Solution to Homework Set \#2, Problem \#2 Part d. Author: Kevin A. Hambleton

In this problem, we have two complex scalar fields with the same mass. We label the fields $\phi_{a}(x)$ where $a=1,2$. The lagrangian for these fields is a sum of the lagrangians of the individual scalar fields, which we may write as

$$
\mathcal{L}=\partial_{\mu} \phi_{a}^{*} \partial^{\mu} \phi_{a}-m^{2} \phi_{a}^{*} \phi_{a}
$$

where the sum over the index a is implicit. First, let's calculate the equations of motion for the ϕ_{a} and the ϕ_{a}^{*}

$$
\begin{aligned}
& \partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}^{*}\right)}-\frac{\partial \mathcal{L}}{\partial \phi_{a}^{*}}=\left(\partial^{2}-m^{2}\right) \phi_{a}=0 \\
& \partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)}-\frac{\partial \mathcal{L}}{\partial \phi_{a}}=\left(\partial^{2}-m^{2}\right) \phi_{a}^{*}=0
\end{aligned}
$$

Now we turn our attention to the symmetries of this Lagrangian where the index a goes from 1 to n for some general n.

Discussion Of $U(n)$ And $S U(n)$

Let us have a brief discussion about the unitary group, which is of great importance in Quantum Mechanics and Quantum Field Theory. Rewrite this Lagrangian by writing the fields in a column vector

$$
\Phi=\binom{\phi_{1}}{\phi_{2}}, \quad \Phi^{\dagger}=\left(\begin{array}{ll}
\phi_{1}^{*} & \phi_{2}^{*}
\end{array}\right)
$$

so that the terms in the lagrangian become complex inner products of these vectors

$$
\mathcal{L}=\partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi-m^{2} \Phi^{\dagger} \Phi
$$

We can also recast the equations of motion using the vector Φ, in which case they tell us that

$$
\left(\partial^{2}-m^{2}\right) \Phi=\left(\partial^{2}-m^{2}\right) \Phi^{*}=0
$$

Let's also be more general, and let the number of components in Φ be n. Note that the complex inner product has $U(n)$ symmetry where we multiply Φ by a matrix which satisfies $U^{\dagger} U=1$

$$
\begin{gathered}
\Phi \rightarrow U \Phi, \\
\Phi^{\dagger} \Phi \rightarrow \Phi^{\dagger} U^{\dagger} U \Phi=\Phi^{\dagger} \Phi
\end{gathered}
$$

Since U is not a function of x, we also have

$$
\begin{gathered}
\partial_{\mu} \Phi \rightarrow \partial_{\mu}(U \Phi)=U\left(\partial_{\mu} \Phi\right) \\
\partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi \rightarrow\left(\partial_{\mu} \Phi\right)^{\dagger} U^{\dagger} U\left(\partial^{\mu} \Phi\right)=\partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi
\end{gathered}
$$

Now let the unitary transformation U be a function of some small, real parameters α_{a}. Let $U(0)=1$, and Taylor expand $U(\alpha)$ about $\alpha=0$ to first order

$$
\begin{gathered}
U(\alpha)=1-i \tau_{a} \alpha_{a}+O\left(\alpha^{2}\right) \\
U^{\dagger}(\alpha)=1+i \tau_{a}^{\dagger} \alpha_{a}+O\left(\alpha^{2}\right)
\end{gathered}
$$

for some matrices τ_{a}, which we call the generators of $U(n)$. We want this to be unitary to first order, which means we have

$$
U^{\dagger}(\alpha) U(\alpha)=1-i\left(\tau_{a}-\tau_{a}^{\dagger}\right) \alpha_{a}+O\left(\alpha^{2}\right)=1
$$

which means we have $\tau_{a}=\tau_{a}^{\dagger}$. The set of τ_{a} which satisfy this belong to $\mathfrak{u}(n)$, which we call the lie group of $U(n)$.

Now let α be finite. Applying the transformation $U(\alpha)$ is the same as applying one $N^{\text {th }}$ of the transformation N times, and we let N go to infinity so that α / N is infinitesimal. Therefore we have

$$
U(\alpha)=U\left(\frac{\alpha}{N}\right)^{N}=\left(1-\frac{i \tau_{a} \alpha_{a}}{N}\right)^{N}=\exp \left(-i \tau_{a} \alpha_{a}\right)
$$

