Solution to Homework Set \#8, Problem \#1.
 Author: Adam Reyes

1 Searching for the Higgs Boson at LEP

We are given the amplitude,
$\mathcal{M}\left(e^{+}+e^{-} \rightarrow H^{0}+Z^{0}\right)=\frac{e^{2} M_{Z}}{4 \sin ^{2} \theta_{W}} \frac{1}{s-M_{Z}^{2}} \epsilon_{\mu}^{\lambda}\left(Z^{0}\right) \bar{v}^{s^{\prime}}\left(e^{+}\right)\left(4 \sin ^{2} \theta-1+\gamma^{5}\right) \gamma^{\mu} u^{s}\left(e^{-}\right)$
and are asked to sum the matrix element squared over final polarizations (λ) and average over the initial spins $\left(s, s^{\prime}\right)$.

1.1 Summing over final polarizations

We can see that the matrix element can be written in the form $\mathcal{M}=\epsilon_{\mu}^{\lambda} \mathcal{M}^{\mu}$. Summing the amplitude squared over polarizations we get

$$
\begin{equation*}
\sum_{\lambda=1}^{3}|\mathcal{M}|^{2}=\sum_{\lambda=1}^{3} \epsilon_{\mu}^{* \lambda} \mathcal{M}^{\dagger \mu} \epsilon_{\nu}^{\lambda} \mathcal{M}^{\nu} \tag{2}
\end{equation*}
$$

which gives an overall factor of

$$
\begin{equation*}
\sum_{\lambda=1}^{3} \epsilon_{\mu}^{* \lambda} \epsilon_{\nu}^{\lambda}=-g_{\mu \nu}+\frac{p_{Z}^{\mu} p_{Z}^{\nu}}{M_{Z}^{2}} \tag{3}
\end{equation*}
$$

1.2 Averaging initial spins

Before we can do the sum over spins we have to write down \mathcal{M}^{\dagger}. In class we showed that

$$
\begin{equation*}
\left(\bar{v} \gamma^{\mu} u\right)^{\dagger}=\bar{u} \gamma^{\mu} v \tag{4}
\end{equation*}
$$

We can see from Eq. 1 that we also have to calculate $\left(\bar{v} \gamma^{5} \gamma^{\mu} u\right)^{\dagger}$. We will use the identity $\gamma^{\mu} \gamma^{5}=-\gamma^{5} \gamma^{\mu}$:

$$
\begin{align*}
\left(\bar{v} \gamma^{5} \gamma^{\mu} u\right)^{\dagger} & =u^{\dagger} \gamma^{\mu \dagger} \gamma^{5} \gamma^{0} v \\
& =-u^{\dagger} \gamma^{\mu \dagger} \gamma^{0} \gamma^{5} v \\
& =-u^{\dagger} \gamma^{0} \gamma^{\mu} \gamma^{5} v \tag{5}\\
& =-\bar{u} \gamma^{\mu} \gamma^{5} v
\end{align*}
$$

Now we can write down the parts of $|\mathcal{M}|^{2}$ with spinnor indices:

$$
\begin{equation*}
|\mathcal{M}|_{\text {Spinnor }}^{2}=\left[\bar{u}_{\alpha}\left(\gamma^{\nu}\left[4 \sin ^{2} \theta_{W}-1-\gamma^{5}\right]\right)_{\alpha \beta} v_{\beta}\right]\left[\bar{v}_{\sigma}\left(\left[4 \sin ^{2} \theta_{W}-1+\gamma^{5}\right] \gamma^{\mu}\right)_{\sigma \rho} u_{\rho}\right] \tag{6}
\end{equation*}
$$

Then summing over spins we'll get

$$
\begin{align*}
& \sum_{s=1}^{3} v_{\beta}^{s^{\prime}} \bar{v}_{\sigma}^{s^{\prime}}=\left(\not p_{e+}-m_{e}\right)_{\beta \sigma} \tag{7}\\
& \sum_{s=1}^{3} u_{\rho}^{s} \bar{u}_{\alpha}^{s}=\left(\not p_{e-}+m_{e}\right)_{\rho \alpha} \tag{8}
\end{align*}
$$

