Instructor:	Stefano Profumo
Office:	ISB, Room 325
Phone Number:	831-459-3039
Office Hours:	Tuesdays 4:00-5:00 PM (or by app.)
E-mail:	profumo@scipp.ucsc.edu
_	
Lectures:	Tuesdays and Thursdays 2:00-3:45 PM
Lecture Room:	ISB, Room 126

Course Description

This course is the first quarter of a 2-quarter graduate-level introduction to modern particle physics. The focus is on (1) hadron phenomenology, (2) weak interactions, (3) the electro-weak model and (4) a few selected topics in beyond the Standard Model physics and particle astrophysics.

Course Outline

- 1. Introduction to the Standard Model
- 2. Symmetries and groups
- 3. Space-time and internal symmetries
- 4. Color potential and heavy quarks
- 5. Flavor SU(3); mesons and baryons
- 6. Constituent quark model, masses and magnetic moments of hadrons
- 7. Strong decays of hadrons, G-symmetry
- 8. Vector Meson Dominance
- 9. Introduction to weak interactions
- 10. Decays of muons and tau leptons
- 11. Charged weak currents for quarks
- 12. Charged pion decay
- 13. Strange currents and kaon decay
- 14. Decays of heavy quarks
- 15. Mixing and CP violation in the kaon and B systems
- 16. Neutrino masses and oscillations
- 17. Spontaneous symmetry breaking

- 18. The Higgs mechanism
- 19. Neutral weak currents
- 20. Phenomenology of EW gauge bosons
- 21. Weinberg-Salam Model
- 22. Generation of fermion masses
- 23. Neutrino mass models
- 24. Higgs mass and couplings
- 25. Higgs production and decay
- 26. A Cosmology Primer
- 27. Thermal Relics from the Big Bang
- 28. Topics in Particle Astrophysics

Reference Textbooks (on reserve)

- Particle Physics: A Comprehensive Introduction by Abraham Seiden
- Quarks & Leptons by Francis Halzen and Alan D. Martin

Other Textbooks

- Introduction to High Energy Physics by Donald H. Perkins
- Introduction to Elementary Particle Physics by Alessandro Bettini
- *The Higgs Hunter's Guide* by John F. Gunion, Howard H. Haber, Gordon Kane and Sally Dwason
- Particle Astrophysics by Donald H. Perkins
- Cosmology and Particle Astrophysics by Lars Bergstrom and Ariel Goobar
- Very High Energy Cosmic Gamma Radiation by Felix A. Aharonian
- The Early Universe by Edward W. Kolb and Michael S. Turner

Grading Policy

Grading will be based on 5 homework exercises (20% each). The first 4 homeworks will be problem sets, while the last one will be a 25 minute indvidual seminar on a topic chosen between a few suggested by the Instructor.