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In this problem, we have two complex scalar fields with the same mass.

We label the fields φa(x) where a = 1, 2. The lagrangian for these fields is a

sum of the lagrangians of the individual scalar fields, which we may write as

L = ∂µφ
∗
a∂

µφa −m2φ∗aφa

where the sum over the index a is implicit. First, let’s calculate the equations

of motion for the φa and the φ∗a

∂µ
∂L

∂(∂µφ∗a)
− ∂L
∂φ∗a

= (∂2 −m2)φa = 0

∂µ
∂L

∂(∂µφa)
− ∂L
∂φa

= (∂2 −m2)φ∗a = 0

Now we turn our attention to the symmetries of this Lagrangian where the

index a goes from 1 to n for some general n.

Discussion Of U(n) And SU(n)

Let us have a brief discussion about the unitary group, which is of great

importance in Quantum Mechanics and Quantum Field Theory. Rewrite

this Lagrangian by writing the fields in a column vector

Φ =

(
φ1

φ2

)
, Φ† =

(
φ∗1 φ∗2

)
so that the terms in the lagrangian become complex inner products of these

vectors

L = ∂µΦ†∂µΦ−m2Φ†Φ

We can also recast the equations of motion using the vector Φ, in which case

they tell us that

(∂2 −m2)Φ = (∂2 −m2)Φ∗ = 0
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Let’s also be more general, and let the number of components in Φ be n.

Note that the complex inner product has U(n) symmetry where we multiply

Φ by a matrix which satisfies U †U = 1

Φ→ UΦ,

Φ†Φ→ Φ†U †UΦ = Φ†Φ

Since U is not a function of x, we also have

∂µΦ→ ∂µ(UΦ) = U(∂µΦ)

∂µΦ†∂µΦ→ (∂µΦ)†U †U(∂µΦ) = ∂µΦ†∂µΦ

Now let the unitary transformation U be a function of some small, real

parameters αa. Let U(0) = 1, and Taylor expand U(α) about α = 0 to first

order

U(α) = 1− iτaαa +O(α2)

U †(α) = 1 + iτ †aαa +O(α2)

for some matrices τa, which we call the generators of U(n). We want this to

be unitary to first order, which means we have

U †(α)U(α) = 1− i(τa − τ †a)αa +O(α2) = 1

which means we have τa = τ †a . The set of τa which satisfy this belong to u(n),

which we call the lie group of U(n).

Now let α be finite. Applying the transformation U(α) is the same as

applying one N th of the transformation N times, and we let N go to infinity

so that α/N is infinitesimal. Therefore we have

U(α) = U
( α
N

)N
=

(
1− iτaαa

N

)N
= exp (−iτaαa)

Note that det(U †U) = det(U)∗det(U) = 1, so det(U) must be some com-

plex number with unit modulus. We will also be interested in the case in

which det(U) = 1, which specifies the group SU(n). Now we use the fact

that det(eA) = etr(A) so we have

det(U(α)) = exp (tr(−iτaαa)) = 1
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⇒ tr(τa) = 0

Also, because we are free to choose a normalization, it is convention to choose

a basis τa such that tr(τaτb) = 1
2
δab. We will not prove this here, but it turns

out that the number of generators of u(n) is n2, and the number of generators

for su(n) is n2 − 1.

Conserved Charges For U(n) Invariant Lagrangians

Let us calculate the conserved current for general n, and then we will go back

to the case in which n = 2. Since the lagrangian is invariant under U(n), and

there are n2 generators for this group, there will be n2 conserved currents. In

order to calculate the conserved currents, note that

dφa
dαi

=
dU(α)ab
dαj

φb = −i(τj)abφb

dφ∗a
dαi

=
dU∗(α)ab
dαj

φ∗b = i(τj)
∗
abφ
∗
b = i(τj)

T
abφ
∗
b

In the last line we used the fact that the generators of U(n) are hermitian, so

the complex conjugate is the same as the transpose. Now we can calculate

the conserved currents using Noether’s theorem

Jµj =
∂L

∂(∂µφa)

dφa
dαj

+
∂L

∂(∂µφ∗a)

dφ∗a
dαj

= −i
(
∂µφ∗a(τj)abφb − ∂µφa(τj)Tabφ∗b

)
= −i

(
∂µΦ†τjΦ− Φ†τj∂

µΦ
)

Now let us check that this current is conserved

∂µJ
µ
j = −i

(
∂2Φ†τjΦ + ∂µΦ†τj∂µΦ− ∂µΦ†τj∂

µΦ− Φ†τj∂
2Φ
)

= i(m2Φ†τjΦ−m2Φ†τjΦ) = 0

where we used the equations of motion in the second line to get rid of the ∂2

terms.

We can calculate the conserved charges by using the fact that πa = ∂0φ
∗
a

and π∗a = ∂0φa. Then the conserved charges are

Qj =

∫
d3x J0

j = −i
∫
d3x (πa(τj)abφb − φ∗a(τj)abπ∗b )
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We can also use the canonical commutation relations to compute the com-

mutator of the charges. The canonical commutation relations for general n

are

[φa(~x), πb(~y)] = iδabδ
3(~x− ~y)

[φ∗a(~x), π∗b (~y)] = iδabδ
3(~x− ~y)

with all other commutators being zero. In order to compute the commutator

of the charges, note that

πa(~x)(τi)abφb(~x) πc(~y)(τj)cdφd(~y)

= πa(~x)(τi)abπc(~y)φb(~x)(τj)cdφd(~y) + πa(~x)(τi)ab[φb(~x), πc(~y)](τj)cdφd(~y)

