Conformality Lost

J.-W. Lee
D.T. Son
M. Stephanov
D.B.K

arXiv:0905.4752
Motivation: QCD at LARGE N_c and N_f

Define $x = N_f/N_c$, treat as a continuous variable

\[
\begin{aligned}
\text{asymptotic freedom} & \quad \langle \overline{\psi} \psi \rangle \neq 0 & \quad \text{conformal} & \quad 11/2 & \quad \text{trivial} & \quad x \\
0 & \quad x_c
\end{aligned}
\]
Motivation: QCD at LARGE N_c and N_f

Colors
Flavors

Define $x = N_f/N_c$, treat as a continuous variable

\[
\langle \bar{\psi}\psi \rangle \neq 0
\]

\[
\alpha^*\quad \text{Banks-Zaks fixed point}
\]

\[
\text{Nucl.Phys.B196:189,1982}
\]
Motivation: QCD at LARGE N_c and N_f

Colors \quad Flavors

Define $x = N_f/N_c$, treat as a continuous variable

What is the nature of this transition?

How does the IR scale appear as conformality is lost?

\[\langle \bar{\psi} \psi \rangle \neq 0 \]

\[\alpha_* \]

Banks-Zaks fixed point

What is the nature of this transition?

How does the IR scale appear as conformality is lost?
I. A mechanism for vanishing conformal invariance
I. A mechanism for vanishing conformal invariance

II. The Berezinskii-Kosterlitz-Thouless (BKT) transition
OUTLINE:

I. A mechanism for vanishing conformal invariance

II. The Berezinskii–Kosterlitz–Thouless (BKT) transition

III. A quantum mechanics model: the $1/r^2$ potential
OUTLINE:

I. A mechanism for vanishing conformal invariance

II. The Berezinskii–Kosterlitz–Thouless (BKT) transition

III. A quantum mechanics model: the $1/r^2$ potential

IV. AdS/CFT
I. A mechanism for vanishing conformal invariance

II. The Berezinskii-Kosterlitz-Thouless (BKT) transition

III. A quantum mechanics model: the $1/r^2$ potential

IV. AdS/CFT

V. Relativistic model: defect Yang-Mills
I. A mechanism for vanishing conformal invariance

II. The Berezinskii-Kosterlitz-Thouless (BKT) transition

III. A quantum mechanics model: the $1/r^2$ potential

IV. AdS/CFT

V. Relativistic model: defect Yang-Mills

VI. QCD with many flavors? A partner theory QCD* with a nontrivial UV fixed point?
A theory with an infrared conformal fixed point at $g=g^*$ has a zero in the beta function:

$$\beta(g) = \mu \frac{\partial g}{\partial \mu} = \frac{\partial g}{\partial t}$$
A theory with an infrared conformal fixed point at $g = g^*$ has a zero in the beta function:

$$\beta(g) = \mu \frac{\partial g}{\partial \mu} = \frac{\partial g}{\partial t}$$

Suppose the theory has another parameter α such that the fixed point at $g = g^*$ vanishes for $\alpha > \alpha^*$.
A theory with an infrared conformal fixed point at $g=g_*$ has a zero in the beta function:

$$\beta(g) = \mu \frac{\partial g}{\partial \mu} = \frac{\partial g}{\partial t}$$

Suppose the theory has another parameter α such that the fixed point at $g=g_*$ vanishes for $\alpha > \alpha_*$

Example: supersymmetric QCD is conformal for $3/2 \leq N_f/N_c \leq 3$
A theory with an infrared conformal fixed point at $g=g^*$ has a zero in the beta function:

$$\beta(g) = \mu \frac{\partial g}{\partial \mu} = \frac{\partial g}{\partial t}$$

Suppose the theory has another parameter α such that the fixed point at $g=g^*$ vanishes for $\alpha > \alpha^*$.

Example: supersymmetric QCD is conformal for $3/2 \leq N_f/N_c \leq 3$

"α" = N_f/N_c, "α^*" = 3/2, 3
A theory with an infrared conformal fixed point at $g=g^*$ has a zero in the beta function:

$$\beta(g) = \mu \frac{\partial g}{\partial \mu} = \frac{\partial g}{\partial t}$$

Suppose the theory has another parameter α such that the fixed point at $g=g^*$ vanishes for $\alpha > \alpha^*$.

Example: supersymmetric QCD is conformal for $3/2 \leq N_f/N_c \leq 3$

"α" = N_f/N_c, "α^*" = $3/2, 3$

How is conformality lost?
Three ways to lose an infrared fixed point:
Three ways to lose an infrared fixed point:

#1: Fixed point runs to zero:

\[\beta(g; \alpha) \]

\[\alpha < \alpha_* \]

\[\Rightarrow \]

\[\alpha > \alpha_* \]

Three ways to lose an infrared fixed point:

#1: Fixed point runs to zero:

\[\beta(g; \alpha) \]

\[\alpha < \alpha_* \]

\[\Rightarrow \]

\[\alpha > \alpha_* \]

Example: Supersymmetric QCD at large \(N_c \) and \(N_f \)

\[\Rightarrow \alpha = \frac{N_f}{N_c}, \alpha_* = 3 \]
Three ways to lose an infrared fixed point:

#1: Fixed point runs to zero:

\[\beta(g; \alpha) \]

\[\alpha < \alpha_* \quad g \quad \Rightarrow \quad \alpha > \alpha_* \]

Example: Supersymmetric QCD at large \(N_c \) and \(N_f \)

\[\alpha = N_f / N_c, \quad \alpha_* = 3 \]

\[N_f / N_c \lesssim 3 \Rightarrow \text{weak coupling Banks-Zaks conformal fixed point} \]

\[N_f / N_c \gtrsim 3 \Rightarrow \text{trivial QED-like “free electric” theory} \]
Three ways to lose an infrared fixed point:

#1: Fixed point runs to zero:

\[\beta(g; \alpha) \]

\[\alpha < \alpha_* \]

\[\Rightarrow \]

\[\alpha > \alpha_* \]

Example: Supersymmetric QCD at large \(N_c\) and \(N_f\)

\[\alpha = \frac{N_f}{N_c}, \alpha_* = 3 \]

\(N_f/N_c \lesssim 3 \Rightarrow \) weak coupling Banks-Zaks conformal fixed point

