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Part a

We recall the well-known relation regarding the composition of Dirac’s function with

other functions,

δ(g(x)) =
∑
i

δ(x− xi)
|g′(xi)|

(1)

where the xi’s are the zeros of g. For our case, we note,

δ((k0)2 − (|~k|2 +m2)) =
δ(k0 + ωk)

2ωk
+
δ(k0 − ωk)

2ωk
(2)

where ωk ≡
√
~|k|

2
+m2. I will now add a test function g(k0) to our integral in order to

emphasize that the Dirac-delta function is formally defined as a distribution.

I =
1

2ωk

∫ ∞
−∞

dk0[δ(k0 + ωk) + δ(k0 − ωk)]Θ(k0)g(k0) (3)

Recall the fact that Θ(k0) is only nonzero for k0 > 0 (using the Schwartz variation on the

Heaviside function), and equals 1 for k0 > 0, and so only one of the Dirac deltas operate.

I =
1

2ωk

∫ ∞
−∞

dk0δ(k0 − ωk)Θ(k0)g(k0) (4)

I =
1

2ωk

∫ ∞
0

dk0δ(k0 − ωk)g(k0) (5)

=
1

2ωk
g(ωk) (6)

Then since we used a general function g it follows immediately that we can think of the

integral over the distribution itself as 1
2ωk

:

∫ ∞
−∞

dk0δ(k2 −m2)Θ(k0) =
1

2ωk
(7)
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Part b

To show that the measure is invariant we must recall how measures transform in the

first place. It is derived in multivariate calculus that measures transform as the determinant

of the Jakobian J ,

dn′1dn
′
2 · · · = | det(J)|dn1dn2 · · · (8)

where J is the matrix defined as follows. For some transformation F : Rm → Rn,

Jmn =
∂fm
∂n

. (9)

In the Lorentz case,

k′µ = Λµ
νk

ν (10)

dk′µ = Λµ
νdk

ν (11)

Or if you allow me to write this in a very suggestive way,

dk′µ = Λµ
0dk

0 + Λµ
1dk

1 . . . (12)

=
∂k′µ

∂k0
dk0 +

∂k′µ

∂k0
dk1 . . . (13)

it becomes evident that the Lorentz transformation is its own Jakobian,

∂k′µ

∂kν
= Λµ

ν (14)

The Lorentz transformation has determinant one or minus one. For physical transfor-

mations we force the measure to stay positive (positive volume), as suggested by using the

magnitude of the determinant of the Jakobian in equation 7, and this achieves for us true

invariance.

d4k′ = | det(
∂k′µ

∂kν
)|d4k (15)

= | det(Λµ
ν )|d4k (16)

= d4k (17)
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Part c

We want to show
∫

d3k
2ωk

is invariant under Lorentz transformations. It will suffice to

show that ∫
d4kδ(k2 −m2)Θ(k0)g(k0) (18)

is invariant1 Then we can just perform the k0 integral as we did in part a and we’ll have our

answer.

From part b, we already have that the integral measure is invariant. Also, k2−m2 being

invariant Lorentz scalars forces δ(k2 −m2) to be invariant since it is evaluated at the same

place in all reference frames.

The only tension we have here is this final part of the integrand, Θ(k0). Clearly, k0

is not invariant. We will have to see how it transforms and see if it does not affect the

integration. Consider the tranformation,

∫
d4kδ(k2 −m2)Θ(k0)g(k0)→

∫
d4k′δ(k′2 −m2)Θ(k′0)g(k′0). (19)

Let me now show the transformed integral is indeed the same as the original. Any Lorentz

transformation can be written as a combination of TBR (time-reversal, boost and rotation).

