Characterization of n-on-p detectors with different p-stop and p-spray structures by simulations and measurements

Tanja Palviainen^a, Tuure Tuuva^a, Jaakko Härkönen^b, Esa Tuovinen^b, Panja Luukka^b

^aLappeenranta University of Technology (LUT), Laboratory of Microelectronics, P.O.Box 20, FIN-53851 Lappeenranta, Finland ^bHelsinki Institute of Physics (HIP), CMS Program, Finland

In this paper the simulation and measurement results of the n-on-p MCz-Si detector structures are described. The five different p-stop and p-spray ion implantation combinations are researched. The combinations are:

- 1) p-stop 1×10^{15} cm⁻² only 2) p-stop 1×10^{15} cm⁻² and p-spray 1×10^{12} cm⁻² 3) p-stop 1×10^{15} cm⁻² and p-spray 3×10^{12} cm⁻² 4) p-stop 1×10^{15} cm⁻² and p-spray 5×10^{12} cm⁻² 5) p-spray 3×10^{12} cm⁻².

The diodes are electrically characterized by C-V and I-V measurements.

The computer simulations of the n-on-p strip detector are done using Silvaco Virtual Wafer Fab (VWF) software. The cross-section of the n-on-p strip detector is simulated in twodimensions with different dose of p-stop and p-spray. Simulation and measurement results are compared.