Classical Mechanics Homework 2 $_{\rm John Tamanas}$

1 Problem 1

1.a

We begin with our favorite equation, F = ma, with $a = -G_N \frac{m_{\rm dust}}{r^2}$, where G_N is Newton's gravitational constant, $m_{\rm dust}$ is the mass of the dust acting on the system, and r is the distance from the center of mass (which we will assume is the center of the sun). Because we are concerned about the gravitational force due to a uniform distribution of dust (so a uniform distribution of mass) we may use the shell theorem to conclude that we need only concern ourselves with the mass enclosed in a sphere of radius r. The density of the dust is ρ , so $m_{\rm dust} = \rho \frac{4}{3}\pi r^3$. Therefore,

$$F' = -mG_N \frac{\rho_3^4 \pi r^3}{r^2} = -mG_N \frac{4}{3}\rho \pi r = -mkr$$

with $k = \frac{4}{3}\rho\pi G_N$.

1.b

We showed in class that the Lagrangian of the system gives us this equation of motion

$$m\ddot{r} - \frac{L^2}{mr^3} = \frac{\partial V}{\partial r}$$

In this problem, we have two attractive potentials, one due to the sun, and one due to the dust, so

$$V = -G_N \frac{M}{r} + \frac{kr^2}{2}$$

Because we are assuming a circular orbit, $\ddot{r} = \dot{r} = 0$, $r = r_0$. Thus,

$$-\frac{L^2}{mr_0^3} = -G_N \frac{M}{r_0^2} - kr_0$$

Which we can rewrite as

$$G_N M m r_0 + k r_0^4 - L^2 = 0$$

1.c

We can think of this as a Kepler problem with a single dust particle, of mass μ , coming in with a velocity V. We now consider the orbit equation

$$\frac{1}{r} = \frac{\mu^2 M G_N}{L^2} \left(1 + \sqrt{1 + \frac{2EL^2}{\mu^3 M^2 G_N^2}} \cos(\theta - \theta') \right)$$

We are interested in the case where the minimum distance between the dust particle and the sun is r = R, so we set $\cos(\theta = \theta') = 1$. The angular momentum of the dust particle is $L = \mu V s$, where s is the impact parameter of the dust and the center of the sun. At infinity, the energy of the particle is $E = \frac{1}{2}\mu V^2$.

$$\frac{1}{R} = \frac{MG_N}{V^2 s^2} \left(1 + \sqrt{1 + \frac{V^4 s^2}{M^2 G_N^2}} \right)$$

We solve for s to find

$$s^2 = R^2 + \frac{2MRG_N}{V^2}$$

We are interested in how the mass changes with time; $\frac{dM}{dt} = \rho \frac{dV_{ol}}{dt}$. The volume, V_{ol} , is of a cylinder with an effective radius s. We plug in our previous results into this to find:

$$\frac{dM}{dt} = \rho \pi R \left(RV + \frac{2MG_N}{V} \right)$$

1.d

We go back to our best friend, $\mathbf{F} = \dot{\mathbf{p}} = \dot{M}\mathbf{V} + M\dot{\mathbf{V}}$. We will assume \mathbf{V} is constant, so that $\dot{\mathbf{V}} = 0$. Thus,

$$\mathbf{F} = \dot{M}\mathbf{V} = \pi\rho R(RV^2 + 2MG_N)\hat{V}$$

2 Problem 2

In the laboratory frame, consider an incident particle with mass m_1 , that then scatters off of a stationary particle of mass m_2 , at an angle ϑ . By conservation of energy,

$$\frac{1}{2}m_1v_0^2 - \frac{1}{2}m_1v_1^2 + Q = \frac{1}{2}m_2v_2^2$$

where Q is the energy lost due to the inelasticity of the scatter, and v_2 is the velocity of m_2 after scattering. We can impose momentum conservation to get two more relations.

$$m_1 v_1 \sin(\vartheta) = m_2 v_2 \sin(\alpha)$$

$$m_1 v_0 = m_1 v_1 \cos(\vartheta) + m_2 v_2 \sin(\alpha)$$

where α is the angle of deflection of m_2 after scattering. We now square both momentum equations and add them together to get rid of the dependence on α .

$$m_1^2 v_1^2 \sin^2(\vartheta) + m_1^2 v_1^2 \cos^2(\vartheta) + m_1 v_0^2 - 2m_1^2 v_0 v_1 \cos(\vartheta) = m_2^2 v_2^2$$

We now solve for everything in terms of $\cos(\vartheta)$.

$$\cos(\vartheta) = \frac{-m_2^2 v_2^2 + m_1^2 v_0^2 + m_1^2 v_1^2}{2m_1^2 v_1 v_1}$$

Let E_0 be the energy of m_1 before the scatter, and E_1 be the energy of m_1 after the scatter. We can now plug in $v_0 = \sqrt{\frac{2E_0}{m_1}}, v_1 = \sqrt{\frac{2E_1}{m_1}}$, and $v_2^2 = \frac{2(E_0 - E_1 + Q)}{m_2}$.

$$\cos(\vartheta) = \frac{m_1(E_0 + E_1) - m_2(E_0 + E_1 + Q)}{2m_1\sqrt{(E_0 E_1)}}$$

which gives us the desired result

$$\cos(\vartheta) = \frac{m_2 + m_1}{2m_1} \sqrt{\frac{E_1}{E_0}} - \frac{m_2 - m_1}{2m_1} \sqrt{\frac{E_0}{E_1}} - \frac{m_2 Q}{2m_1 \sqrt{E_0 E_1}}$$

3 Problem 3

We will begin by solving for the impact parameter, s. In class we derived,

$$\Theta(s) = \pi - 2 \int_0^{u_m} \frac{s du}{\sqrt{1 - (\frac{k}{2E} + s^2)u^2}}$$

(after plugging in $V(u) = \frac{1}{2}ku^2$). This evaluates to

$$\Theta(s) = \pi - \frac{2s}{\sqrt{\frac{k}{2E} + s^2}} \sin^{-1}\left(\frac{\sqrt{\frac{k}{2E} + s^2}}{r_m}\right)$$

Using conservation of angular momentum, we set $r_m = \frac{v_0}{v_m}s$. We plug this into our relation for conservation of energy to find

$$\frac{mv_0^2}{2} = \frac{mv_m^2}{2} + \frac{k}{2r_m^2} \to E = E\frac{s^2}{r_m^2} + \frac{k}{2r_m^2}$$

Solving for r_m , we get $r_m = \sqrt{s^2 + \frac{k}{2E}}$. Putting this result into our expression for $\Theta(s)$ we find

$$\Theta(s) = \pi \left(1 - \frac{s}{\sqrt{\frac{k}{2E} + s^2}} \right)$$

Let $x = \Theta/\pi = 1 - \frac{s}{\sqrt{\frac{k}{2E} + s^2}}$. We now solve for s to find

$$s = \sqrt{\frac{k(1-x)^2}{2Ex(2-x)}}$$

The cross section $\sigma(x) = \frac{s}{\sin \pi x} \left| \frac{ds}{dx} \right|$, so we take the derivative of s with respect to x

$$\left|\frac{ds}{dx}\right| = \left|\frac{1}{s}\frac{k(x-1)}{2E(x-2)^2x^2}\right|$$

We finally recover the desired result

$$\sigma(\Theta)\mathrm{d}\Theta = \frac{k(1-x)\mathrm{d}x}{2Ex^2(2-x)^2\sin\pi x}$$