

Physics Perspectives for a -Super LHC-

Albert De Roeck CERN

FNAL October 2003

SLHC prospects

LHC Status/plans

Date for first beams/collisions:

- Initial physics run starts in summer/fall 2007 \Rightarrow collect ~10 fb⁻¹ /exp (2.10³³cm⁻² s⁻¹) by early 2008
- Depending on the evolution of the machine... \Rightarrow collect 200-300 fb⁻¹ /exp (3.4-10.10³³cm⁻² s⁻¹) in 5-6 years time

Already time to think of upgrading the machine

Two options presently discussed/studied

- •Higher luminosity $\sim 10^{35}$ cm⁻² s⁻¹ (SLHC)
 - -Needs changes in machine and and particularly in the detectors

 \Rightarrow Start change to SLHC mode some time 2013-2016

- \Rightarrow Collect ~3000 fb⁻¹/experiment in 3-4 years data taking.
- •Higher energy?

-LHC can reach \sqrt{s} = 15 TeV with present magnets (9T field) - \sqrt{s} of 28 (25) TeV needs ~17 (15) T magnets \Rightarrow R&D needed!

SLHC prospects

Large Hadron Collider Project

LHC Project Report 626

LHC Luminosity and Energy Upgrade: A Feasibility Study

O. Brüning[§], R. Cappi[‡], R. Garoby[‡], O. Gröbner[†], W. Herr[§], T. Linnecar[§], R. Ostojic[†], K. Potter^{*}, L. Rossi[†], F. Ruggiero[§] (editor), K. Schindl[‡], G. Stevenson[¶], L. Tavian[†], T. Taylor[†], E. Tsesmelis^{*}, E. Weisse[§], and F. Zimmermann[§]

Upgrade in 3 main Phases:

- Phase 0 maximum performance without hardware changes Only IP1/IP5, N_b to beam beam limit \rightarrow L = 2.3•10³⁴ cm⁻² s⁻¹
- Phase 1 maximum performance while keeping LHC arcs unchanged Luminosity upgrade (β *=0.25m,#bunches,...) $\rightarrow L = 5-10 \cdot 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- Phase 2 maximum performance with major hardware changes to the LHC Energy (luminosity) upgrade $\rightarrow E_{beam}$ = 12.5 TeV

FNAL October 2003

SLHC prospects

parameter	nom.	ult.	upgr	ades	
no. of bunches n_b	2808	2808	2808	1	
rms bunch length	7.6	7.6	7.6,	7500	Latest parame
σ_z [cm]			4.2		set:
rms energy spread	1.1	1.1	1.1,	5.8	F. Ruggiero et
$\sigma_{\delta} [10^{-4}]$			3.7		PAC2003 reno
beta at IP [m] β^*	0.5	0.5	0.25	0.25	May 2003
crossing angle	300	315	485	1000	May 2005
θ [µrad]					
beam current	0.56	0.86	1.3,	1.0	
I_b [A]			1.3		
luminosity $L [10^{34}]$	1	2.3	7.3,	9.0	A luminosit
$cm^{-2}s^{-1}$]			9.7		$ 10^{35} \text{cm}^{-2}$
σ_{δ} IBS growth time	134	86	56,	1712	seems poss
$\tau_{\rm IBS}$ [h]			674		

(*) Superbunch: 1 bunch of 75 m (rms) in each ring Good for electron cloud effects/bad for experiments: 50000 events/25 ns slice

FNAL October 2003

SLHC prospects

Detectors: General Considerations

	LHC	SLHC	_1
√s Luminosity Bunch spacing ∆t	14 TeV 10 ³⁴ 25 ns	14 TeV 10 ³⁵ 12.5/25 ns	
σ _{pp} (inelastic) N. interactions/x-ing (N=L σ _{pp} Δt) dN _{ch} /dη per x-ing <e<sub>T> charg. particles</e<sub>	~ 80 mb ~ 20 ~ 150 ~ 450 MeV	~ 80 mb ~ 100/200 ~ 750/1500 ~ 450 MeV	
Tracker occupancy Pile-up noise in calo Dose central region	1 1 1	5/10 ~3 10	Normalised to LHC values. 10 ⁴ Gy/year R=25 cm

In a cone of radius = 0.5 there is $E_T \sim 80$ GeV. This will make low E_t jet triggering and reconstruction difficult.

