Silicon Sensor Development for ATLAS Upgrade for SLHC

Y. Unno

Institute for Nuclear and Particle Study, High Energy Accelerator Research Organization (KEK) Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan unno@post.kek.jp

Toward SLHC Upgrade

- In the present LHC
 - Radiation damage limit in IR Qmagnet at ~700 fb⁻¹
 - From the integrated luminosity, IR
 Q-mag. reaches its life in the end of the year with
 - design luminosity, 2016
 - ultimate luminosity, 2014
 - 1.1->1.7x10¹¹ p/bunch
 - limited by beam dumping system
- LHC machine upgrade is foreseen in ~2015 to Super LHC
 - Luminosity upgrade => Phase 1
 - Energy upgrade is too expensive, but ...some => Phase 2

Super LHC Luminosity Upgrade

- Phase 1: reach the maximum with IR change and new RF system
 - Increase protons per bunch up to the ultimate intensity $=> 3.3 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - Modify insertion Q-mag. and/or layout
 - beta* = 0.25 m
 - Increase crossing angle by sqrt(2)
 - theta_c = 445 urad
 - $N_b = 1.7 \times 10^{11} \text{ p/bunch}$
 - Halve rms bunch length with high harmonic RF system $=> 4.6 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - $sigma_z = 3.78cm$
 - with new RF system, not cheap
 - Double the number of bunches
 - $n_b = 5616$ bunches, bunch spacing = 12.5 ns
 - Upgrade cryogenics, collimation, dumping system
 - Possibly upgrade SPS RF system and other in injectors

 \Rightarrow 9. 2x10³⁴ cm⁻²s⁻¹

SLHC Luminosity and Energy Upgrade

- Phase 2: Significant changes to injectors, SPS, LHC with new dipoles
 - Injectors and SPS upgrade
 - Increase the beam intensity and brilliance beyond its ultimate value
 - Inject into LHC at 1TeV
 - with superconducting magnets, upgraded transfer lines
 - Energy swing reduced by a factor 2 <= a step to energy upgrade
 - Interesting alternative: add low-field booster ring in the LHC tunnel
 - LHC upgrade
 - New dipoles with a field of 15 T
 - could be operated by 2020

=> factor 2 increase

=> 12.5 TeV

CERN Accelerator Complex

protons CMS antiprotons ions neutrinos to Gran Sasso Accelerator chain to LHC neutrons electrons LHC – LINAC - BOOSTER – **PS** COMPASS – SPS – LHC SPS Others HC-b ALICE – CNGS ATLAS * neutrinos CERN Neutrino Gran Sasso West Area – CTF3 n-TOF East Area • CLIC Test Facility 3 PSE PS Gran Sasso (I) CTF3 730 km

Physics Motivations for SLHC

		LHC	SLHC
•	Integrated luminosity (ATLAS+CMS)	600 fb ⁻¹	6000 fb ⁻¹
•	Triple Gauge Boson coupling		
	 Coupling constants 	1	~1/2
•	FCNC top decays		
	- Branching ratios (t->q γ , ->q g , ->q Z)	1	1/3~1/10
•	Higgs coupling to fermions and bosons		
	– Ratio (Γ_W / Γ_f) measurement	1	~1/2
•	Higgs self coupling		
	 Higgs pair production 	NA	Possible
•	Squark and Sgluon		
	 Mass reach 	$m_{q}^{}, m_{g}^{}$ m	$_{q}, m_{g} + \sim 500 \text{ GeV/c}^{2}$
•	SUSY parameters		
	 Decay chains 	NA	Possible
•	Extending coverage of MSSM Higgses		
	 Single Higgs discovery limit 	m _A r	$n_{A} + \sim 100 \text{ GeV/c}^{2}$
•	Strong V _L V _L scattering		
	- W ⁺ _L W ⁺ _L scattering excess	2~3 σ	5~8 σ
	- Scalar resonance $Z_L Z_L \rightarrow 4$ leptons	NA	Possible
•	Extra Gauge Bosons		
	- mZ', mW'	$\sim 5.5 \text{ TeV/c}^2$	$\sim 6.5 \text{ TeV/c}^2$