Note that $\operatorname{det}\left(U^{\dagger} U\right)=\operatorname{det}(U)^{*} \operatorname{det}(U)=1$, so $\operatorname{det}(U)$ must be some complex number with unit modulus. We will also be interested in the case in which $\operatorname{det}(U)=1$, which specifies the group $S U(n)$. Now we use the fact that $\operatorname{det}\left(e^{A}\right)=e^{\operatorname{tr}(A)}$ so we have

$$
\operatorname{det}(U(\alpha))=\exp \left(\operatorname{tr}\left(-i \tau_{a} \alpha_{a}\right)\right)=1
$$

$$
\Rightarrow \operatorname{tr}\left(\tau_{a}\right)=0
$$

Also, because we are free to choose a normalization, it is convention to choose a basis τ_{a} such that $\operatorname{tr}\left(\tau_{a} \tau_{b}\right)=\frac{1}{2} \delta_{a b}$. We will not prove this here, but it turns out that the number of generators of $\mathfrak{u}(n)$ is n^{2}, and the number of generators for $\mathfrak{s u}(n)$ is $n^{2}-1$.

Conserved Charges For $U(n)$ Invariant Lagrangians

Let us calculate the conserved current for general n, and then we will go back to the case in which $n=2$. Since the lagrangian is invariant under $U(n)$, and there are n^{2} generators for this group, there will be n^{2} conserved currents. In order to calculate the conserved currents, note that

$$
\begin{gathered}
\frac{d \phi_{a}}{d \alpha_{i}}=\frac{d U(\alpha)_{a b}}{d \alpha_{j}} \phi_{b}=-i\left(\tau_{j}\right)_{a b} \phi_{b} \\
\frac{d \phi_{a}^{*}}{d \alpha_{i}}=\frac{d U^{*}(\alpha)_{a b}}{d \alpha_{j}} \phi_{b}^{*}=i\left(\tau_{j}\right)_{a b}^{*} \phi_{b}^{*}=i\left(\tau_{j}\right)_{a b}^{T} \phi_{b}^{*}
\end{gathered}
$$

In the last line we used the fact that the generators of $U(n)$ are hermitian, so the complex conjugate is the same as the transpose. Now we can calculate the conserved currents using Noether's theorem

$$
\begin{gathered}
J_{j}^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \frac{d \phi_{a}}{d \alpha_{j}}+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}^{*}\right)} \frac{d \phi_{a}^{*}}{d \alpha_{j}} \\
=-i\left(\partial^{\mu} \phi_{a}^{*}\left(\tau_{j}\right)_{a b} \phi_{b}-\partial^{\mu} \phi_{a}\left(\tau_{j}\right)_{a b}^{T} \phi_{b}^{*}\right)=-i\left(\partial^{\mu} \Phi^{\dagger} \tau_{j} \Phi-\Phi^{\dagger} \tau_{j} \partial^{\mu} \Phi\right)
\end{gathered}
$$

Now let us check that this current is conserved

$$
\begin{gathered}
\partial_{\mu} J_{j}^{\mu}=-i\left(\partial^{2} \Phi^{\dagger} \tau_{j} \Phi+\partial^{\mu} \Phi^{\dagger} \tau_{j} \partial_{\mu} \Phi-\partial_{\mu} \Phi^{\dagger} \tau_{j} \partial^{\mu} \Phi-\Phi^{\dagger} \tau_{j} \partial^{2} \Phi\right) \\
=i\left(m^{2} \Phi^{\dagger} \tau_{j} \Phi-m^{2} \Phi^{\dagger} \tau_{j} \Phi\right)=0
\end{gathered}
$$

where we used the equations of motion in the second line to get rid of the ∂^{2} terms.

We can calculate the conserved charges by using the fact that $\pi_{a}=\partial_{0} \phi_{a}^{*}$ and $\pi_{a}^{*}=\partial_{0} \phi_{a}$. Then the conserved charges are

$$
Q_{j}=\int d^{3} x J_{j}^{0}=-i \int d^{3} x\left(\pi_{a}\left(\tau_{j}\right)_{a b} \phi_{b}-\phi_{a}^{*}\left(\tau_{j}\right)_{a b} \pi_{b}^{*}\right)
$$

We can also use the canonical commutation relations to compute the commutator of the charges. The canonical commutation relations for general n are

$$
\begin{aligned}
{\left[\phi_{a}(\vec{x}), \pi_{b}(\vec{y})\right] } & =i \delta_{a b} \delta^{3}(\vec{x}-\vec{y}) \\
{\left[\phi_{a}^{*}(\vec{x}), \pi_{b}^{*}(\vec{y})\right] } & =i \delta_{a b} \delta^{3}(\vec{x}-\vec{y})
\end{aligned}
$$

with all other commutators being zero. In order to compute the commutator of the charges, note that

