{2 K}{m\left(\omega^{2}-\gamma^{2}\right)}} \sin \phi(t) \\
& =\sqrt{\frac{2 K}{m\left(\omega^{2}-\gamma^{2}\right)}}\left[\sin \phi(0) \cos \left(\sqrt{\omega^{2}-\gamma^{2}} t\right)+\cos \phi(0) \sin \left(\sqrt{\omega^{2}-\gamma^{2}} t\right)\right]
\end{aligned}
$$

The initial phase and energy are of course determined by the initial conditions (2.6).

$$
\begin{aligned}
K & =\frac{P(0)^{2}}{2 m}+\frac{m \omega^{2}}{2} Q(0)^{2}+\gamma Q(0) P(0)=\frac{m}{2}\left(v_{0}^{2}+\omega^{2} x_{0}^{2}\right)+\gamma m x_{0} v_{0} \\
\sin \phi(0) & =\sqrt{\frac{m\left(\omega^{2}-\gamma^{2}\right)}{2 K}} Q(0)=\sqrt{\frac{m\left(\omega^{2}-\gamma^{2}\right)}{2 K}} x_{0} \\
\cos \phi(0) & = \pm \sqrt{1-\sin ^{2} \phi(0)}= \pm \sqrt{1-\frac{m\left(\omega^{2}-\gamma^{2}\right) x_{0}^{2}}{2 K}}
\end{aligned}
$$

Those ugly square roots all cancel out, leaving me in peace.

$$
Q(t)=x_{0} \cos \left(\sqrt{\omega^{2}-\gamma^{2}} t\right) \pm \frac{v_{0}+\gamma x_{0}}{\sqrt{\omega^{2}-\gamma^{2}}} \sin \left(\sqrt{\omega^{2}-\gamma^{2}} t\right)
$$

Finally, the physical coordinate q is related to the canonical coordinate Q by $q=Q \mathrm{e}^{-\gamma t}$,

$$
q(t)=\mathrm{e}^{-\gamma t}\left[x_{0} \cos \left(\sqrt{\omega^{2}-\gamma^{2}} t\right)+\frac{v_{0}+\gamma x_{0}}{\sqrt{\omega^{2}-\gamma^{2}}} \sin \left(\sqrt{\omega^{2}-\gamma^{2}} t\right)\right]
$$

I've decided on the plus sign because it gives the correct initial condition for \dot{q}. I've also checked that this solution indeed satisfies the equation of motion given by Newton's Second Law, $\ddot{q}=-\omega^{2} q-2 \gamma \dot{q}$. I would much prefer to have solved that equation from the get-go.

3 Anharmonic Oscillator, Action-Angle Approach

The potential is periodic with infinitely tall barriers, which a classical particle can't tunnel through, so I'll only consider the piece $0<x<\pi x_{0}$. I can immediately write down the Hamiltonian,

$$
\mathcal{H}(x, p)=\frac{p^{2}}{2 m}+\frac{a}{\sin \left(x / x_{0}\right)^{2}}
$$

It is completely integrable since there's once one spatial dimension. The conservation of energy $\mathcal{H}=E$ allows me to write the momentum as a function of position,

$$
p(x)= \pm \sqrt{2 m\left[E-\frac{a}{\sin \left(x / x_{0}\right)^{2}}\right]}
$$

where the sign depends on whether the particle is moving right $(+)$ or left $(-)$. The turning points are where momentum approaches zero,

$$
x_{1}=x_{0} \arcsin \sqrt{a / E} \quad x_{2}=x_{0}(\pi-\arcsin \sqrt{a / E})
$$

There's always two turning points for $E>a . E=a$ puts the particle at rest in equilibrium; $E<a$ is not allowed. The action variable is defined as the contour integral

$$
\begin{aligned}
J=\oint_{\mathcal{H}=E} p \mathrm{~d} x & =\int_{x_{1}}^{x_{2}}(+p) \mathrm{d} x+\int_{x_{2}}^{x_{1}}(-p) \mathrm{d} x \\
& =2 \int_{x_{1}}^{x_{2}} \mathrm{~d} x \sqrt{2 m\left[E-\frac{a}{\sin \left(x / x_{0}\right)^{2}}\right]}
\end{aligned}
$$

I will not attempt to evaluate this integral. If I did, I would then solve for E as a function of J, and calculate the orbital frequency $\nu=\mathrm{d} E / \mathrm{d} J$. But I'm more interested in the period of oscillation,

$$
T=\frac{1}{\nu}=\frac{\mathrm{d} J}{\mathrm{~d} E}=\sqrt{\frac{2 m}{E}} \int_{x_{1}}^{x_{2}} \frac{\mathrm{~d} x}{\sqrt{1-\frac{a / E}{\sin \left(x / x_{0}\right)^{2}}}}
$$