Putting this into Eq. 6 and taking the ultra-relativistic limit where $m_{e} \rightarrow 0$ we get

$$
\begin{equation*}
\sum_{s, s^{\prime}=1}^{3}|\mathcal{M}|_{\text {Spinnor }}^{2}=\operatorname{Tr}\left[\not p_{e-} \gamma^{\nu}\left(4 \sin ^{2} \theta_{W}-1-\gamma^{5}\right) \not p_{e+}\left(4 \sin ^{2} \theta_{W}-1+\gamma^{5}\right) \gamma^{\mu}\right] \tag{9}
\end{equation*}
$$

Expanding this expression we get four terms:

1. $\left(4 \sin ^{2} \theta_{W}-1\right)^{2} \operatorname{Tr}\left[\not p_{e-} \gamma^{\nu} \not p_{e+} \gamma^{\mu}\right]$
2. $-\left(4 \sin ^{2} \theta_{W}-1\right) \operatorname{Tr}\left[\not p_{e-} \gamma^{\nu} \gamma^{5} \not p_{e+} \gamma^{\mu}\right]$
3. $\left(4 \sin ^{2} \theta_{W}-1\right) \operatorname{Tr}\left[\not p_{e-} \gamma^{\nu} \not p_{e+} \gamma^{5} \gamma^{\mu}\right]$
4. $-\operatorname{Tr}\left[\not p_{e-} \gamma^{\nu} \gamma^{5} \not p_{e+} \gamma^{5} \gamma^{\mu}\right]$

The second and third terms are proportional to

$$
\begin{equation*}
p_{\sigma} p_{\rho} \operatorname{Tr}\left[\gamma^{\sigma} \gamma^{5} \gamma^{\nu} \gamma^{\rho} \gamma^{\mu}\right]=p_{\sigma} p_{\rho}\left(-4 i \epsilon^{\sigma \nu \rho \mu}\right) \tag{10}
\end{equation*}
$$

which is antisymmetric under exchange of the free indices. These terms have to be contracted with the symmetric tensor given in Eq. 3 will give zero, so we only have to worry about terms 1 and 4 above.

In the fourth term we can move one of the γ^{5} 's next to the other at the cost of an overall factor of -1 , giving the same trace as in the first term, using $\gamma^{5} \gamma^{5}=1$. Now we only have to calculate

$$
\begin{align*}
\operatorname{Tr}\left[\not p_{e-} \gamma^{\nu} p_{e+} \gamma^{\mu}\right] & =p_{e-}^{\rho} p_{e+}^{\sigma} \operatorname{Tr}\left[\gamma^{\rho} \gamma^{\nu} \gamma^{\sigma} \gamma^{\mu}\right] \\
& =4 p_{e-}^{\rho} p_{e+}^{\sigma}\left(g^{\rho \nu} g^{\sigma \mu}-g^{\rho \sigma} g^{\nu \mu}+g^{\rho \mu} g^{\nu \sigma}\right) \tag{11}\\
& =4\left(p_{e-}^{\nu} p_{e+}^{\mu}-p_{e-} \cdot p_{e+} g^{\nu \mu}+p_{e-}^{\mu} p_{e+}^{\nu}\right)
\end{align*}
$$

Putting it altogeter, contracting Eq. 11 with Eq. 3 and putting in the correct prefactors we get

$$
\begin{equation*}
\frac{1}{4} \sum_{\text {spins,pols }}|\mathcal{M}|^{2}=A\left(\left(p_{e+} \cdot p_{e-}\right)+2 \frac{\left(p_{Z} \cdot p_{e+}\right)\left(p_{Z} \cdot p_{e-}\right)}{M_{Z}^{2}}\right) \tag{12}
\end{equation*}
$$

where

$$
A=\left(\frac{e^{2} M_{Z}}{s-M_{Z}^{2}}\right)^{2} \frac{1+\left(1-4 \sin ^{2} \theta_{W}\right)^{2}}{\left(4 \sin ^{2} \theta_{W}\right)^{2}}
$$

exactly what we set out to show.