\(N_f/N_c \gtrsim 3 \Rightarrow \) trivial QED-like “free electric” theory

\[F_E \sim \frac{g^2}{r^2 \ln (r \Lambda_{UV})} \]
#2: Fixed point runs off to infinity:

$$\beta(g; \alpha)$$

$$\alpha > \alpha_*$$
#2: Fixed point runs off to infinity:

\[\beta(g; \alpha) \]

\[\alpha > \alpha_* \]

\[\alpha < \alpha_* \]
#2: Fixed point runs off to infinity:

\[\beta(g; \alpha) \]

\[\alpha > \alpha_* \]

\[\alpha < \alpha_* \]

Possible example? SQCD again \(\rightarrow \) \(\alpha = \frac{N_f}{N_c}, \alpha_* = 3/2 \)

For \(\alpha \leq \alpha_* \) get “free magnetic phase” \[\text{[Seiberg]}\]
#2: Fixed point runs off to infinity:

\[\beta(g; \alpha) \]

\[\alpha > \alpha_* \]

\[\alpha < \alpha_* \]

Possible example? SQCD again \(\rightarrow \) \(\alpha = N_f / N_c, \alpha_* = 3/2 \)

For \(\alpha \leq \alpha_* \) get “free magnetic phase” \[\text{[Seiberg]} \]

\(\Rightarrow \) electric theory dual to a QED-like magnetic theory:

\[F_E \sim \frac{g^2 \ln (r \Lambda_{UV})}{r^2} \]

\[F_M \sim \frac{g_M^2}{r^2 \ln (r \Lambda_{UV})} \]

\(g_M \sim 1/g \)
#3: UV and IR fixed points annihilate:

\[\beta(g; \alpha) \]

\[\alpha > \alpha_* \]
#3: UV and IR fixed points annihilate:

\[\beta(g; \alpha) \]

\[\alpha > \alpha_* \]

\[\alpha < \alpha_* \]
#3: UV and IR fixed points annihilate:

\[\beta(g; \alpha) = (\alpha - \alpha^*) - (g - g^*)^2 \]
#3: UV and IR fixed points annihilate:

\[\beta(g; \alpha) = (\alpha - \alpha_*) - (g - g_*)^2 \]

A toy model:
#3: UV and IR fixed points annihilate:

$\alpha \geq \alpha_*$: $g_{\pm} = g_* \pm \sqrt{\alpha - \alpha_*}$

UV, IR fixed points

A toy model: $\beta(g; \alpha) = (\alpha - \alpha_*) - (g - g_*)^2$
#3: UV and IR fixed points annihilate:

A toy model: $\beta(g; \alpha) = (\alpha - \alpha_*) - (g - g_*)^2$

$\alpha \geq \alpha_* : \ g_\pm = g_* \pm \sqrt{\alpha - \alpha_*}$

UV, IR fixed points

$\alpha = \alpha_* : \text{fixed points merge}$
#3: UV and IR fixed points annihilate:

\[\beta(g; \alpha) = (\alpha - \alpha_*) - (g - g_*)^2 \]

A toy model:

- \(\alpha \geq \alpha_* \): \(g_\pm = g_* \pm \sqrt{\alpha - \alpha_*} \)
 - **UV, IR fixed points**
- \(\alpha = \alpha_* \): fixed points merge
- \(\alpha < \alpha_* \): conformality lost
What happens just below the transition to nonconformal behavior?

\[\beta(g; \alpha) \]

\[
\begin{align*}
g_{\text{UV}} & \quad g_* & \quad g_{\text{IR}} \\
\alpha & \lesssim \alpha_*
\end{align*}
\]
What happens just below the transition to nonconformal behavior?

\[\beta(g; \alpha) \]

1. Start: \(g = g_{\text{UV}} < g_* \) in the UV
2. \(g \) grows, **stalling** near \(g_* \)
3. \(g \) strong at scale \(\Lambda_{\text{IR}} \)
What happens just below the transition to nonconformal behavior?

<table>
<thead>
<tr>
<th>$\beta(g; \alpha)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_{UV}</td>
</tr>
</tbody>
</table>

\[\alpha \lesssim \alpha_* \]

i. Start: $g = g_{UV} < g_*$ in the UV

ii. g grows, **stalling** near g_*

iii. g strong at scale Λ_{IR}

\[
\Lambda_{IR} \approx \Lambda_{UV} e^{- \int \frac{dg}{\beta(g)}}
\]

\[
= \Lambda_{UV} e^{- \frac{\pi}{\sqrt{|\alpha_* - \alpha|}}}
\]
What happens just below the transition to nonconformal behavior?

\[\beta(g; \alpha) \]

\[g_{\text{UV}} \quad g^* \quad g_{\text{IR}} \]

\[\alpha \lesssim \alpha^* \]

i. Start: \(g = g_{\text{UV}} < g^* \) in the UV

ii. \(g \) grows, **stalling** near \(g^* \)

iii. \(g \) strong at scale \(\Lambda_{\text{IR}} \)

\[\Lambda_{\text{IR}} \simeq \Lambda_{\text{UV}} e^{-\int \frac{dg}{\beta(g)}} \]

\[= \Lambda_{\text{UV}} e^{-\frac{\pi}{\sqrt{|\alpha^* - \alpha|}}} \]
What happens just below the transition to nonconformal behavior?

\[\beta(g; \alpha) \]

\[g_{UV} \quad g_* \quad g_{IR} \]

\[\alpha \lesssim \alpha_* \]

i. Start: \(g = g_{UV} < g_* \) in the UV

ii. \(g \) grows, **stalling** near \(g_* \)

iii. \(g \) strong at scale \(\Lambda_{IR} \)

\[\Lambda_{IR} \quad \simeq \quad \Lambda_{UV} e^{- \int \frac{dg}{\beta(g)}} \]

\[= \quad \Lambda_{UV} e^{- \frac{\pi}{\sqrt{\mid \alpha_* - \alpha \mid}}} \]

(Not like 2nd order phase transition: \(\Lambda_{IR} \quad \simeq \quad \Lambda_{UV} \sqrt{\mid \alpha_* - \alpha \mid} \))
Analogue to “intermittency” in chaotic systems

Iterative maps: \(f(x) = \lambda x(1 - x) \)
Analogue to “intermittency” in chaotic systems