FNAL October 2003

SLHC prospects

FNAL October 2003

SLHC prospects

Luminosity effects

$H{\rightarrow}ZZ \rightarrow \mu\mu ee$ event with $M_{H}\text{=}$ 300 GeV for different luminosities

FNAL October 2003

SLHC prospects

Detectors Upgrades for SLHC

- \bullet Modest upgrade of ATLAS, CMS needed for channels with hard jets, μ , large E_{T}^{miss}
- Major upgrades (new trackers ..) for full benefit of higher L:
 e[±] ID, b-taq, τ-taq, forward jet tagging (?)

Jet E-resolution η = 0

E _T (GeV)	10 ³⁴	10 ³⁵
50	15%	40%
300	5%	8%
1000	3.5%	4%

u-jet rejection factor for ϵ (b)=50%

p _T (GeV)	10 ³⁴	10 ³⁵
30.45	35	1
60-100	190	30
100-200	300	115
200-350	90	40

assuming same 2-track resolution at 10^{35} as at 10^{34}

R&D	necessary
hep-p	h/0204087

Assumptions for the study

Detector Performance

- performance at $L = 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ is comparable to that at $10^{34} \text{ cm}^{-2} \text{s}^{-1}$!!
- Integrated Luminosity per Experiment
 - 1000 (3000) fb⁻¹ per experiment for 1 (3) year(s) of at $L = 10^{35}$ cm⁻² s⁻¹.

FNAL October 2003

SLHC prospects

The use/need for for the SLHC will obviously depend on how EWSB and/or the new physics will manifest itself Likely this will only be answered by LHC itself (except if the Tevatron...)

What will the HEP landscape look like in 2012??

Rough expectation for the SLHC versus LHC

- Improvement of SM/Higgs parameter determination
- Improvement of New Physics parameter determinations, if discovered
- Extension of the discovery reach in the high mass region
- Extension of the sensitivity of rare processes

Extending the Physics Potential of LHC

- Electroweak Physics
 - production of multiple gauge bosons ($n_V \ge 3$)
 - triple and quartic gauge boson couplings
 - top quarks/rare decays
- Higgs physics
 - rare decay modes
 - Higgs couplings to fermions and bosons
 - Higgs self-couplings
 - · Heavy Higgs bosons of the MSSM
- Supersymmetry
- Extra Dimensions
 - Direct graviton production in ADD models
 - Resonance production in Randall-Sundrum models TeV⁻¹ scale models
 - Black Hole production
- Quark substructure
- Strongly-coupled vector boson system
 - $W_L Z_L g W_L Z_L$, $Z_L Z_L$ scalar resonance, $W_L^* W_L^*$
- New Gauge Bosons

