Characterization of micro-strip detectors made with high resistivity n- and p-type Czochralski silicon *A. Macchiolo INFN and Università di Firenze* on behalf of the SMART Collaboration*

* A Collaboration of the INFN sections of Bari, Firenze, Padova, Perugia, Pisa

Motivations

- * Layout and materials used in the production of the SMART mini-sensors
- Pre-irradiation measurements and irradiation campaigns
- **Results of the post-irradiation measurements**
- Conclusions and outlook

Motivations

•A foreseen LH	Cupgrade la	ter than 2010
	LHC	SLHC
Beam energy	7 Tev	12.5 TeV
Luminosity	$10^{34} \text{ cm}^{-2} \times \text{s}^{-1}$	$10^{35} \text{ cm}^{-2} \times \text{s}^{-1}$

✓ The R&D activity of the SMART Collaboration on the µstrip sensors aims to find a solution for the tracker of the SLHC experiments at intermediate radii, where the fast-hadrons fluences will be around 10^{15} cm⁻².

Radial distances of the 'present' CMS Tracker		Fluences foreseen at S-LHC		
Pixel:	4 cm	=>	1.6×10 ¹⁶ cm ⁻²	
	11 cm	=>	2.3×10 ¹⁵ cm ⁻²	
Microstrip:	22 cm	=>	8×10 ¹⁴ cm ⁻²	
	115 cm	=>	1×10 ¹⁴ cm ⁻²	

7th International Conference on Position Sensitive Detectors

Wafer layout

 \checkmark

Round MG-diodes

RD50 common wafer procurement

- ✓ Wafer Layout designed by the SMART Collaboration
- ✓ Masks and process by ITC-IRST
- ✓ 10 different strip geometries to explore their influence on the detector performances

µ-strip#	pitch (µm)	p+ width (µm)	Metal width (µm)
S1	50	15	23
S2	50	20	28
S3	50	25	33
S4	50	15	19
S5	50	15	27
S6	100	15	23
S 7	100	25	33
S 8	100	35	43
S9	100	25	37
S10	100	25	41

SMART

Materials under investigation

See accompanying poster by G. Segneri et al.

"Radiation hardness of high resistivity n- and p-type magnetic Czochralski silicon" for the studies on the pre- and post-irradiated materials performed on the diodes of these production runs.

MCz Samples

p-on-n MCz <100>, ρ>500 Ω cm
✓ Standard: LTO, sintering @ 420C
✓ no LTO, sintering @ 380C
✓ no LTO, sintering @ 350C
✓ no LTO, sintering @ 380C + TDK

Fz Samples

p-on-n Fz <111>, ρ>6KΩ cm ✓ Standard Process ✓ sintering @ 380C

RUN II n-on-p

RUN I

p-on-n

n-on-p MCz <100>, ρ>1.8 KΩ cm
✓ No over-glass passivation
✓ Low dose p-spray (3.0E12 cm⁻²)
✓ High dose p-spray(5.0E12 cm⁻²)

n-on-p Fz , 200 μ m, ρ >5K Ω cm \checkmark Low dose p-spray (3.0E12 cm⁻²) \checkmark High dose p-spray(5.0E12 cm⁻²)

Pre-irradiation Characterization

ΙΝΓΝ

 \checkmark Good performances of the n-type detectors in \checkmark Problems for the p-type detectors: terms of breakdown voltages and uniformity

 \diamond low breakdown voltages for the 100 μ m pitch detectors, probably due to the present implementation of the p-spray technique

* Disuniformity of the wafer resistivity, explained with a different oxygen concentration leading to a spread in the thermal donor activation.

Map of the diodes Vdepl in a p-type MCz wafer

Measured in IRST

Measurement with a β source

A few mini-sensors have been assembled in a detector unit and tested with a LHC-like DAQ system

Measurement with a β source:

- DAQ system configured in *peak mode*
- Measurement performed at over-depletion for not-irradiated sensors

 $\begin{array}{ccc} MCz & Q=17.8 \pm 0.2, & N=1.02 \\ & S/N \sim 17.5 @ 500 V \\ \hline Fz & Q=18.8 \pm 0.3, & N=0.98 \\ & S/N \sim 19.2 @ 200 V \end{array}$

INFN

Irradiation Campaigns

Preliminary Results of Post-Irradiation Measurements

 (\mathbf{F})

Leakage Current

1.0E-03

1.0E-04

1.0E-05

1.0E-06

IV Characteristics after irradiation

Performances of p-type detectors

Detectors with a high p-spray dose still have breakdown problems at lower fluences (< 4.0 1-MeV n/cm²) whereas they have very good performances at the highest fluences. The performances of Fz and MCz ptype detectors, comprising sensors with 100 µm pitch, are much improved after irradiation.

' N F N

Sensors with low p-spray have breakdown voltages comparable with ntype detectors in all the fluence range.

Depletion Voltages after Irradiation

Depletion Voltages after Irradiation

The depletion voltages of the minisensors follow the expected trends from the studies on the corresponding diodes (see accompaning poster).

DURING

ANNEALING

Inter-strip Capacitance after Irradiation

 \bullet One of the most important sensor parameters contributing to the determination of the S/N ratio .

* Depends on the width/pitch ratio of the strips and on the strip isolation technique.

* Post-irradiation behaviour affected by the surface damage (positive charges introduced in the SiO_2 layer and at the Si- SiO_2 interface).

Inter-strip Capacitance after Irradiation

 \bullet One of the most important sensor parameters contributing to the determination of the S/N ratio .

* Depends on the width/pitch ratio of the strips and on the strip isolation technique.

* Post-irradiation behaviour affected by the surface damage (positive charges introduced in the SiO_2 layer and at the Si- SiO_2 interface).

Before Annealing

During Annealing

Summary and Outlook

✓ The MCz detectors of the SMART production are fully comparable with Fz regarding leakage currents values and breakdown voltages.

✓ Depletion voltages follow the different behaviour in the two materials observed in the corresponding diodes.

 \checkmark A new production run is foreseen to study an improved strip isolation technique for the p-type detectors.

✓ The study of the detectors properties during the annealing procedure must be completed.

✓ Measurements of the Charge Collection Efficiency of irradiated MCz detectors are under way.