Iterative maps: \[f(x) = \lambda x(1 - x) \]
Analogue to “intermittency” in chaotic systems

Iterative maps: \(f(x) = \lambda x(1 - x) \)

Find 3-pt orbit at \(\lambda'_c \approx 3.829 \), lost at \(\lambda_c \approx 3.831 \)
Analogue to "intermittency" in chaotic systems

Iterative maps: \[f(x) = \lambda x(1 - x) \]

Find 3-pt orbit at \(\lambda' c \approx 3.829 \), lost at \(\lambda c \approx 3.831 \)
Analogue to “intermittency” in chaotic systems

Iterative maps: \[f(x) = \lambda x(1 - x) \]

Find 3-pt orbit at \(\lambda' \approx 3.829 \), lost at \(\lambda \approx 3.831 \)
$3.829 < \lambda < 3.831$: 3-pt orbit -- 3 stable fixed points in $f^{(3)}(x)$
3.829 < \lambda < 3.831: \text{ 3-pt orbit} -- \text{3 stable fixed points in } f^{(3)}(x)

\lambda = 3.831: \text{three stable & unstable fixed point pairs annihilate}
3.829 < \lambda < 3.831: 3-pt orbit -- 3 stable fixed points in \(f^{(3)}(x) \)

\lambda = 3.831: three stable & unstable fixed point pairs annihilate

Intermittency for \(\lambda > 3.831: \) dawdle near “complex fixed point”
$3.829 < \lambda < 3.831 : \text{ 3-pt orbit -- 3 stable fixed points in } f^{(3)}(x)$

$\lambda = 3.831 : \text{ three stable & unstable fixed point pairs annihilate}$

Intermittency for $\lambda > 3.831 : \text{ dawdle near "complex fixed point"}$
3.829 < λ < 3.831: 3-pt orbit -- 3 stable fixed points in $f^{(3)}(x)$

$\lambda = 3.831$: three stable & unstable fixed point pairs annihilate

Intermittency for $\lambda > 3.831$: dawdle near “complex fixed point”
“conformal window”

intermittency

\(\lambda \)
\[\Lambda_{\text{IR}} \approx \Lambda_{\text{UV}} e^{-\frac{\pi}{\sqrt{\alpha_* - \alpha}}} \]

Scaling behavior of toy model is reminiscent of the Berezinskii-Kosterlitz-Thouless (BKT) transition (an “infinite order” phase transition)
\[\Lambda_{\text{IR}} \simeq \Lambda_{\text{UV}} e^{-\frac{\pi}{\sqrt{\alpha_* - \alpha}}} \]

Scaling behavior of toy model is reminiscent of the Berezinskii-Kosterlitz-Thouless (BKT) transition (an “infinite order” phase transition)

BKT: a classical phase transition in the 2-d XY-model
\[\Lambda_{\text{IR}} \sim \Lambda_{\text{UV}} e^{-\frac{\pi}{\sqrt{\alpha_* - \alpha}}} \]

Scaling behavior of toy model is reminiscent of the Berezinskii-Kosterlitz-Thouless (BKT) transition (an "infinite order" phase transition)

BKT: a classical phase transition in the 2-d XY-model

Vortices in XY model

box size R, vortex core size a:
\[\Lambda_{\text{IR}} \sim \Lambda_{\text{UV}} e^{-\frac{\pi}{\sqrt{\alpha_* - \alpha}}} \]

Scaling behavior of toy model is reminiscent of the Berezinskii-Kosterlitz-Thouless (BKT) transition (an “infinite order” phase transition)

BKT: a classical phase transition in the 2-d XY-model

Vortices in XY model
box size R, vortex core size a:

\[
E = E_0 \ln \frac{R}{a}, \quad S = 2 \ln \frac{R}{a}
\]

\[
F = E - TS = (E_0 - 2T) \ln \frac{R}{a}
\]
\[\Lambda_{\text{IR}} \sim \Lambda_{\text{UV}} e^{-\frac{\pi}{\sqrt{\alpha_* - \alpha}}} \]

Scaling behavior of toy model is reminiscent of the Berezinskii-Kosterlitz-Thouless (BKT) transition (an “infinite order” phase transition)

BKT: a classical phase transition in the 2-d XY-model

Vortices in XY model
box size \(R \), vortex core size \(a \):

\[E = E_0 \ln \frac{R}{a}, \quad S = 2 \ln \frac{R}{a} \]

\[F = E - TS = (E_0 - 2T) \ln \frac{R}{a} \]

Vortices condense for \(T > T_c = E_0 / 2 \); can show correlation length forms:

\[\xi \sim a e^{b/\sqrt{T - T_c}} \]
\[\Lambda_{IR} \approx \Lambda_{UV} e^{-\frac{\pi}{\sqrt{\alpha^* - \alpha}}} \]

Scaling behavior of toy model is reminiscent of the Berezinskii-Kosterlitz-Thouless (BKT) transition (an “infinite order” phase transition)

BKT: a classical phase transition in the 2-d XY-model

Vortices in XY model
box size \(R \), vortex core size \(a \):

\[E = E_0 \ln \frac{R}{a} , \quad S = 2 \ln \frac{R}{a} \]

\[F = E - TS = (E_0 - 2T) \ln \frac{R}{a} \]

Vortices condense for \(T > T_c = E_0/2 \); can show correlation length forms:

\[\xi \approx a e^{b/\sqrt{T - T_c}} \]
RG analysis of the BKT transition

XY model = Coulomb gas
(vortices = point-like charges with $\ln(r)$ Coulomb interaction):
RG analysis of the BKT transition

XY model = Coulomb gas
(vortices = point-like charges with ln(r) Coulomb interaction):

\[
Z = \mathcal{N} \sum_{N_+, N_-} \frac{z^{N_+} z^{N_-}}{N_+! N_-!} \int \frac{\prod \prod}{i=1 j=1} d^2 x_i d^2 y_j \int D\phi e^{-\int d^2 x \frac{T}{2} (\nabla \phi)^2 + i \sum_{i,j} (\phi(x_i) - \phi(y_j))}
\]
RG analysis of the BKT transition