= πc(~y)(τj)cdπa(~x)φd(~y)(τi)abφb(~x) + iπa(~x)(τiτj)abφb(~x)δ3(~x− ~y)

= πc(~y)(τj)cdφd(~y)πa(~x)(τi)abφb(~x) + iπa(~x)(τiτj − τjτi)abφb(~x)δ3(~x− ~y)

therefore

[πa(~x)(τi)abφb(~x), πc(~y)(τj)cdφd(~y)] = iπa(~x)[τi, τj]abφb(~x)δ3(~x− ~y)

Similarly

[φ∗a(~x)(τi)abπ
∗
b (~x), φ∗c(~y)(τj)cdπ

∗
d(~y)] = −iφ∗a(~x)[τi, τj]abπ

∗
b (~x)δ3(~x− ~y)

therefore we have that the commutator of the charges is

[Qi, Qj] = −
∫
d3x d3y ([πa(~x)(τi)abφb(~x), πc(~y)(τj)cdφd(~y)] + [πa(~x)(τi)abφb(~x), πc(~y)(τj)cdφd(~y)])

= −i
∫
d3x (πa(~x)[τi, τj]abφb(~x)− φ∗a(~x)[τi, τj]abπ

∗
b (~x))

Since the generators of the lie group must be closed under taking commuta-

tors, we have that

[τi, τj] = ifijkτk

where fijk are called the structure constants of the lie group. Plugging this

into the commutator of the charges, we see that the charges obey

[Qi, Qj] = ifijkQk

so the charges adopt the commutation relations of the lie group itself.
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Special Case Of Interest: U(2)

Now let us go back to the case when n = 2. We want to find a basis for

u(2). We know that we should have 22 − 1 = 3 matrices which form a basis

of su(2), and one more which makes a basis for u(2). Suppose we have a

general two by two matrix (
a b

c d

)
we want this matrix to be hermitian, so b = c∗ and a∗ = a and d∗ = d. We

also want this matrix to be traceless, so a = −d. This leaves us with(
a b

b∗ −a

)
= a

(
1 0

0 −1

)
+ <(b)

(
0 1

1 0

)
−=(b)

(
0 −i
i 0

)
Note that the basis vectors are proportional to the Pauli matrices. Impos-

ing the condition that tr(τaτb) = 1
2
δab we have a basis for su(2) which is

(1
2
σ1,

1
2
σ2,

1
2
σ3). If we remove the condition that the matrix had to be trace-

less, then we get a basis for u(2) which is (1
2
I, 1

2
σ1,

1
2
σ2,

1
2
σ3) where I is the

two by two identity matrix. Therefore we can write any unitary two by two

matrix as

U(α) = exp

(
− i

2
(α0I + α1σ1 + α2σ2 + α3σ3)

)
= exp

(
− i

2
(α0I + αiσi)

)
Plugging in our basis for u(2) for τa in the formula for the conserved

charge derived in the previous section, we have that the conserved charges

are

Q0 =

∫
d3x J0

j = − i
2

∫
d3x (πaφa − φ∗aπ∗a)

Qj =

∫
d3x J0

j = − i
2

∫
d3x (πa(σj)abφb − φ∗a(σj)abπ∗b )

Now we use our fomula for the commutator of the conserved charges which

we derived in the previous section. Because the identity matrix commutes

with all other matrices, we have

[Q0, Qj] = 0

and since [σi
2
,
σj
2

] = iεijk
σk
2

we have

[Qi, Qj] = iεijkQk
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Another Special Case: U(3)

Now let us find a basis for u(3). We know that, if we can find a basis for

su(3), then we just need to add on the three by three identity matrix to get

a basis for u(3). Therefore we need to find the 32 − 1 = 8 matrices which

form a basis for su(3).

Let’s say we have a general three by three matrix a b c

d e f

g h j


we want this matrix to be hermitian, so we have b∗ = d, c∗ = g, f ∗ = h and

a∗ = a, e∗ = e, j∗ = j. Since we are looking for a basis for su(3), we also

want this to be traceless, so we have j = −a − e. We also choose to define

α = 1
2
(a + e) and γ = 1

2
(a − e) where α and γ are real numbers. This gives

us  α + γ b c

b∗ α− γ f

c∗ f ∗ −2α



= α

 1 0 0

0 1 0

0 0 −2

+γ

 1 0 0

0 −1 0

0 0 0

+<(b)

 0 1 0

1 0 0

0 0 0

−=(b)

 0 −i 0

i 0 0

0 0 0



+<(c)

 0 0 1

0 0 0

1 0 0

−=(c)

 0 0 −i
0 0 0

i 0 0

+<(f)

 0 0 0

0 0 1

0 1 0

−=(f)

 0 0 0

0 0 −i
0 i 0


So we see that the basis for su(3) is proportional to the Gell-Mann matrices.

Therefore a suitable basis for u(3) is (I, λ1, λ2, . . . , λ8) where I is the three

by three identity matrix and λi is the ith Gell-Mann matrix. This basis has

32 = 9 elements, just as it should.

The standard model has U(1) × SU(2) × SU(3) symmetries, and the

charges associated with these symmetries couple to vector bosons. In the

standard model, the 32 − 1 = 8 charges associated with SU(3) couple the

quarks to the 8 gluons. Likewise, the 22−1 = 3 charges associates with SU(2)
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couple the left handed fermions to three bosons, which we call W1,W2, and

W3. Also, the U(1) symmetry couples the fermions to the B vector boson.

Through the Higgs mechanism, the W1,W2,W3, and B bosons become the

massive W± and Z bosons, and the massless photon A.