1.3 Differential Cross-section

Before we write down the cross-section lets do some relativistic kinematics. We define the 4 -momenta in the center of mass frame as

$$
\begin{aligned}
p_{e+} & =(E, \vec{p}) & p_{e-} & =(E,-\vec{p}) \\
p_{Z} & =\left(E_{Z}, \vec{k}\right) & p_{H} & =\left(E_{H},-\vec{k}\right)
\end{aligned}
$$

where \vec{p} and \vec{k} are related by an angle θ. Since we are ignoring the electron mass, $|p| \approx E$ so $p_{e+} \cdot p_{e-}=2 E^{2}=\frac{1}{2} s$. We also get

$$
\begin{align*}
\left(p_{Z} \cdot p_{e+}\right)\left(p_{Z} \cdot p_{e-}\right) & =\frac{1}{4} s\left(E_{Z}^{2}-p_{Z}^{2} \cos ^{2} \theta\right) \\
& =\frac{1}{4} s\left(E_{Z}^{2}-\left(E_{Z}^{2}-M_{Z}^{2}\right) \cos ^{2} \theta\right) \\
& =\frac{1}{4} s\left(M_{Z}^{2} \cos ^{2} \theta+\left(M_{Z}^{2}+\vec{k}^{2}\right) \sin ^{2} \theta\right) \tag{13}\\
& =\frac{1}{4} s\left(M_{Z}^{2}+|\vec{k}|^{2} \sin ^{2} \theta\right)
\end{align*}
$$

Then plugging these into Eq. 12 and then into the general expression for the differential cross-section for any $2 \rightarrow 2$ process we get

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s} \frac{|\vec{k}|}{|\vec{p}|}|\mathcal{M}|^{2}=\frac{\alpha^{2}}{4} A\left[1+\frac{1}{2} \frac{\vec{k}^{2}}{M_{Z}^{2}} \sin ^{2} \theta\right] \frac{|\vec{k}|}{\frac{1}{2} E_{C M}} \tag{14}
\end{equation*}
$$

It is easy to obtain the following expressionsusing relativistic kinematics and turn them into an expression for E_{Z}^{2}.

$$
\left.\begin{array}{l}
E_{Z}+E_{H}=E_{C M} \tag{15}\\
E_{Z}^{2}-E_{H}^{2}=M_{Z}^{2}-M_{H}^{2} \\
E_{Z}-E_{H}=\frac{M_{Z}^{2}-M_{H}^{2}}{E_{C M}}
\end{array}\right\} \Rightarrow E_{Z}^{2}=\left(E_{C M}^{2}+M_{Z}^{2}-M_{H}^{2}\right)^{2}
$$

With some work you can get

$$
\begin{equation*}
\vec{k}^{2}=E_{Z}^{2}-M_{Z}^{2}=\frac{1}{4 s}\left(s-\left(M_{H}+M_{Z}\right)^{2}\right)\left(s-\left(M_{H}-M_{Z}\right)^{2}\right) \tag{16}
\end{equation*}
$$

We are asked to find the angular dependence of the differential cross-section for two sets of M_{H} and $E_{C M}$. In the first we have $M_{H}=113 \mathrm{GeV}$ and $E_{C M}=$ 205 GeV . We can see from Eq. 16 that this corresponds to a Z-momentum that is much smaller than the Z-mass, so the differential cross-section is isotropic.

In the other case $M_{H}=125 \mathrm{GeV}$ and $E_{C M}=1000 \mathrm{GeV}$. Here the Zmomentum is much larger than the Z-mass and correspondingly the differential cross-section's angular dependance will be $\sin ^{2} \theta$.

1.4 Total cross-section

To get the total cross-section we just have to integrate Eq. 14 over the solid angle to obtain

$$
\begin{equation*}
\sigma=\pi \alpha^{2} A\left[1+\frac{1}{3} \frac{\vec{k}^{2}}{M_{Z}^{2}}\right] \frac{|\vec{k}|}{\frac{1}{2} E_{C M}} \tag{17}
\end{equation*}
$$

whose dependence on $E_{C M}$ looks like

Figure 1: dependence of cross section on $E_{C M}$