$$
\begin{gathered}
\pi_{a}(\vec{x})\left(\tau_{i}\right)_{a b} \phi_{b}(\vec{x}) \pi_{c}(\vec{y})\left(\tau_{j}\right)_{c d} \phi_{d}(\vec{y}) \\
=\pi_{a}(\vec{x})\left(\tau_{i}\right)_{a b} \pi_{c}(\vec{y}) \phi_{b}(\vec{x})\left(\tau_{j}\right)_{c d} \phi_{d}(\vec{y})+\pi_{a}(\vec{x})\left(\tau_{i}\right)_{a b}\left[\phi_{b}(\vec{x}), \pi_{c}(\vec{y})\right]\left(\tau_{j}\right)_{c d} \phi_{d}(\vec{y}) \\
=\pi_{c}(\vec{y})\left(\tau_{j}\right)_{c d} \pi_{a}(\vec{x}) \phi_{d}(\vec{y})\left(\tau_{i}\right)_{a b} \phi_{b}(\vec{x})+i \pi_{a}(\vec{x})\left(\tau_{i} \tau_{j}\right)_{a b} \phi_{b}(\vec{x}) \delta^{3}(\vec{x}-\vec{y}) \\
=\pi_{c}(\vec{y})\left(\tau_{j}\right)_{c d} \phi_{d}(\vec{y}) \pi_{a}(\vec{x})\left(\tau_{i}\right)_{a b} \phi_{b}(\vec{x})+i \pi_{a}(\vec{x})\left(\tau_{i} \tau_{j}-\tau_{j} \tau_{i}\right)_{a b} \phi_{b}(\vec{x}) \delta^{3}(\vec{x}-\vec{y})
\end{gathered}
$$

therefore

$$
\left[\pi_{a}(\vec{x})\left(\tau_{i}\right)_{a b} \phi_{b}(\vec{x}), \pi_{c}(\vec{y})\left(\tau_{j}\right)_{c d} \phi_{d}(\vec{y})\right]=i \pi_{a}(\vec{x})\left[\tau_{i}, \tau_{j}\right]_{a b} \phi_{b}(\vec{x}) \delta^{3}(\vec{x}-\vec{y})
$$

Similarly

$$
\left[\phi_{a}^{*}(\vec{x})\left(\tau_{i}\right)_{a b} \pi_{b}^{*}(\vec{x}), \phi_{c}^{*}(\vec{y})\left(\tau_{j}\right)_{c d} \pi_{d}^{*}(\vec{y})\right]=-i \phi_{a}^{*}(\vec{x})\left[\tau_{i}, \tau_{j}\right]_{a b} \pi_{b}^{*}(\vec{x}) \delta^{3}(\vec{x}-\vec{y})
$$

therefore we have that the commutator of the charges is

$$
\begin{aligned}
{\left[Q_{i}, Q_{j}\right]=- } & \int d^{3} x d^{3} y\left(\left[\pi_{a}(\vec{x})\left(\tau_{i}\right)_{a b} \phi_{b}(\vec{x}), \pi_{c}(\vec{y})\left(\tau_{j}\right)_{c d} \phi_{d}(\vec{y})\right]+\left[\pi_{a}(\vec{x})\left(\tau_{i}\right)_{a b} \phi_{b}(\vec{x}), \pi_{c}(\vec{y})\left(\tau_{j}\right)_{c d} \phi_{d}(\vec{y})\right]\right) \\
= & -i \int d^{3} x\left(\pi_{a}(\vec{x})\left[\tau_{i}, \tau_{j}\right]_{a b} \phi_{b}(\vec{x})-\phi_{a}^{*}(\vec{x})\left[\tau_{i}, \tau_{j}\right]_{a b} \pi_{b}^{*}(\vec{x})\right)
\end{aligned}
$$

Since the generators of the lie group must be closed under taking commutators, we have that

$$
\left[\tau_{i}, \tau_{j}\right]=i f_{i j k} \tau_{k}
$$

where $f_{i j k}$ are called the structure constants of the lie group. Plugging this into the commutator of the charges, we see that the charges obey

$$
\left[Q_{i}, Q_{j}\right]=i f_{i j k} Q_{k}
$$

so the charges adopt the commutation relations of the lie group itself.

Special Case Of Interest: $U(2)$

Now let us go back to the case when $n=2$. We want to find a basis for $\mathfrak{u}(2)$. We know that we should have $2^{2}-1=3$ matrices which form a basis of $\mathfrak{s u}(2)$, and one more which makes a basis for $\mathfrak{u}(2)$. Suppose we have a general two by two matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

we want this matrix to be hermitian, so $b=c^{*}$ and $a^{*}=a$ and $d^{*}=d$. We also want this matrix to be traceless, so $a=-d$. This leaves us with

$$
\left(\begin{array}{cc}
a & b \\
b^{*} & -a
\end{array}\right)=a\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+\Re(b)\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)-\Im(b)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