ATLAS Upgrade

- Prepare for luminosity of 10³⁵ cm⁻²s⁻¹
 - Integrated luminosity of 1000 fb⁻¹ per year
- Least demanding option: 12.5 ns beam crossing
 - Use 25 ns readout, i.e., same electronics for Muon and Calorimeter systems
 - accumulate 2 bunch crossings per readout
 - No. of pile-up events ~ 200 at 10^{35} cm⁻²s⁻¹ (LHC: 19 at 10^{34})
- Trigger (L1) : largely to be replaced
- Muon system: ~OK
 - Reduced η coverage ($|\eta| < 2.0$) to reinforce forward shielding
- Calorimeters: ~OK
 - Pile-up noise ~x3 tolerable
- Inner tracker: to be replaced due to occupancy and radiation fluence
 - TRT -> silicon strips (SCT)
 - SCT -> improved granularity and more radiation tolerant strips (SCT)
 - PIXEL -> more radiation tolerant pixels (PIXEL)
- Physics
 - Similar performance as of LHC

Inner Detector Upgrade

- Luminosity of 10³⁵ cm⁻²s⁻¹
 - E.g. Strip sensor design optimization in multi-parameter space
- Integrated luminosity of 3000 fb⁻¹
 - Particle fluence
 - Radiation damages
- Silicon sensors development
 - New PIXEL
 - New SCT

Occupancy

- Scaled occupancy
 - Scaled per area and pile-up events/readout
 - %/mm²/events
 - Ready for estimation of a case
 - 200 pile-up events
 - Occupancy for an area (= pitch x length) at any radii
 - Based on an occupancies calculation
 - 230 events/per readout
 - Pixels (50um x 400um)
 - Strips (50um x 6cm)
 - Occupancy
 - Mean
 - Typical r.m.s. 50~70%*mean

Strip Sensor Design Optimization

- Physics performance
 - e.g. Pitches at Radii
- Occupancy limit (e.g., ~1%)
 - (Pitch*Length) at Radii
- Maximum use of 6-inch Wafer
 - Width (=#strips*pitch)*Length
- Mechanical packaging
 - Width
- Cost

Y. Unno, Vetex2005, Nikko, 7-11 Nov. 2005

Particle Fluence

- with Poly-moderator (>5cm thick) to substitute TRT
- >65% at R >50 cm
- need proper account of proton and neutron damages

Radiation damage - Full Depletion Voltage

- Key word: High resistivity silicon
 - Measurements e.g., RD50
 - FDV for 300 um thick silicon
- n-bulk wafers availability
 - n-FZ(~4k) available
 - n-MCz not readily available
 - -4 kOhm·cm = ~ 80 V
- p-bulk wafers availability
 - p-FZ(~3k) available
 - p-MCz(0.5~1k) available
 - -1 kOhm·cm = ~ 950 V
 - FDV(p-FZ(3k))~FDV(p-MCz(1k) ?
- Relation
 - $V(p)/V(n)=3*\rho(n)/\rho(p)$
 - Factor 3 comes from mobility

Fig. 1. Comparison of standard (FZ) and oxygenated (DOFZ) Float Zone silicon with Czochralski (CZ) and Magnetic Czochralski (MCZ) silicon detectors in a CERN irradiation scenario with 23 GeV protons [13].