XY model = Coulomb gas
(vortices = point-like charges with $\ln(r)$ Coulomb interaction):

$$Z = \mathcal{N} \sum_{N_+, N_-} \frac{z^{N_+} z^{N_-}}{N_+! N_-!} \int \prod_{i=1}^{N_+} \prod_{j=1}^{N_-} d^2 x_i d^2 y_j \int D\phi e^{-\int d^2 x \left(\frac{T}{2} (\nabla \phi)^2 - 2z \cos \phi \right) + i \sum_{i,j} (\phi(x_i) - \phi(y_j))}$$

Coulomb field

$$= \mathcal{N} \int D\phi e^{-\int d^2 x \left(\frac{T}{2} (\nabla \phi)^2 - 2z \cos \phi \right)}$$

temp.
fugacity
RG analysis of the BKT transition

XY model = Coulomb gas
(vortices = point-like charges with \(\ln(r) \) Coulomb interaction):

\[
Z = \mathcal{N} \sum_{N_+,N_-} \frac{z^{N_+} z^{N_-}}{N_+! N_-!} \int \prod_{i=1}^{N_+} \prod_{j=1}^{N_-} d^2 x_i d^2 y_j \int D \phi e^{- \int d^2 x \frac{T}{2} (\nabla \phi)^2 + i \sum_{i,j} (\phi(x_i) - \phi(y_j))} + \text{Coulomb field}
\]

\[
= \mathcal{N} \int D \phi e^{- \int d^2 x \left[\frac{T}{2} (\nabla \phi)^2 - 2z \cos \phi \right]}
\]

The XY model is equivalent to the Sine-Gordon model
Classical XY model BKT transition = zero temperature quantum transition in Sine-Gordon model:

\[\mathcal{L} = \frac{T}{2} (\nabla \phi)^2 - 2z \cos \phi \]
Classical XY model BKT transition = zero temperature quantum transition in Sine-Gordon model:

\[\mathcal{L} = \frac{T}{2} (\nabla \phi)^2 - 2z \cos \phi \]

New variables:

\[u = 1 - \frac{1}{8\pi T}, \quad v = \frac{2z}{T\Lambda^2} \]

Perturbative \(\beta \)-functions:

\[\beta_u = -2v^2, \quad \beta_v = -2uv \]
Classical XY model BKT transition = zero temperature quantum transition in Sine-Gordon model:

\[\mathcal{L} = \frac{T}{2} (\nabla \phi)^2 - 2z \cos \phi \]

New variables:

\[u = 1 - \frac{1}{8\pi T} , \quad v = \frac{2z}{T\Lambda^2} \]

Perturbative β-functions:

\[\beta_u = -2v^2 , \quad \beta_v = -2uv \]

$\Lambda = $ UV cutoff at vortex core

~Dimensionful quantities in units of XY model interaction strength
Classical XY model BKT transition = zero temperature quantum transition in Sine-Gordon model:

\[\mathcal{L} = \frac{T}{2} (\nabla \phi)^2 - 2z \cos \phi \]

New variables:

\[u = 1 - \frac{1}{8\pi T}, \quad v = \frac{2z}{T\Lambda^2} \]

Perturbative \(\beta \)-functions:

\[\beta_u = -2v^2, \quad \beta_v = -2uv \]

\(\Lambda = \) UV cutoff at vortex core

\(\sim \) Dimensionful quantities in units of XY model interaction strength
Classical XY model BKT transition = zero temperature quantum transition in Sine-Gordon model:

\[\mathcal{L} = \frac{T}{2} (\nabla \phi)^2 - 2z \cos \phi \]

New variables:

\[u = 1 - \frac{1}{8\pi T}, \quad v = \frac{2z}{T\Lambda^2} \]

Perturbative β-functions:

\[\beta_u = -2v^2, \quad \beta_v = -2uv \]

$\sim \Lambda$ = UV cutoff at vortex core

\sim Dimensionful quantities in units of XY model interaction strength

- $T < T_c$
- Bound vortices
- Trivially conformal
Classical XY model BKT transition = zero temperature quantum transition in Sine-Gordon model:

\[\mathcal{L} = \frac{T}{2} (\nabla \phi)^2 - 2z \cos \phi \]

New variables:

\[u = 1 - \frac{1}{8\pi T} , \quad v = \frac{2z}{T\Lambda^2} \]

Perturbative \(\beta \)-functions:

\[\beta_u = -2v^2 , \quad \beta_v = -2uv \]

\(\Lambda \) = UV cutoff at vortex core

Dimensionful quantities in units of XY model interaction strength

\(T < T_c \) - bound vortices

\(T > T_c \) - Coulomb gas

- trivially conformal

- screening length
\begin{align*}
 u &= 1 - \frac{1}{8\pi T}, \quad v = \frac{2z}{T\Lambda^2} \\
 \beta_u &= -2v^2, \quad \beta_v = -2uv
\end{align*}
\[u = 1 - \frac{1}{8\pi T}, \quad v = \frac{2z}{T\Lambda^2} \]

\[\beta_u = -2v^2, \quad \beta_v = -2uv \]

Newer variables:

\[\tau = (u + v), \quad \alpha = u^2 - v^2 \]

\[\beta_\tau = \alpha - \tau^2, \quad \beta_\alpha = 0 \]
\[u = 1 - \frac{1}{8\pi T}, \quad v = \frac{2z}{T\Lambda^2} \]

\[\beta_u = -2v^2, \quad \beta_v = -2uv \]

Newer variables:

\[\tau = (u + v), \quad \alpha = u^2 - v^2 \]

\[\beta_\tau = \alpha - \tau^2, \quad \beta_\alpha = 0 \]
\[u = 1 - \frac{1}{8\pi T}, \quad v = \frac{2z}{T\Lambda^2} \]

\[\beta_u = -2v^2, \quad \beta_v = -2uv \]

Newer variables:

\[\tau = (u + v), \quad \alpha = u^2 - v^2 \]

\[\beta_\tau = \alpha - \tau^2, \quad \beta_\alpha = 0 \]
Correlation length in BKT transition:

$\beta_\tau \quad \alpha > 0$: Conformal (unbound vortices)

$\alpha < 0$: finite ξ (bound vortices)

$T = T_c$
Correlation length in BKT transition:

For small negative α, assume τ small & positive in UV

$\alpha > 0$: Conformal (unbound vortices)

$\alpha < 0$: finite ξ (bound vortices)
Correlation length in BKT transition:

For small negative α, assume τ small & positive in UV

τ blows up in RG time

$$t = \int \frac{d\tau}{\beta(\tau)} = -\frac{\pi}{2\sqrt{-\alpha}}$$
Correlation length in BKT transition:

For small negative α, assume τ small & positive in UV

τ blows up in RG time

$$t = \int \frac{d\tau}{\beta(\tau)} = -\frac{\pi}{2\sqrt{-\alpha}}$$

...giving rise to an IR scale (like Λ_{QCD}) which sets the scale for the finite correlation length for $\alpha<0$:

$$\xi_{\text{BKT}} \sim \frac{1}{\Lambda} e^{\frac{\pi}{2\sqrt{-\alpha}}}$$
So far:
So far:

- BKT transition = loss of conformality via fixed point merger
So far:

• BKT transition = loss of conformality via fixed point merger

• Mechanism of fixed point merger in general gives rise to “BKT scaling“:

\[\Lambda_{IR} \sim \Lambda_{UV} e^{-\frac{\pi}{\sqrt{\alpha_* - \alpha}}} \]
So far:

- BKT transition = loss of conformality via fixed point merger
- Mechanism of fixed point merger in general gives rise to “BKT scaling”:

\[\Lambda_{\text{IR}} \sim \Lambda_{\text{UV}} e^{-\frac{\pi}{\sqrt{\alpha^* - \alpha}}} \]

Next: other examples:

- QM with $1/r^2$ potential
- AdS/CFT
- Defect Yang-Mills
- QCD with many flavors
Example: QM in d-dimensions with $1/r^2$ potential

$$\left[-\nabla^2 + V(r) - k^2\right] \psi = 0 , \quad V(r) = \frac{\alpha}{r^2}$$
Example: QM in d-dimensions with $1/r^2$ potential

$$\left[-\nabla^2 + V(r) - k^2\right] \psi = 0 \ , \quad V(r) = \frac{\alpha}{r^2}$$

$k=0$ solutions: \[\psi = c_- r^{\nu^-} + c_+ r^{\nu^+} \]

$$\nu_{\pm} = -\left(\frac{d - 2}{2}\right) \pm \sqrt{\alpha - \alpha_*} \quad \alpha_* = -\left(\frac{d-2}{2}\right)^2$$
Example: QM in d-dimensions with $1/r^2$ potential

\[
\left[-\nabla^2 + V(r) - k^2 \right] \psi = 0 , \quad V(r) = \frac{\alpha}{r^2}
\]

k=0 solutions: \(\psi = c_- r^{\nu_-} + c_+ r^{\nu_+} \)

\[
\nu_{\pm} = -\left(\frac{d - 2}{2} \right) \pm \sqrt{\alpha - \alpha_*}
\]

\[
\alpha_* = - \left(\frac{d-2}{2} \right)^2
\]

• valid for \(\alpha_* < \alpha < (\alpha_*+1) \)
Example: QM in d-dimensions with $1/r^2$ potential

$$[-\nabla^2 + V(r) - k^2] \psi = 0, \quad V(r) = \frac{\alpha}{r^2}$$

k=0 solutions: \[\psi = c_- r^{\nu_-} + c_+ r^{\nu_+} \]

\[\nu_\pm = -\left(\frac{d - 2}{2}\right) \pm \sqrt{\alpha - \alpha_*} \quad \alpha_* = -\left(\frac{d-2}{2}\right)^2 \]

• valid for $\alpha_* < \alpha < (\alpha_* + 1)$

• $\alpha < \alpha_*: \nu_\pm$ complex, no ground state
Example: QM in d-dimensions with $1/r^2$ potential

\[
[-\nabla^2 + V(r) - k^2] \psi = 0 , \quad V(r) = \frac{\alpha}{r^2}
\]

\[\text{k=0 solutions: } \quad \psi = c_- r^{\nu_-} + c_+ r^{\nu_+}\]

\[
\nu_{\pm} = -\left(\frac{d-2}{2} \right) \pm \sqrt{\alpha - \alpha_*} \quad \quad \alpha_* = -\left(\frac{d-2}{2} \right)^2
\]

- valid for $\alpha_* < \alpha < (\alpha_*+1)$
 - $\alpha < \alpha_*$: ν_{\pm} complex, no ground state
 - $\alpha = \alpha_*$: $\nu_+ = \nu_-$
Example: QM in d-dimensions with $1/r^2$ potential

$$\left[-\nabla^2 + V(r)-k^2\right] \psi = 0, \quad V(r) = \frac{\alpha}{r^2}$$

$k=0$ solutions: \[\psi = c_- r^{\nu_-} + c_+ r^{\nu_+} \]

\[\nu_{\pm} = -\left(\frac{d-2}{2}\right) \pm \sqrt{\alpha - \alpha_*} \]

\[\alpha_* = -\left(\frac{d-2}{2}\right)^2 \]

• valid for $\alpha_* < \alpha < (\alpha_*+1)$
 • $\alpha < \alpha_*$: ν_{\pm} complex, no ground state
 • $\alpha = \alpha_*$: $\nu_+ = \nu_-$
 • $\alpha > (\alpha_*+1)$: r^{ν_-} too singular to normalize
\[-\nabla^2 + V(r) - k^2\] \(\psi = 0\), \(V(r) = \frac{\alpha}{r^2}\)

k=0 solutions: \(\psi = c_- r^{\nu_-} + c_+ r^{\nu_+}\)

\(\nu_\pm = -\left(\frac{d-2}{2}\right) \pm \sqrt{\alpha - \alpha_*}\)

\(\alpha_* = -\left(\frac{d-2}{2}\right)^2\)
\[-\nabla^2 + V(r) - k^2\] \(\psi = 0\), \quad V(r) = \frac{\alpha}{r^2} \\

k=0 solutions: \(\psi = c_- r^{\nu_-} + c_+ r^{\nu_+}\)

\[\nu_\pm = -\left(\frac{d-2}{2}\right) \pm \sqrt{\alpha - \alpha_*} \quad \alpha_* = -\left(\frac{d-2}{2}\right)^2\]

