Classical Mechanics Homework 2

John Tamanas

1 Problem 1

$1 . a$

We begin with our favorite equation, $F=m a$, with $a=-G_{N} \frac{m_{\text {dust }}}{r^{2}}$, where G_{N} is Newton's gravitational constant, $m_{\text {dust }}$ is the mass of the dust acting on the system, and r is the distance from the center of mass (which we will assume is the center of the sun). Because we are concerned about the gravitational force due to a uniform distribution of dust (so a uniform distribution of mass) we may use the shell theorem to conclude that we need only concern ourselves with the mass enclosed in a sphere of radius r. The density of the dust is ρ, so $m_{\text {dust }}=\rho \frac{4}{3} \pi r^{3}$.
Therefore,

$$
F^{\prime}=-m G_{N} \frac{\rho \frac{4}{3} \pi r^{3}}{r^{2}}=-m G_{N} \frac{4}{3} \rho \pi r=-m k r
$$

with $k=\frac{4}{3} \rho \pi G_{N}$.

1.b

We showed in class that the Lagrangian of the system gives us this equation of motion

$$
m \ddot{r}-\frac{L^{2}}{m r^{3}}=\frac{\partial V}{\partial r}
$$

In this problem, we have two attractive potentials, one due to the sun, and one due to the dust, so

$$
V=-G_{N} \frac{M}{r}+\frac{k r^{2}}{2}
$$

Because we are assuming a circular orbit, $\ddot{r}=\dot{r}=0, r=r_{0}$. Thus,

$$
-\frac{L^{2}}{m r_{0}^{3}}=-G_{N} \frac{M}{r_{0}^{2}}-k r_{0}
$$

Which we can rewrite as

$$
G_{N} M m r_{0}+k r_{0}^{4}-L^{2}=0
$$

1.c

We can think of this as a Kepler problem with a single dust particle, of mass μ, coming in with a velocity V. We now consider the orbit equation

$$
\frac{1}{r}=\frac{\mu^{2} M G_{N}}{L^{2}}\left(1+\sqrt{1+\frac{2 E L^{2}}{\mu^{3} M^{2} G_{N}^{2}}} \cos \left(\theta-\theta^{\prime}\right)\right)
$$

We are interested in the case where the minimum distance between the dust particle and the sun is $r=R$, so we set $\cos \left(\theta=\theta^{\prime}\right)=1$. The angular momentum of the dust particle is $L=\mu V s$, where s is the impact parameter of the dust and the center of the sun. At infinity, the energy of the particle is $E=\frac{1}{2} \mu V^{2}$.

$$
\frac{1}{R}=\frac{M G_{N}}{V^{2} s^{2}}\left(1+\sqrt{1+\frac{V^{4} s^{2}}{M^{2} G_{N}^{2}}}\right)
$$

We solve for s to find

$$
s^{2}=R^{2}+\frac{2 M R G_{N}}{V^{2}}
$$

We are interested in how the mass changes with time; $\frac{d M}{d t}=\rho \frac{d V_{o l}}{d t}$. The volume, $V_{o l}$, is of a cylinder with an effective radius s. We plug in our previous results into this to find:

$$
\frac{d M}{d t}=\rho \pi R\left(R V+\frac{2 M G_{N}}{V}\right)
$$

1.d

We go back to our best friend, $\mathbf{F}=\dot{\mathbf{p}}=\dot{M} \mathbf{V}+M \dot{\mathbf{V}}$. We will assume \mathbf{V} is constant, so that $\dot{\mathbf{V}}=0$. Thus,

$$
\mathbf{F}=\dot{M} \mathbf{V}=\pi \rho R\left(R V^{2}+2 M G_{N}\right) \hat{V}
$$

2 Problem 2

In the laboratory frame, consider an incident particle with mass m_{1}, that then scatters off of a stationary particle of mass m_{2}, at an angle ϑ. By conservation of energy,

$$
\frac{1}{2} m_{1} v_{0}^{2}-\frac{1}{2} m_{1} v_{1}^{2}+Q=\frac{1}{2} m_{2} v_{2}^{2}
$$

where Q is the energy lost due to the inelasticity of the scatter, and v_{2} is the velocity of m_{2} after scattering. We can impose momentum conservation to get two more relations.