This integral is quite hard to solve. By trial and error I found that the substitution

$$
\begin{align*}
\sqrt{1-a / E} \sin \phi & =-\cos \left(x / x_{0}\right) \tag{3.1}\\
\sqrt{1-a / E} \cos \phi \mathrm{~d} \phi & =\sin \left(x / x_{0}\right) \mathrm{d} x / x_{0}
\end{align*}
$$

maps the interval of integration $x:\left(x_{1}, x_{2}\right) \mapsto \phi:(-\pi / 2, \pi / 2)$, and makes the integrand trivial:

$$
\begin{equation*}
T=\sqrt{\frac{2 m}{E}} \int_{-\pi / 2}^{\pi / 2} x_{0} \mathrm{~d} \phi=\pi x_{0} \sqrt{\frac{2 m}{E}} \tag{3.2}
\end{equation*}
$$

Interestingly the period of oscillation depends on energy. More energetic, and thus faster, particles have shorter period. I may also calculate the angular frequency,

$$
\begin{equation*}
\omega=\frac{2 \pi}{T}=\sqrt{\frac{2 E}{m x_{0}^{2}}} \tag{3.3}
\end{equation*}
$$

I came up with two ways to check this result. First, one-dimensional motion can always be reduced to quadrature. The canonical equation for the coordinate x,

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\partial \mathcal{H}}{\partial p}=\frac{p}{m}
$$

can be converted to a directly integrable equation for time,

$$
\frac{\mathrm{d} t}{\mathrm{~d} x}=\frac{m}{p(x)}
$$

If I integrate from the left turning point to the right, I get half the period, so the full period is twice that integral,

$$
T=2 \int_{x_{1}}^{x_{2}} \frac{m}{|p(x)|} \mathrm{d} x=\sqrt{\frac{2 m}{E}} \int_{x_{1}}^{x_{2}} \frac{\mathrm{~d} x}{\sqrt{1-\frac{a / E}{\sin \left(x / x_{0}\right)^{2}}}}=\pi x_{0} \sqrt{\frac{2 m}{E}}
$$

Same integral, same answer. In fact, I may go one step further and solve the motion completely. Just relax the upper limit of integration and make the same substitution as above,

$$
t=\int_{x_{1}}^{x} \frac{m}{|p(x)|} \mathrm{d} x=\sqrt{\frac{m}{2 E}} \int_{-\pi / 2}^{\phi} x_{0} \mathrm{~d} \phi=x_{0} \sqrt{\frac{m}{2 E}}(\phi+\pi / 2)
$$

and surprisingly enough, ϕ turns out to be the phase of oscillation,

$$
\phi=t \sqrt{\frac{2 E}{m x_{0}^{2}}}-\pi / 2=\omega t-\pi / 2
$$

I then invoke the substitution (3.1) again to find the displacement,

$$
x(t)=x_{0} \arccos [\sqrt{1-a / E} \cos (\omega t)]
$$

under the initial condition that the particle starts at rest with total energy E.
The second check is to consider small oscillations δx near the equilibrium $x=\pi x_{0} / 2$. If I Taylorexpand the potential $V(x)$ about the equilibrium,

$$
V\left(\frac{\pi x_{0}}{2}+\delta x\right)=V\left(\frac{\pi x_{0}}{2}\right)+V^{\prime}\left(\frac{\pi x_{0}}{2}\right) \delta x+\frac{1}{2} V^{\prime \prime}\left(\frac{\pi x_{0}}{2}\right) \delta x^{2}+\mathcal{O}\left(\delta x^{3}\right)
$$

The first term is the constant a. The second term is zero. The third term is a harmonic oscillator potential with "force constant" $V^{\prime \prime}\left(\pi x_{0} / 2\right)=2 a / x_{0}^{2}$. So the frequency of small oscillations is

$$
\omega=\sqrt{\frac{V^{\prime \prime}}{m}}=\sqrt{\frac{2 a}{m x_{0}^{2}}}
$$

which is the result (3.3) in the limit $E \rightarrow a$.

4 Canonical Transformation

The invariance of Poisson brackets is a necessary and sufficient condition for a canonical transformation. It is also easy to check; taking $Q_{1}=q_{1}^{2}, Q_{2}=q_{1}+q_{2}$,

1. $\left[Q_{1}, Q_{1}\right]=\left[Q_{2}, Q_{2}\right]=\left[P_{1}, P_{1}\right]=\left[P_{2}, P_{2}\right]=0$ is automatically satisfied.
2. $\left[Q_{1}, Q_{2}\right]=0$ because there's no p dependence;
3. $\left[Q_{1}, P_{1}\right]=2 q_{1} \frac{\partial P_{1}}{\partial p_{1}}=1 \longrightarrow \frac{\partial P_{1}}{\partial p_{1}}=\frac{1}{2 q_{1}}$
4. $\left[Q_{1}, P_{2}\right]=2 q_{1} \frac{\partial P_{2}}{\partial p_{1}}=0 \longrightarrow \frac{\partial P_{2}}{\partial p_{1}}=0$
5. $\left[Q_{2}, P_{1}\right]=\frac{\partial P_{1}}{\partial p_{1}}+\frac{\partial P_{1}}{\partial p_{2}}=0 \longrightarrow \frac{\partial P_{1}}{\partial p_{2}}=-\frac{\partial P_{1}}{\partial p_{1}}=-\frac{1}{2 q_{1}}$
6. $\left[Q_{2}, P_{2}\right]=\frac{\partial P_{2}}{\partial p_{1}}+\frac{\partial P_{2}}{\partial p_{2}}=1 \longrightarrow \frac{\partial P_{2}}{\partial p_{2}}=1-\frac{\partial P_{2}}{\partial p_{1}}=1$