Radiation damage - Charge trapping

Fig. 2. Collected charge as a function of the 23 GeV proton fluence for standard and oxygenated n-in-p miniature microstrip detectors (source: Ru^{106} , chip: SCT128A–40 MHz, 800–900 V applied to irradiated devices, measured at -20 °C) [25].

p-bulk

- $1 \times 10^{15} \text{ p/cm}^2$
 - 70%~90% CCE, p-bulk different from n-bulk?
- $1 \times 10^{16} \text{ p/cm}^2$
 - ∼20% CCE

Silicon Sensor Development - PIXEL

- Planar electrode
 - Measurements with Deeply Oxygenated FZ n-in-n sensor (present PIXEL)
 - $1x10^{16} \text{ p/cm}^2 (= -0.7x10^{16} \text{ n-eq/cm}^2)$
 - Operation at 600V, depletion thickness ~ 100 un
 - ~20% CCE after charge trapping
 - Collected charge ~ 3,000 e
 - Wafers
 - DOFZ, MCZ, EPI, a-Si:H
- 3D electrode, e.g.
 - n/p alternating pillars
 - 100 um distance, e.g.
 - Full thickness is sensitive, 300 um
 - Collected charge ~ 10,000 e?
- n-readout for collecting electrons
 - for faster charge collection and less ballistic deficit?

Silicon Sensor Development - SCT

- Silicon microstrip sensors
 - Region 30cm ~ 60 cm: $1x10^{15} \text{ p/cm}^2$
 - FDV 600~800V (?) for 300 um
 - Neutrons >50%
 - Prepare for partial depletion
 - n-strip: collecting electrons?
 - Faster charge collection for less ballistic deficit
 - n-strip in p-bulk (n-in-p) than n-strip in n-bulk (n-in-n) for cost reason
 - FDV: p-MCz vs. p-FZ bulk
 - n-strips isolation with p-implantation
 - Region ~80 cm: $3x10^{14}$ p/cm²
 - Same fluence as present LHC, but neutrons dominate
 - FDV ~300V(?) for 300 um
 - n-strip vs. p-strip
 - Faster charge collection -> n-strip
 - FDV: p-MCz, p-FZ, n-FZ

Silicon Sensor Development - SCT

• R&D

- p-MCz vs. p-FZ
 - with industry wafers available in quantity
 - FDV with irradiations (p and n)
 - Thermal donor effect?
- n-strip isolation

p-bulk Y. Unno, Vetex2005, Nikko, 7-11 Nov. 2005

Silicon Sensor Development - SCT

- n-strip isolation study
 - in 4-inch wafer
 - 2 segments (~3cm)
 - p-stop doping level
 - being processed

Locations of miniature and test sensors TBD

Summary

- SLHC upgrade is foreseen in ~2015
 - IR Q-magnet radiation damage
- Luminosity upgrade
 - $\sim 10^{35}$ cm⁻²s⁻¹ by x1.7 protons/bunch, x1/2 bunch length, x2 bunches
- ATLAS upgrade
 - Inner tracker to be replaced for all silicon
- Silicon sensor developments
 - PIXEL
 - $1x10^{16} \text{ p/cm}^2$
 - Planar (DOFZ, MCZ, EPI, a-Si:H) or 3D electrodes
 - SCT (silicon microstrip sensors)
 - $1x10^{15}$ and $3x10^{14}$ p/cm²
 - Design optimization in multi-parameter space
 - Occupancy, Pitch, No. of strips, Width, Length, Radius, Physics performance, ...
 - R&D for partial depletion and less ballistic deficit
 - p-MCZ vs. p-FZ
 - n-strip isolation

References

- [LHC upgrade]
 - F. Ruggiero, ATLAS upgrade workshop, Genova, July 2005
- [Physics Motivations]
 - F. Gianotti et al., CERN-TH/2002-078
- [Occupancy]
 - P. Nevski et al., ATLAS upgrade workshop, Genova, July 2005
- [Particle Fluence]
 - S. Baranov et a., ATL-GEN-2005-1
- [Radiation Damage]
 - M. Moll et al., Nucl. Instr. Meth. A546 (2005)99-107
- [Silicon Sensor Development PIXEL]
 - Olaf Krasel, Thesis Dortmund
 - S. Parker, 3D sensor
- [Silicon Sensor Development SCT]
 - S. Terada et al., Nucl. Instr. Meth. A 383 (1996) 159-165