Compton Scattering in Scalar QED

Christian Johnson

December 1, 2015

1 Calculating Matrix Elements

There are three Feynman diagrams to consider when calculating the matrix elements for $\phi \gamma \rightarrow \phi \gamma$ in Scalar QED:

1.1 S-Channel

Figure 1: S-channel diagram

The matrix element can be found by following the Feynman rules:

$$
\begin{equation*}
i M=(-i e)\left(p_{2}^{\mu}+k^{\mu}\right) \epsilon_{\mu}^{1}\left[\frac{i}{k^{2}-m^{2}}\right](-i e)\left(k^{\nu}+p_{3}^{\nu}\right) \epsilon_{\nu}^{4 \star} \tag{1}
\end{equation*}
$$

Kinematics requires that $k^{\mu}=p_{1}^{\mu}+p_{2}^{\mu}=p_{3}^{\mu}+p_{4}^{\mu}$, therefore we can replace the k s above:

$$
\begin{equation*}
i M=\frac{-i e^{2}}{k^{2}-m^{2}}\left(2 p_{2}^{\mu}+p_{1}^{\mu}\right) \epsilon_{\mu}^{1}\left(2 p_{2}^{\nu}+p_{4}^{\nu}\right) \epsilon_{\nu \star}^{4} \tag{2}
\end{equation*}
$$

But $p_{i}^{\mu} \epsilon_{i \mu}=0$ so:

$$
\begin{equation*}
M=\frac{-e^{2}}{k^{2}-m^{2}}\left(2 p_{2} \cdot \epsilon_{1}+p_{1} \cdot \epsilon_{1}\right)\left(2 p_{3} \cdot \epsilon_{4}+p_{4} \cdot \epsilon_{4}\right)=\frac{-e^{2}}{k^{2}-m^{2}}\left(2 p_{2} \cdot \epsilon_{1}\right)\left(2 p_{3} \cdot \epsilon_{4}\right) \tag{3}
\end{equation*}
$$

However, $\overrightarrow{p_{1}}=-\overrightarrow{p_{2}}$ and $\overrightarrow{p_{3}}=-\overrightarrow{p_{4}}$, and the polarization vectors ϵ_{i} are purely transverse. So $p_{2} \cdot \epsilon_{1}=p_{1} \cdot \epsilon_{1}=0$ and $p_{3} \cdot \epsilon_{4}=p_{4} \cdot \epsilon_{4}=0$. Therefore the S-channel does not contribute to the scattering amplitude:

$$
\begin{equation*}
M=0 \tag{4}
\end{equation*}
$$

1.2 T-Channel

Figure 2: T-channel diagram

Again, we calculate the amplitude from the Feynman rules:

$$
\begin{equation*}
i M=\epsilon_{\mu}^{i}(-i e)\left(k^{\mu}+p_{3}^{\mu}\right)\left[\frac{i}{k^{2}-m^{2}}\right](-i e)\left(p_{2}^{\nu}+k^{\nu}\right) \epsilon_{\nu}^{4 \star} \tag{5}
\end{equation*}
$$

Using kinematics to rewrite $k^{\mu}=p_{3}^{\mu}-p_{1}^{\mu}=p_{2}^{\mu}-p_{4}^{\mu}$:

$$
\begin{equation*}
M=\frac{e^{2}}{2 p_{2} \cdot p_{4}}\left(2 p_{3}^{\mu}-p_{1}^{\mu}\right)\left(2 p_{2}^{\nu}-p_{4}^{\nu}\right) \epsilon_{\mu}^{1} \epsilon_{\nu}^{4 \star} \tag{6}
\end{equation*}
$$

Simplifying with the fact that $p_{i}^{\mu} \epsilon_{i \mu}=0$ yields:

$$
\begin{equation*}
M=\frac{e^{2}}{2 p_{2} \cdot p_{4}}\left(2 p_{3} \cdot \epsilon_{1}\right)\left(2 p_{2} \cdot \epsilon_{4}^{\star}\right) \tag{7}
\end{equation*}
$$

1.3 Seagull Channel

Figure 3: Seagull-channel diagram. For some reason the legs weren't labeled by $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$

The seagull diagram contributes a factor of:

$$
\begin{equation*}
M=2 e^{2} g_{\mu \nu} \epsilon_{1}^{\mu} \epsilon_{4}^{\nu \star}=2 e^{2} \epsilon_{1} \cdot \epsilon_{4}^{\star} \tag{8}
\end{equation*}
$$

Therefore the total amplitude at tree level is:

$$
\begin{equation*}
M=2 e^{2}\left[\epsilon_{1} \cdot \epsilon_{4}^{\star}+\frac{1}{p_{2} \cdot p_{4}}\left(p_{3} \cdot \epsilon_{1}\right)\left(p_{2} \cdot \epsilon_{4}^{\star}\right)\right] \tag{9}
\end{equation*}
$$

2 Calculating Cross Section

The differential cross section is given by:

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} E_{C M}^{2}}|M|^{2} \tag{10}
\end{equation*}
$$

Since we want $\frac{d \sigma}{d \cos \theta}$ instead of $\frac{d \sigma}{d \Omega}$, we multiply this by 2π. Then it's simply a matter of plugging everything in and simplifying:

$$
\begin{equation*}
\frac{d \sigma}{d \cos \theta}=\frac{e^{4}}{8 \pi^{2} E_{C M}^{2}}\left[\epsilon_{1} \cdot \epsilon_{4}^{\star}+\frac{\left(p_{3} \cdot \epsilon_{1}\right)\left(p_{2} \cdot \epsilon_{4}^{\star}\right)}{p_{2} \cdot p_{4}}\right]^{2} \tag{11}
\end{equation*}
$$