FNAL October 2003

SLHC prospects

PHYSICS POTENTIAL AND EXPERIMENTAL CHALLENGES OF THE LHC LUMINOSITY UPGRADE

Conveners: F. Gianotti ¹, M.L. Mangano ², T. Virdee ^{1,3}

Contributors: S. Abdullin ⁴, G. Azuelos ⁵, A. Ball ¹, D. Barberis ⁶, A. Belyaev ⁷, P. Bloch Bosman ⁸, L. Casagrande ¹, D. Cavalli ⁹, P. Chumney ¹⁰, S. Cittolin ¹, S.Dasu ¹⁰, A. De Roeck Ellis ¹, P. Farthouat ¹, D. Fournier ¹¹, J.-B. Hansen ¹, I. Hinchliffe ¹², M. Hohlfeld ¹³, M. Huhtin K. Jakobs ¹³, C. Joram ¹, F. Mazzucato ¹⁴, G.Mikenberg ¹⁵, A. Miagkov¹⁶, M. Moretti¹⁷, S. Morett T. Niinikoski ¹, A. Nikitenko^{3,†}, A. Nisati ¹⁹, F. Paige²⁰, S. Palestini ¹, C.G. Papadopoulos²¹, F. Picc R. Pittau²², G. Polesello ²³, E. Richter-Was²⁴, P. Sharp ¹, S.R. Slabospitsky¹⁶, W.H. Smith ¹⁰, S. nes ²⁵, G. Tonelli ²⁶, E. Tsesmelis ¹, Z. Usubov^{27,28}, L. Vacavant ¹², J. van der Bij²⁹, A. Watse M. Wielers ³¹

Include pile up, detector...

Preliminary...

 $\label{eq:triple/quartic Gauge couplings} Production of multiple gauge bosons: statistics limited at LHC E.g. # events with full leptonic decays, Pt>20 GeV/c, |\eta|<2.5, 90% eff for 6000 fb⁻¹$

Process	WWW	WWZ	ZZW	ZZZ	WWWW	WWWZ	
$N(m_H=120 \text{ GeV})$	2600	1100	36	7	5	0.8	quintuple
$N(m_H=200 \text{ GeV})$	7100	2000	130	33	20	1.6	couplings?

Coupling	14 TeV	14 TeV	28 TeV	28 TeV	LC	
	$100 {\rm fb}^{-1}$	1000fb^{-1}	100 fb^{-1}	$1000 {\rm fb}^{-1}$	$500 \text{fb}^{-1}, 500 \text{GeV}$	-
λ_{γ}	0.0014	0.0006	0.0008	0.0002	0.0014	Triple gaug
λ_Z	0.0028	0.0018	0.0023	0.009	0.0013	couplings:
$\Delta \kappa_{\gamma}$	0.034	0.020	0.027	0.013	0.0010	Ŵv.ŴZ
$\Delta \kappa_Z$	0.040	0.034	0.036	0.013	0.0016	production
g_1^Z	0.0038	0.0024	0.0023	0.0007	0.0050	production

Use only muon and photon final state channels, statistical errors only \Rightarrow Equal or better than LC for λ type of couplings, worse for κ

FNAL October 2003

SLHC prospects

Electroweak Physics

Triple gauge couplings: sensitivity

CMS.

In diment I invite

w⁺w⁻

0.01

0

0.02

0.03

1 11C 6000 A -1

Quartic Gauge Couplings

study pp \rightarrow qqVV \rightarrow jjVV (V=W,Z)

LUC 100 ft-1

	inquiect Litints	LIIC, 100 ID	LIIC, 0000 ID	LIIC, 0000 ID
pling	(1σ)	(1σ)	(1σ)	95% C.L.
	(×10 ⁻³)	$(\times 10^{-3})$	$(\times 10^{-3})$	(×10 ⁻³)
α4	$-120. \le \alpha_4 \le 11.$	$-1.1 \le \alpha_4 \le 11.$	$-0.67 \le \alpha_4 \le 0.74$	$-0.92 \le \alpha_4 \le 1.1$
α_5	$-300. \le \alpha_5 \le 28.$	$-2.2 \le \alpha_5 \le 7.7$	$-1.2 \le \alpha_5 \le 1.2$	$-1.7 \le \alpha_5 \le 1.7$
α6	$-20. \le \alpha_6 \le 1.8$	$-9.6 \le \alpha_6 \le 9.1$	$-3.5 \le \alpha_6 \le 3.2$	$-4.3 \le \alpha_6 \le 3.9$
α_7	$-19. \le \alpha_7 \le 1.8$	$-10. \le \alpha_7 \le 7.4$	$-4.4 \le \alpha_7 \le 2.2$	$-5.4 \le \alpha_7 \le 2.8$
¥10	$-21. \le \alpha_{10} \le 1.9$	$-24. \le \alpha_{10} \le 24.$	$-4.1 \le \alpha_{10} \le 4.1$	$-4.8 \le \alpha_{10} \le 4.8$