From the partial derivatives I can glimpse the general form

$$
\left\{\begin{array}{l}
P_{1}=\frac{p_{1}-p_{2}}{2 q_{1}}+f\left(q_{1}, q_{2}\right) \\
P_{2}=p_{2}+g\left(q_{1}, q_{2}\right)
\end{array}\right.
$$

where f, g are undetermined functions of q_{1}, q_{2}. The last Poisson bracket,

$$
\begin{aligned}
{\left[P_{1}, P_{2}\right] } & =\frac{\partial P_{1}}{\partial q_{1}} \frac{\partial P_{2}}{\partial p_{1}}-\frac{\partial P_{1}}{\partial p_{1}} \frac{\partial P_{2}}{\partial q_{1}}+\frac{\partial P_{1}}{\partial q_{2}} \frac{\partial P_{2}}{\partial p_{2}}-\frac{\partial P_{1}}{\partial p_{2}} \frac{\partial P_{2}}{\partial q_{2}} \\
& =-\frac{1}{2 q_{1}} \frac{\partial g}{\partial q_{1}}+\frac{\partial f}{\partial q_{2}}+\frac{1}{2 q_{1}} \frac{\partial g}{\partial q_{2}}=0
\end{aligned}
$$

is the only constraint on f and g. Now consider the Hamiltonian

$$
\mathcal{H}\left(q_{1}, q_{2}, p_{1}, p_{2}\right)=\left(\frac{p_{1}-p_{2}}{2 q_{1}}\right)^{2}+p_{2}+\left(q_{1}+q_{2}\right)^{2}
$$

I think $f=0, g=\left(q_{1}+q_{2}\right)^{2}$ is a good choice, and it satisfies the last Poisson bracket condition as well. So my canonical transformation is

$$
\left\{\begin{array}{l}
Q_{1}=q_{1}^{2} \tag{4.1}\\
Q_{2}=q_{1}+q_{2} \\
P_{1}=\frac{p_{1}-p_{2}}{2 q_{1}} \\
P_{2}=p_{2}+\left(q_{1}+q_{2}\right)^{2}
\end{array}\right.
$$

and my new Hamiltonian is

$$
\mathcal{H}\left(P_{1}, P_{2}\right)=P_{1}^{2}+P_{2}
$$

Well, Q_{1} and Q_{2} are ignorable, so P_{1} and P_{2} are conserved. The other two canonical equations are trivially solved,

$$
\left\{\begin{array} { l }
{ \dot { Q _ { 1 } } = \frac { \partial \mathcal { H } } { \partial P _ { 1 } } = 2 P _ { 1 } } \\
{ \dot { Q _ { 2 } } = \frac { \partial \mathcal { H } } { \partial P _ { 2 } } = 1 }
\end{array} \longrightarrow \left\{\begin{array}{l}
Q_{1}(t)=2 P_{1} t+Q_{1}(0) \\
Q_{2}(t)=t+Q_{2}(0)
\end{array}\right.\right.
$$

To find the initial conditions for the new variables, I evaluate the transformations (4.1) at $t=0$, which is the same as adding a subscript 0 . Then I iteratively solve for the original variables,

$$
\left\{\begin{array}{l}
q_{1}=\sqrt{Q_{1}}=\sqrt{\frac{p_{10}-p_{20}}{2 q_{10}} t+q_{10}^{2}} \\
q_{2}=Q_{2}-q_{1}=q_{10}+q_{20}+t-\sqrt{\frac{p_{10}-p_{20}}{2 q_{10}} t+q_{10}^{2}} \\
p_{2}=P_{2}-\left(q_{1}+q_{2}\right)^{2}=p_{20}+\left(q_{10}+q_{20}\right)^{2}-\left(q_{10}+q_{20}+t\right)^{2} \\
p_{1}=2 P_{1} q_{1}+p_{2}=\frac{p_{10}-p_{20}}{q_{10}} \sqrt{\frac{p_{10}-p_{20}}{q_{10}} t+q_{10}^{2}}+p_{20}+\left(q_{10}+q_{20}\right)^{2}-\left(q_{10}+q_{20}+t\right)^{2}
\end{array}\right.
$$

I've double-checked that the initial conditions are self-consistent. I have no idea what physical system this describes.