• \(c_+ = 0\) or \(c_- = 0\) are scale invariant solutions
\[-\nabla^2 + V(r) - k^2\] \(\psi = 0\), \(V(r) = \frac{\alpha}{r^2}\)

k=0 solutions: \(\psi = c_- r^{\nu_-} + c_+ r^{\nu_+}\)

\[\nu_\pm = -\left(\frac{d-2}{2}\right) \pm \sqrt{\alpha - \alpha_*}\] \(\alpha_* = -\left(\frac{d-2}{2}\right)^2\)

• \(c_+=0\) or \(c_- = 0\) are scale invariant solutions

• If \(c_+ \neq 0\), \(\psi \rightarrow c_+ r^{\nu_+}\) for large \(r\) (\(\nu_+ > \nu_-\))
\[-\nabla^2 + V(r) - k^2 \] \[\psi = 0 \ , \quad V(r) = \frac{\alpha}{r^2} \]

k=0 solutions: \[\psi = c_- r^{\nu_-} + c_+ r^{\nu_+} \]

\[\nu_\pm = - \left(\frac{d-2}{2} \right) \pm \sqrt{\alpha - \alpha_*} \quad \alpha_* = - \left(\frac{d-2}{2} \right)^2 \]

• \(c_+ = 0 \) or \(c_- = 0 \) are scale invariant solutions
• If \(c_+ \neq 0 \), \(\Psi \to c_+ r^{\nu_+} \) for large \(r \) \((\nu_+ > \nu_-) \)
• to make sense of BC at \(r=0 \), introduce \(\delta \)-function:
\[-\nabla^2 + V(r) - k^2 \] \(\psi = 0 \), \(V(r) = \frac{\alpha}{r^2} \)

k=0 solutions: \(\psi = c_- r^{\nu_-} + c_+ r^{\nu_+} \)

\(\nu_\pm = -\left(\frac{d-2}{2} \right) \pm \sqrt{\alpha - \alpha_*} \)

\[\alpha_* = -\left(\frac{d-2}{2} \right)^2 \]

- \(c_+ = 0 \) or \(c_- = 0 \) are scale invariant solutions
- If \(c_+ \neq 0 \), \(\psi \to c_+ r^{\nu_+} \) for large \(r \) (\(\nu_+ > \nu_- \))
- to make sense of BC at \(r=0 \), introduce \(\delta \)-function:

\[V(r) = \frac{\alpha}{r^2} - g \delta^d(r) \]
\[\left[-\nabla^2 + V(r) - k^2 \right] \psi = 0 , \quad V(r) = \frac{\alpha}{r^2} \]

k=0 solutions: \[\psi = c_- r^{\nu_-} + c_+ r^{\nu_+} \]

\[\nu_\pm = -\left(\frac{d-2}{2} \right) \pm \sqrt{\alpha - \alpha_*} \quad \alpha_* = -\left(\frac{d-2}{2} \right)^2 \]

- \(c_+ = 0 \) or \(c_- = 0 \) are scale invariant solutions
- If \(c_+ \neq 0 \), \(\psi \to c_+ r^{\nu_+} \) for large \(r \) (\(\nu_+ > \nu_- \))
- to make sense of BC at \(r=0 \), introduce \(\delta \)-function:

\[V(r) = \frac{\alpha}{r^2} - g\delta^d(r) \]

- \(r^{\nu_+} \) corresponds to IR fixed point of \(g \)
- \(r^{\nu_-} \) corresponds to unstable UV fixed point of \(g \)
RG treatment of $1/r^2$ potential: I. Perturbative

$\alpha_* \equiv -(d-2)^2/4$ so work in $d=2+\varepsilon$
RG treatment of $1/r^2$ potential: \textit{I. Perturbative}

$\alpha_* \equiv -(d-2)^2/4$ so work in $d=2+\varepsilon$

$$S = \int dt \, d^d x \left(i \psi^\dagger \partial_t \psi - \frac{\left| \nabla \psi \right|^2}{2m} + \frac{g \pi}{2} \psi^\dagger \psi^\dagger \psi \psi \right)$$

$$- \int dt \, d^d x \, d^d y \, \psi^\dagger(t, x) \psi^\dagger(t, y) \frac{\alpha}{|x - y|^2} \psi(t, y) \psi(t, x)$$
RG treatment of 1/r^2 potential: \textit{I. Perturbative}

\(\alpha_* \equiv -(d-2)^2/4 \) so work in \(d=2+\varepsilon \)

\[
S = \int dt \, d^d x \left(i \psi^\dagger \partial_t \psi - \frac{|\nabla \psi|^2}{2m} + \frac{g \pi}{2} \psi^\dagger \psi^\dagger \psi \psi \right) - \int dt \, d^d x \, d^d y \, \bar{\psi}^\dagger(t, x) \psi^\dagger(t, y) \frac{\alpha}{|x-y|^2} \psi(t, y) \psi(t, x)
\]

\textbf{propagator:} \(\frac{i}{\omega - p^2/2m} \)

\textbf{contact vertex:} \(i \pi g \mu^{-\varepsilon} \)

\textbf{“meson exchange”:} \(\frac{2\pi i \alpha}{\varepsilon} \frac{1}{|q|^\varepsilon} \)
RG treatment of $1/r^2$ potential: I. Perturbative

$\alpha_\star \equiv -(d-2)^2/4$ so work in $d=2+\varepsilon$

$$\begin{align*}
S &= \int dt\ d^d x \left(i\psi^\dagger \partial_t \psi - \frac{\left|\nabla \psi\right|^2}{2m} + \frac{g\pi}{2} \psi^\dagger \psi \psi \psi\right) \\
&\quad - \int dt\ d^d x\ d^d y\ \psi^\dagger (t, x) \psi^\dagger (t, y) \frac{\alpha}{|x-y|^2} \psi(t, y) \psi(t, x)
\end{align*}$$

Propagator: $\frac{i}{\omega - p^2/2m}$

Contact vertex: $i\pi g \mu^{-\varepsilon}$

“Meson exchange”: $\frac{2\pi i \alpha}{\varepsilon} \frac{1}{|q|^\varepsilon}$

Find g runs: $\begin{array}{c} \vdots \end{array} + \begin{array}{c} \infty \end{array}$

$\beta(g; \alpha) = \mu \frac{\partial g}{\partial \mu} = \left(\alpha + \frac{\varepsilon^2}{4}\right) - (g - \varepsilon)^2$

Same as toy model! $\alpha_\star = -\varepsilon^2/4$, $g_\star = \varepsilon$
RG treatment of $1/r^2$ potential:

I. Perturbative

$\alpha_* \equiv -(d-2)^2/4$ so work in $d=2+\varepsilon$

$$S = \int dt \, d^d x \left(i \psi^\dagger \partial_t \psi - \frac{|\nabla \psi|^2}{2m} + \frac{g \pi}{2} \psi^\dagger \psi \right)$$

$$- \int dt \, d^d x \, d^d y \, \psi^\dagger(t, x) \psi^\dagger(t, y) \frac{\alpha}{|x - y|^2} \psi(t, y) \psi(t, x)$$

Propagator:	$\frac{i}{\omega - p^2/2m}$		
Contact vertex:	$i \pi g \mu^{-\varepsilon}$		
"Meson exchange":	$\frac{2\pi i \alpha}{\varepsilon} \frac{1}{	q	^\varepsilon}$

Find g runs: [] + \(\otimes \)

$$\beta(g; \alpha) = \mu \frac{\partial g}{\partial \mu} = \left(\alpha + \frac{\varepsilon^2}{4} \right) - (g - \varepsilon)^2$$

Same as toy model! $\alpha_* = -\varepsilon^2/4$, $g_* = \varepsilon$

$\alpha > \alpha_*$: conformal
$\alpha = \alpha_*$: critical
$\alpha < \alpha_*$: g blows up in IR
RG treatment of $1/r^2$ potential:

1. Perturbative

$\alpha_* \equiv -(d-2)^2/4$

so work in $d=2+\varepsilon$

\[
S = \int dt \, d^dx \left(i \psi^\dagger \partial_t \psi - \frac{|\nabla \psi|^2}{2m} + \frac{g\pi}{2} \psi^\dagger \psi^\dagger \psi \psi \right) - \int dt \, d^dx \, d^d y \, \psi^\dagger(t, x) \psi^\dagger(t, y) \frac{\alpha}{|x - y|^2} \psi(t, y) \psi(t, x)
\]

δ-function

propagator:

\[
\frac{i}{\omega - p^2/2m}
\]

contact vertex:

$i\pi g \mu^{-\varepsilon}$

“meson exchange”:

\[
\frac{2\pi i \alpha}{\varepsilon} \frac{1}{|q|^{\varepsilon}}
\]

Find g runs:

\[
\beta(g; \alpha) = \mu \frac{\partial g}{\partial \mu} = \left(\alpha + \frac{\varepsilon^2}{4} \right) - (g - \varepsilon)^2
\]

Same as toy model!

$\alpha_* = -\varepsilon^2/4$,

$g_* = \varepsilon$

$\alpha > \alpha_*$: conformal

$\alpha = \alpha_*$: critical

$\alpha < \alpha_*$: g blows up in IR

$B \sim \left(\frac{\Lambda^2_{IR}}{m} \right) \sim \left(\frac{\Lambda^2_{UV}}{m} \right) e^{-2\pi / \sqrt{\alpha_* - \alpha}}$

bound state energy

BKT scaling
RG treatment of $1/r^2$ potential: II. Non-perturbative

regulate with square well:

\[V(r) = \begin{cases} \alpha/r^2 & r > r_0 \\ -g/r_0^2 & r < r_0 \end{cases} \]

E=0 solution for $r>r_0$: \[\psi = c_- r^{\nu_-} + c_+ r^{\nu_+} \]
RG treatment of $1/r^2$ potential:

II. Non-perturbative

regulate with square well:

$$V(r) = \begin{cases}
\alpha/r^2 & r > r_0 \\
-g/r_0^2 & r < r_0
\end{cases}$$

E=0 solution for $r>r_0$:
$$\psi = c_- r^{\nu_-} + c_+ r^{\nu_+}$$

Solve for c_+/c_- (a physical dimensionful quantity) and require invariance:
$$d(c+/c_-)/dr_0 = 0$$
RG treatment of $1/r^2$ potential: II. Non-perturbative

regulate with square well:

$$V(r) = \begin{cases} \frac{\alpha}{r^2} & r > r_0 \\ -\frac{g}{r_0^2} & r < r_0 \end{cases}$$

$E=0$ solution for $r>r_0$: $\psi = c_- r^{\nu_-} + c_+ r^{\nu_+}$

Solve for c_+/c_- (a physical dimensionful quantity) and require invariance: $d(c_+/c_-)/dr_0 = 0$:

Find exact β-function for g. Eg, for $d=3$:

$$\beta = \frac{2\sqrt{g} \left(\alpha + \sqrt{g} \cot \sqrt{g} - g \cot^2 \sqrt{g} \right)}{-\cot \sqrt{g} + \sqrt{g} \csc^2 \sqrt{g}}$$

$\alpha_* = -\frac{1}{4}, g_* \approx 1.36$
RG treatment of $1/r^2$ potential:

II. Non-perturbative

regulate with square well:

\[V(r) = \begin{cases}
\frac{\alpha}{r^2} & r > r_0 \\
-\frac{g}{r^2} & r < r_0
\end{cases} \]

E=0 solution for $r>r_0$: \(\psi = c_- r^{\nu_-} + c_+ r^{\nu_+} \)

Solve for c_+/c_- (a physical dimensionful quantity) and require invariance: \(d(c_+/c_-)/dr_0 = 0 \):

Find exact β-function for g. Eg, for $d=3$:

\[\beta = \frac{2 \sqrt{g} \left(\alpha + \sqrt{g} \cot \sqrt{g} - g \cot^2 \sqrt{g} \right)}{-\cot \sqrt{g} + \sqrt{g} \csc^2 \sqrt{g}} \]

\(\alpha_* = -\frac{1}{4}, \; g_* \approx 1.36 \)
Even better: define

\[\gamma = \left(\frac{\sqrt{g} \, J_{d/2}^{1/2}(\sqrt{g})}{J_{d/2-1}^{1/2}(\sqrt{g})} \right) \]

Condition \(d(c_+/c_-)/dr_0\) yields exact \(\beta\)-function in \(d\)-dimensions:

\[\beta_\gamma = \frac{\partial \gamma}{\partial t} = (\alpha - \alpha_*) - (\gamma - \gamma_*)^2, \quad \gamma_* = \frac{d - 2}{2} \]