LUC 6000 d -1

FNAL October 2003

SLHC prospects

Top Quark

LHC: $\Delta M(top)$ down to 1.0 GeV (and ΔM_W down to 15 MeV)

 \Rightarrow Limited by systematics/no significant improvement expected

Statistics can still help for rare decays

 6000 fb^{-1}

	b-tagging	ideal	real.	μ -tag		- Deculte in unite of 10-5
	600 fb ⁻¹	0.48	0.88	3.76		Results in units of 10
I→qγ	6000 fb ⁻¹	0.14	0.26	0.97		Ideal = MC 4-vector
						Real = B-tagging/cuts
	b-tagging	ideal	real.	μ -tag		as for 10 ³⁴ cm ⁻² s ⁻¹
$+ \lambda a a$	600 fb ⁻¹	22.3	60.8	210.		μ-tag = assume only B-tag
t→qg	6000 fb ⁻¹	7.04	19.2	66.2		with muons works
					_	at 10 ³⁵ cm ⁻² s ⁻¹
	b-tagging	ideal	real.	μ -tag		
$+ \sqrt{7}$	600 fb^{-1}	0.46	1.1	83.3		

8.3

Can reach sensitivity down to ~10⁻⁶ BUT vertex b-tag a must at 10³⁵cm⁻²s⁻¹

0.11

FNAL October 2003

SLHC prospects

0.05

Higgs at SLHC

Ŷ

Higgs couplings!

Couplings obtained from measured rate in a given production channel:

- $R_{ff} = \int L \, dt \bullet \sigma \, (e^+e^-, pp \to H + X) \bullet BR \, (H \to ff) \qquad BR \, (H \to ff) = \frac{\Gamma_f}{\Gamma_{cr}} \qquad \to \text{ deduce } \Gamma_f \sim g^2_{Hff}$
- Hadron Colliders: Γ_{tot} and σ (pp \rightarrow H+X) from theory \rightarrow without theory inputs measure ratios of rates in various channels (Γ_{tot} and σ cancel) $\rightarrow \Gamma_{f}/\Gamma_{f'}$

SLHC could improve LHC precision by up to ~ 2

FNAL October 2003

SLHC prospects

Rare Higgs Decays

DD ... 10-4 for the de chonneld

Channels studied: • $H \rightarrow Z\gamma \rightarrow \ell\ell$?γ		Cross section ~ few fb					
• Η → μμ	m_H (GeV 120 GeV 130 GeV 140 GeV	() S/\sqrt{B} 7.9 7.1 5.1 2.8	$\frac{\delta\sigma \times \text{BR}(H \to \mu\mu)}{\sigma \times \text{BR}}$ 0.13 0.14 0.20		3000 f	b-1		
		150 000	2.0	0.50	1			
Channel	m _H		S/√B Lŀ	1C	S/∖	B SLHC		
			(600 fb ⁻¹)	(60)00 fb ⁻¹)		
$H \to Z\gamma \to \ell \ell \gamma$	~ 14C) GeV	~ 3.5		~	11		
$H \rightarrow \mu\mu$	130) GeV	~ 3.5 (qq	+VBF)	~	9.5 (gg)		

Additional coupling measurements : e.g. Γ_{μ}/Γ_{W} to ~ 20%

Note: also a challenge at a LC: e.g. $\Delta g_{\mu\mu\mu} \sim 16$ % for 1 ab⁻¹ at 800 GeVFNAL October 2003SLHC prospectsAlbert De Roeck (CERN) 16