Note that the basis vectors are proportional to the Pauli matrices. Imposing the condition that $\operatorname{tr}\left(\tau_{a} \tau_{b}\right)=\frac{1}{2} \delta_{a b}$ we have a basis for $\mathfrak{s u}(2)$ which is $\left(\frac{1}{2} \sigma_{1}, \frac{1}{2} \sigma_{2}, \frac{1}{2} \sigma_{3}\right)$. If we remove the condition that the matrix had to be traceless, then we get a basis for $\mathfrak{u}(2)$ which is $\left(\frac{1}{2} I, \frac{1}{2} \sigma_{1}, \frac{1}{2} \sigma_{2}, \frac{1}{2} \sigma_{3}\right)$ where I is the two by two identity matrix. Therefore we can write any unitary two by two matrix as

$$
U(\alpha)=\exp \left(-\frac{i}{2}\left(\alpha_{0} I+\alpha_{1} \sigma_{1}+\alpha_{2} \sigma_{2}+\alpha_{3} \sigma_{3}\right)\right)=\exp \left(-\frac{i}{2}\left(\alpha_{0} I+\alpha_{i} \sigma_{i}\right)\right)
$$

Plugging in our basis for $\mathfrak{u}(2)$ for τ_{a} in the formula for the conserved charge derived in the previous section, we have that the conserved charges are

$$
\begin{gathered}
Q_{0}=\int d^{3} x J_{j}^{0}=-\frac{i}{2} \int d^{3} x\left(\pi_{a} \phi_{a}-\phi_{a}^{*} \pi_{a}^{*}\right) \\
Q_{j}=\int d^{3} x J_{j}^{0}=-\frac{i}{2} \int d^{3} x\left(\pi_{a}\left(\sigma_{j}\right)_{a b} \phi_{b}-\phi_{a}^{*}\left(\sigma_{j}\right)_{a b} \pi_{b}^{*}\right)
\end{gathered}
$$

Now we use our fomula for the commutator of the conserved charges which we derived in the previous section. Because the identity matrix commutes with all other matrices, we have

$$
\left[Q_{0}, Q_{j}\right]=0
$$

and since $\left[\frac{\sigma_{i}}{2}, \frac{\sigma_{j}}{2}\right]=i \epsilon_{i j k} \frac{\sigma_{k}}{2}$ we have

$$
\left[Q_{i}, Q_{j}\right]=i \epsilon_{i j k} Q_{k}
$$

Another Special Case: $U(3)$

Now let us find a basis for $\mathfrak{u}(3)$. We know that, if we can find a basis for $\mathfrak{s u}(3)$, then we just need to add on the three by three identity matrix to get a basis for $\mathfrak{u}(3)$. Therefore we need to find the $3^{2}-1=8$ matrices which form a basis for $\mathfrak{s u}(3)$.

Let's say we have a general three by three matrix

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & j
\end{array}\right)
$$

we want this matrix to be hermitian, so we have $b^{*}=d, c^{*}=g, f^{*}=h$ and $a^{*}=a, e^{*}=e, j^{*}=j$. Since we are looking for a basis for $\mathfrak{s u}(3)$, we also want this to be traceless, so we have $j=-a-e$. We also choose to define $\alpha=\frac{1}{2}(a+e)$ and $\gamma=\frac{1}{2}(a-e)$ where α and γ are real numbers. This gives

$$
\begin{aligned}
& \text { us }\left(\begin{array}{ccc}
\alpha+\gamma & b & c \\
b^{*} & \alpha-\gamma & f \\
c^{*} & f^{*} & -2 \alpha
\end{array}\right) \\
& =\alpha\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)+\gamma\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right)+\Re(b)\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)-\Im(b)\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& +\Re(c)\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)-\Im(c)\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right)+\Re(f)\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)-\Im(f)\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right)
\end{aligned}
$$

So we see that the basis for $\mathfrak{s u}(3)$ is proportional to the Gell-Mann matrices. Therefore a suitable basis for $\mathfrak{u}(3)$ is $\left(I, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{8}\right)$ where I is the three by three identity matrix and λ_{i} is the $i^{\text {th }}$ Gell-Mann matrix. This basis has $3^{2}=9$ elements, just as it should.

The standard model has $U(1) \times S U(2) \times S U(3)$ symmetries, and the charges associated with these symmetries couple to vector bosons. In the standard model, the $3^{2}-1=8$ charges associated with $S U(3)$ couple the quarks to the 8 gluons. Likewise, the $2^{2}-1=3$ charges associates with $S U(2)$
couple the left handed fermions to three bosons, which we call W_{1}, W_{2}, and W_{3}. Also, the $U(1)$ symmetry couples the fermions to the B vector boson. Through the Higgs mechanism, the W_{1}, W_{2}, W_{3}, and B bosons become the massive $W_{ \pm}$and Z bosons, and the massless photon A.