Working on the transformed integral,∫
d4k′δ(k′2 −m2)Θ(k′0)g(k′0) =

∫
d4kδ(k2 −m2)Θ(γ(±k0 − vk1))g(γ(±k0 − vk1)) (20)

where I have used the simplifications mentioned above. Also I used the fact that I can lign

up my x axis with any possible boost and that rotations do not affect my k0 term. Using

the dirac delta trick again gives us,∫
d4k

1

2ωk
(δ(k0 − ωk) + δ(k0 + ωk))Θ(γ(±k0 − vk1))g(γ(±k0 − vk1)). (21)

So the question becomes: are the dirac deltas still going to work or is the new constraint on

the theta function ruining it. In particular, we need only one dirac delta to be turned on

1From now on, if the limits of integration are suppressed, then we are integrating over all possible values

of kµ.
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and the other to be turned off by the theta function. The first dirac delta forces k0 = ωk =√
k2 +m2. Consider the inequality,

ωk =
√

(k1)2 + (k2)2 + (k3)2 +m2 (22)

≥ vk1 (23)

since v ∈ (−1, 1). Similarly,

−ωk = −
√

(k1)2 + (k2)2 + (k3)2 +m2 (24)

≤ vk1 (25)

From these inequalities it becomes evident that only one dirac delta will operate for any

given Lorentz tranformation. Let me explicitly show it here:

I =

∫
d4k

1

2ωk
δ(k0 − ωk)Θ(γ(±ωk − vk1))g(γ(±ωk − vk1)) + (26)∫

d4k
1

2ωk
δ(k0 + ωk))Θ(γ(±− ωk − vk1))g(γ(±− ωk − vk1)). (27)

In the plus case, the theta function forces the bottom integral to be zero. In the minus case,

the theta function forces the top integral to be zero. For both cases the integral simplifies to∫
d3k

2ωk
g(ω′k). (28)

Notice that g need not be invariant and so we we evaluate it at ω′k ≡ γ(ωk − vk1). Also

notice the distribution forced ω′k to be positive in g (suppressed the time reversal). In any

case, we showed the the integral over the distribution is invariant.∫
d3k

2ωk
=

∫
d3k′

2ω′k
(29)
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The Canzano Consideration

N. Canzano pointed out in class a more efficient way to go about deriving part c. If we

consider the transformed integral before changing the dirac delta,

I =

∫
d3k

∫ ∞
−∞

dk0δ(k2 −m2)Θ(k′0)g(k′0) (30)

where we have used the invariance of the measure and delta function argument. The worst

thing that can happen is that the argument in the theta function changes sign. Why? If

sign(k′)=sign(k0) for all k0 the theta function is invariant and simply forces the integration

to occur for the positive real axis as before, and we’re done:

I =

∫
d3k

∫ ∞
0

dk0δ(k2 −m2)g(k′0) (31)

So the danger is that it flips sign. But if the transformation flips sign, it must flip sign for

all k0 by the nature of the Lorentz transformation.

But one might argue, “alas, this seems like quite a bit to demand!” It is, if you are not

on shell. It is not, if you are on shell. Recall the general Lorentz transformation on k0 is as

follows:

k′0 = Λ0
0k

0 + Λ0
1k

1 + Λ0
2k

2 + Λ0
3k

3 (32)

If you are not on shell, you can adjust ki as you like. Indeed, we are integrating over all ki.

So we have no constraint on the sign of k′0 depending on the sign of k0.

It is only once we are on shell (when we allow the dirac deltas to force k0 to ωk or

−ωk) that we can talk about the sign of k′ flipping or not, as noted in the part c derivation

inequalities.

But if you have the foresight to note that the Dirac deltas are precisely there to keep you

on shell, you can continue via the Canzano consideration and finish the derivation promptly.

I =

∫
d3k

∫ 0

−∞
dk0δ(k2 −m2)g(k0) =

∫
d3k

∫ ∞
0

dk0δ(k2 −m2)g(−k′0) (33)
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where I have used the delta function is even. Indeed, the Canzano consideration is very

similar to that developed in part c, and even faster, because it uses the evenness of the delta

function as opposed to actually using the delta functions. All you need is the foresight of

what it means to be on shell to be able to use it.

However, there is an interesting subtlety that is missed using this method. While this

argument holds for showing invariance it does not give us the extra constraint on g we got

in the method presented first (that time reversal is supressed).

“I find the work hard, thank God, & almost pleasant.”

- Oppenheimer, on physics.