Higgs Self Coupling Measurements

Once the Higgs particle is found, try to reconstruct the Higgs potential

$$V(\Phi) \,=\, -\lambda v^2 (\Phi^\dagger \Phi) \,+\, \lambda (\Phi^\dagger \Phi)^2$$

WW:ZZ ≈ 2.3

120

140

160

100

Η

Difficult/impossible at the LHC

FNAL October 2003

CMS

0.8 -

0.6 -

0.4 -

0.2 -0

-0.2-0.4

-0.6

-0.8

-1

1 ^{''} 0.75

0.5 0.25

0 -0.25

SLHC prospects

0.190

Albert De Roeck (CERN) 17

180 190 M_H[GeV]

LHC : σ (pp \rightarrow HH) < 40 fb m_H > 110 GeV + small BR for clean final states \rightarrow **no sensitivity** Atlas Study Detector Simulation

SLHC : $HH \rightarrow W^+ W^- W^+ W^- \rightarrow \ell^{\pm} \nu j j \ell^{\pm} \nu j j$ studied

6000 fb ⁻¹	S	S/B	S/√B	Mass (GeV)	200	200 (fit)	170
				$\frac{d\sigma}{\sigma}$	27%	17%	20%
m _H = 170 GeV	350	8%	5.4	$\frac{d\lambda}{\lambda}$	25%	15%	19%
m _u = 200 GeV	220	1%	3.1				·

-- HH production may be observed for first time at SLHC: ~150 < $M_{\rm H}$ <200 GeV -- λ may be measured with statistical error ~ 20-25%

LC : precision up to 20-25% but for $M_{H} < 150 \text{ GeV}$ ($\sqrt{s} \ge 500-800 \text{ GeV}$, 1000 fb⁻¹) or to ~7-10% for $M_{H} < 200 \text{ GeV}$ ($\sqrt{s} \ge 3 \text{ TeV}$, 5000 fb⁻¹)

FNAL October 2003

SLHC prospects

Higgs Self Coupling

Baur, Plehn, Rainwater $HH \rightarrow W^+ W^- W^+ W^- \rightarrow \ell^{\pm} \nu j j \ell^{\pm} \nu j j$

Limits achievable at the 95% CL. for $\Delta\lambda = (\lambda - \lambda_{SM})/\lambda_{SM}$

CMS

Higgs Self Coupling for low M_H

	1	$m_H = 120$ G	leV	1	$n_{H} = 140 { m G}$	eV
machine	"hi"	"lo"	bkg. sub.	"hi"	"lo"	bkg. sub.
LHC, 600 $\rm fb^{-1}$	$^{+1.9}_{-1.1}$	$^{+1.6}_{-1.1}$	$^{+0.94}_{-0.74}$	_	_	_
SLHC, 6000 $\rm fb^{-1}$	$^{+0.82}_{-0.66}$	$^{+0.74}_{-0.62}$	$^{+0.52}_{-0.46}$	$\substack{+1.7\\-0.9}$	$^{+1.4}_{-0.8}$	$^{+0.76}_{-0.58}$
VLHC, 600 $\rm fb^{-1}$	$^{+0.44}_{-0.42}$	$^{+0.42}_{-0.40}$	$^{+0.32}_{-0.30}$	$^{+0.82}_{-0.62}$	$^{+0.66}_{-0.54}$	$^{+0.38}_{-0.34}$
VLHC, 1200 fb ⁻¹	$^{+0.32}_{-0.30}$	$^{\rm +0.30}_{\rm -0.28}$	$^{+0.26}_{-0.22}$	$^{+0.76}_{-0.58}$	$^{+0.62}_{-0.50}$	$^{+0.36}_{-0.32}$

Needs accurate prediction of the bbyy background rate Needs detector simulation

Albert De Roeck (CERN) 20

FNAL October 2003

SLHC prospects

Supersymmetry

Impact of the SLHC Extending the discovery region by roughly 0.5 TeV i.e. from \sim 2.5 TeV \rightarrow 3 TeV