$$
\begin{gathered}
m_{1} v_{1} \sin (\vartheta)=m_{2} v_{2} \sin (\alpha) \\
m_{1} v_{0}=m_{1} v_{1} \cos (\vartheta)+m_{2} v_{2} \sin (\alpha)
\end{gathered}
$$

where α is the angle of deflection of m_{2} after scattering. We now square both momentum equations and add them together to get rid of the dependence on α.

$$
m_{1}^{2} v_{1}^{2} \sin ^{2}(\vartheta)+m_{1}^{2} v_{1}^{2} \cos ^{2}(\vartheta)+m_{1} v_{0}^{2}-2 m_{1}^{2} v_{0} v_{1} \cos (\vartheta)=m_{2}^{2} v_{2}^{2}
$$

We now solve for everything in terms of $\cos (\vartheta)$.

$$
\cos (\vartheta)=\frac{-m_{2}^{2} v_{2}^{2}+m_{1}^{2} v_{0}^{2}+m_{1}^{2} v_{1}^{2}}{2 m_{1}^{2} v_{1} v_{1}}
$$

Let E_{0} be the energy of m_{1} before the scatter, and E_{1} be the energy of m_{1} after the scatter. We can now plug in $v_{0}=\sqrt{\frac{2 E_{0}}{m_{1}}}, v_{1}=\sqrt{\frac{2 E_{1}}{m_{1}}}$, and $v_{2}^{2}=\frac{2\left(E_{0}-E_{1}+Q\right)}{m_{2}}$.

$$
\cos (\vartheta)=\frac{m_{1}\left(E_{0}+E_{1}\right)-m_{2}\left(E_{0}+E_{1}+Q\right)}{\left.2 m_{1} \sqrt{(} E_{0} E_{1}\right)}
$$

which gives us the desired result

$$
\cos (\vartheta)=\frac{m_{2}+m_{1}}{2 m_{1}} \sqrt{\frac{E_{1}}{E_{0}}}-\frac{m_{2}-m_{1}}{2 m_{1}} \sqrt{\frac{E_{0}}{E_{1}}}-\frac{m_{2} Q}{2 m_{1} \sqrt{E_{0} E_{1}}}
$$

3 Problem 3

We will begin by solving for the impact parameter, s. In class we derived,

$$
\Theta(s)=\pi-2 \int_{0}^{u_{m}} \frac{s d u}{\sqrt{1-\left(\frac{k}{2 E}+s^{2}\right) u^{2}}}
$$

(after plugging in $V(u)=\frac{1}{2} k u^{2}$). This evaluates to

$$
\Theta(s)=\pi-\frac{2 s}{\sqrt{\frac{k}{2 E}+s^{2}}} \sin ^{-1}\left(\frac{\sqrt{\frac{k}{2 E}+s^{2}}}{r_{m}}\right)
$$

Using conservation of angular momentum, we set $r_{m}=\frac{v_{0}}{v_{m}} s$. We plug this into our relation for conservation of energy to find

$$
\frac{m v_{0}^{2}}{2}=\frac{m v_{m}^{2}}{2}+\frac{k}{2 r_{m}^{2}} \rightarrow E=E \frac{s^{2}}{r_{m}^{2}}+\frac{k}{2 r_{m}^{2}}
$$

Solving for r_{m}, we get $r_{m}=\sqrt{s^{2}+\frac{k}{2 E}}$. Putting this result into our expression for $\Theta(s)$ we find

$$
\Theta(s)=\pi\left(1-\frac{s}{\sqrt{\frac{k}{2 E}+s^{2}}}\right)
$$

Let $x=\Theta / \pi=1-\frac{s}{\sqrt{\frac{k}{2 E}+s^{2}}}$. We now solve for s to find

$$
s=\sqrt{\frac{k(1-x)^{2}}{2 E x(2-x)}}
$$

The cross section $\sigma(x)=\frac{s}{\sin \pi x}\left|\frac{d s}{d x}\right|$, so we take the derivative of s with respect to x

$$
\left|\frac{d s}{d x}\right|=\left|\frac{1}{s} \frac{k(x-1)}{2 E(x-2)^{2} x^{2}}\right|
$$

We finally recover the desired result

$$
\sigma(\Theta) \mathrm{d} \Theta=\frac{k(1-x) \mathrm{d} x}{2 E x^{2}(2-x)^{2} \sin \pi x}
$$