This extension involved high E_T jets/leptons and missing E_T ⇒ Not compromised by increased pile-up at SLHC

FNAL October 2003

SLHC prospects

SUSY Measurements

Benchmark points (Battaglia et al./2001) Difficult points F,H,K, (M) ...high masses/low event rate High Luminosity beneficial to complete further the spectra

FNAL October 2003

SLHC prospects

Proposed Post-LEP Benchmarks for Supersymmetry (hep-ph/0106204)

Model	A	B	C	D	E	F	G	Н	I	J	K		M
$m_{1/2}$	600	250	400	525	300	1000	375	1500	350	750	1150	450	1900
m_0	140	100	90	125	1500	3450	120	419	180	300	1000	350	1500
$\tan eta$	5	10	10	10	10	10	20	20	35	35	35	50	50
$\operatorname{sign}(\mu)$	+	+	+	_	+	+	+	+	+	+	_	+	+
$\alpha_s(m_Z)$	120	123	121	121	123	120	122	117	122	119	117	121	116
m_t	175	175	175	175	171	171	175	175	175	175	175	175	175

Reconstruction of sbottom (770 GeV) and gluino (920 GeV) for 300 fb⁻¹ \Rightarrow will need more luminosity!

FNAL October 2003

SLHC prospects

FNAL October 2003

SLHC prospects

MSSM Higgs h,H,A,H[±]

Heavy Higgs observable region increased by ~100 GeV.

FNAL October 2003

SLHC prospects

FNAL October 2003

SLHC prospects

Extra Dimension Signals at the LHC

Graviton production! Graviton escapes detection

ADD type of ED's

Signal: single jet + large missing ET

Albert De Roeck (CERN) 27

FNAL October 2003

CMS

SLHC prospects

Extra Dimensions at (S)LHC

Large extra dimensions \rightarrow black holes in the lab?

A black hole event with $M_{BH} \sim 8$ TeV in ATLAS Spectacular signature !

...and in CMS

Black holes decay immediately ($\tau \sim 10^{-26}$ s) by Hawking radiation (democratic evaporation): large multiplicity, small missing E, jets/leptons ~ 5

FNAL October 2003

CMS

SLHC prospects

Black Holes

Example: Cross sections for black holes can be very large

May dominate the particle production at the LHC

But can also be statistics limited for large M_s and M_{BH} (add ~ 1 TeV)

FNAL October 2003

SLHC prospects

Other Extra Dimension Scenarios

FNAL October 2003

SLHC prospects

FNAL October 2003

SLHC prospects

Strongly Coupled Vector Boson System

If no Higgs, expect strong $V_L V_L$ scattering (resonant or non-resonant) at $\sqrt{\hat{s}} \approx TeV$

Difficult at LHC. What about SLHC?

- degradation of fwd jet tag and central jet veto due to huge pile-up
- BUT : factor ~ 10 in statistics \rightarrow 5-8 σ excess in W⁺_L W⁺_L scattering

 \rightarrow other low-rate channels accessible

Scalar resonance $Z_L Z_L \to 4\ell$

New Z' Gauge Bosons

Z' mass (TeV)	1	2	3	4	5	6		
$\sigma(Z' \to e^+ e^-)(fb)$	512	23.9	2.5	0.38	0.08	0.026	with Z-like	
$\Gamma_{Z'}$ (GeV)	30.6	62.4	94.2	126.1	158.0	190.0	couplings	

$\sqrt{\hat{s}} << \Lambda$: contact interactions $qq \rightarrow qq$

2-jet events: expect excess of high- E_T centrally produced jets.

 For this study, no major detector upgrade needed at SLHC (but b-jet tag may be important)

FNAL October 2003

SLHC prospects

Ellis, Gianotti, ADR hep-ex/0112004+ updates

Units are TeV (except W_LW_L reach)

[®]Ldt correspond to <u>1 year of running</u> at nominal luminosity for <u>1 experiment</u>

PROCESS	LHC 14 TeV 100 fb ⁻¹	SLHC 14 TeV 1000 fb ⁻¹	28 TeV 100 fb ⁻¹	VLHC 40 TeV 100 fb ⁻¹	VLHC 200 TeV 100 fb ⁻¹	LC 0.8 TeV 500 fb ⁻¹	LC 5 TeV 1000 fb ⁻¹
Squarks	2.5	3	4	5	20	0.4	2.5
WLWL	2σ	4σ	4.5σ	7σ	18 σ		90 σ
Ζ'	5	6	8	11	35	8†	30†
Extra-dim (δ=2)	9	12	15	25	65	5-8.5 ⁺	30-55†
q*	6.5	7.5	9.5	13	75	0.8	5
Acompositeness	30	40	40	50	100	100	400
TGC (λ _γ)	0.0014	0.0006	0.0008		0.0003	0.0004	0.00008

† indirect reach
(from precision measurements)

Approximate mass reach machines:

√s = 14 TeV	, L=10 ³⁴ (LHC)	:	up to $pprox$	6.5 TeV
√s = 14 TeV	, L=10 ³⁵ (SLHC)	:	up to \approx	8 TeV
√s = 28 TeV	′, L=10 ³⁴	:	up to \approx	10 TeV

FNAL October 2003

SLHC prospects

The LHC luminosity upgrade to 10³⁵ cm⁻²s⁻¹ (SLHC)

- Allows to extend the LHC discovery mass/scale range by 25-30%
- Could allow the first measurement of Higgs self-coupling (20-30%)
- Allows further access to rear decays such as $H \rightarrow \mu\mu$, γZ , rare top decays...
- Improved precision on TGCs, Higgs branching ratios,...

It will be a challenge for the experiments/needs detector R&D starting now especially if one wants to be ready to "go" soon after 2013-2014

In general: SLHC looks like giving a good physics return for modest cost. \Rightarrow Get the maximum out of the (by then) existing machine

An LHC energy upgrade to \sqrt{s} ~ 28 TeV

- Will extend the LHC mass range by factor 1.5
- Will be easier to exploit experimentally (at 10³⁴ cm⁻²s⁻¹)
- Is generally more powerful than a luminosity upgrade
- Needs a new machine, magnet& machine R&D, and will not be cheap

Expected Detector Performance

The main challenge will be for the detectors

D. Green

Tracking and b-tagging

- isolated high p_T (> 20 GeV) tracks it should be possible to maintain similar efficiency and momentum resolution
- without a tracker upgrade, for fixed b-tagging efficiency, rejection against light quarks will deteriorate by factor 8-3 ($p_T \sim 50-200 \text{ GeV}$)
- Electron identification and measurement
 - For electron efficiency of 80% jet rejection decreases by ~ 50%
- Muon identification and measurement
 - If enough shielding is provided expect reconstruction efficiency and momentum resolution not to deteriorate much
- Forward jet-tagging and central veto
 - Essential handle to increase S/N for WW and ZZ fusion processes
 - Performance will be significantly degraded though algorithms could be optimised
- Trigger
 - high thresholds for inclusive triggers; use of exclusive triggers selecting specific final states, pre-scaling

FNAL October 2003

SLHC prospects

• Large partonic cross-section : $\sigma(ij \rightarrow BH) \sim \pi R_s^2$ • $\sigma(pp \rightarrow BH)$ is in the range of 1 nb - 1 fb e.g. For M_b ~1 TeV and n=3, produce 1 event/second at the LHC

Black holes decay immediately by Hawking radiation (democratic evaporation):

- -- large multiplicity
- -- small missing E
- -- jets/leptons ~ 5

FNAL October 2003

expected signature (quite spectacular ...)

SLHC prospects