• Toy model is exact!
• \(\gamma\) is a periodic function of \(g\), \(\gamma = \pm \infty\) equivalent
• Limit cycle behavior for \(\alpha < \alpha_*\): explains “Efimov states” for trapped atoms at Feschbach resonance
Comments inserted by the author:
Universal spectrum of three-body states

(V. Efimov, Phys. Lett. 33B (1970) 563)

\[
E_n = \frac{1}{515.03^n}, \quad n \to \infty
\]

Limit cycle behavior

\[
E_{n+1}/E_n = 1/515.03, \quad n \to \infty
\]

\(a = \text{atom-atom scattering length}\)

A=atom
D=dimer
T=trimer

\[1/a \to 0\]

Discrete scale invariance for fixed angle

Geometrical spectrum

Manifestation in scattering observables

\[\log\text{-periodic dependence on } a\]

\[\text{indirect observation of the Efimov effect}\]

\[\text{Universal spectrum of three-body states}\]

\[(V. \text{Efimov, Phys. Lett. 33B (1970) 563)}\]

\[E_n = \frac{1}{515.03^n}, \quad n \to \infty\]

\[E_{n+1}/E_n = 1/515.03, \quad n \to \infty\]

\[\text{Limit cycle behavior}\]

\[1/a \to 0\]

\[\text{Discrete scale invariance for fixed angle}\]

\[\text{Geometrical spectrum}\]

\[\text{Manifestation in scattering observables}\]

\[\log\text{-periodic dependence on } a\]

\[\text{indirect observation of the Efimov effect}\]

\[\text{Universal spectrum of three-body states}\]

\[(V. \text{Efimov, Phys. Lett. 33B (1970) 563)}\]
Limit Cycle: Efimov Effect

(V. Efimov, Phys. Lett. 33B (1970) 563)

\[E_{n+1}/E_n = 1/515.03, \quad n \to \infty \]

Limit cycle behavior

\[(m|E|)^{1/2} \]

\[l/a \]

\[K \]

\[E \]

\[1/a \]

A = atom
D = dimer
T = trimer

\[a = \text{atom-atom scattering length} \]

Experimental evidence for Efimov states in \(^{133}\text{Cs}\)
(Kraemer et al. (Innsbruck), Nature 440 (2006) 315)
Conformal phases: measure correlations, not β-functions!
Look at operator scaling dimensions:
Conformal phases: measure correlations, not β-functions!
Look at operator scaling dimensions:

From Nishida & Son, 2007:

- Replace $V(r_1 - r_2) \rightarrow V(r_1 - r_2) + \frac{1}{2} \omega^2 |r_1^2 + r_2^2|$
- Compute 2-particle ground state energy E_0
- Operator dimension of $\psi\psi$ is $\Delta_{\psi\psi} = E_0/\omega$
Conformal phases: measure correlations, not β-functions! Look at operator scaling dimensions:

From Nishida & Son, 2007:
- Replace $V(r_1-r_2) \rightarrow V(r_1-r_2) + \frac{1}{2} \omega^2 |r_1^2 + r_2^2|$
- Compute 2-particle ground state energy E_0
- Operator dimension of $\psi\psi$ is $\Delta_{\psi\psi} = E_0/\omega$
Conformal phases: measure correlations, not β-functions! Look at operator scaling dimensions:

From Nishida & Son, 2007:

- Replace $V(r_1-r_2) \rightarrow V(r_1-r_2) + \frac{1}{2} \omega^2 |r_1^2+r_2^2|$
- Compute 2-particle ground state energy E_0
- Operator dimension of $\psi\psi$ is $\Delta_{\psi\psi} = E_0/\omega$

As the two conformal theories merge when $\alpha \rightarrow \alpha_*$, operator dimensions in the two CFTs merge
Conformal phases: measure correlations, not β-functions!
Look at operator scaling dimensions:

From Nishida & Son, 2007:
- Replace \(V(r_1-r_2) \rightarrow V(r_1-r_2) + \frac{1}{2} \omega^2 |r_1^2+r_2^2| \)
- Compute 2-particle ground state energy \(E_0 \)
- Operator dimension of \(\psi\psi \) is \(\Delta_{\psi\psi} = E_0/\omega \)

As the two conformal theories merge when \(\alpha \rightarrow \alpha_* \), operator dimensions in the two CFTs merge

For \(1/r^2 \) potential -- find for the two conformal theories:

\[
\Delta_{\psi\psi} = (d + \nu_{\pm}) = \left(\frac{d+2}{2} \right) \pm \sqrt{\alpha - \alpha_*}
\]

"+" = UV fixed point
"-" = IR fixed point
Conformal phases: measure correlations, not \(\beta \)-functions! Look at operator scaling dimensions:

From Nishida & Son, 2007:

- Replace \(V(r_1-r_2) \rightarrow V(r_1-r_2) + \frac{1}{2} \omega^2 |r_1^2+r_2^2| \)
- Compute 2-particle ground state energy \(E_0 \)
- Operator dimension of \(\psi \psi \) is \(\Delta_{\psi \psi} = E_0/\omega \)

As the two conformal theories merge when \(\alpha \rightarrow \alpha^* \), operator dimensions in the two CFTs merge

For \(1/r^2 \) potential -- find for the two conformal theories:

\[
[\psi \psi]: \quad \Delta_{\pm} = (d + \nu_{\pm}) = \left(\frac{d + 2}{2} \right) \pm \sqrt{\alpha - \alpha^*} \]

“+” = UV fixed point
“-” = IR fixed point

Note: \((\Delta_+ + \Delta_-) = (d+2) \): scaling dimension of nonrelativistic spacetime.
Analog in AdS/CFT:
Analog in AdS/CFT:

AdS: \[ds^2 = \frac{1}{z^2} \left(dz^2 + \sum_{i=1}^{d} dx_i^2 \right) \]
Analog in AdS/CFT:

AdS: \(ds^2 = \frac{1}{z^2} \left(dz^2 + \sum_{i=1}^{d} dx_i^2 \right) \)

Massive scalar in the bulk

two solutions to eq. of motion:

\[\phi = c_+ z^{\Delta^+} + c_- z^{\Delta^-} \]

\[\Delta_{\pm} = \frac{d}{2} \pm \sqrt{m^2 + \left(\frac{d}{2} \right)^2} \equiv \frac{d}{2} \pm \sqrt{m^2 - m^2_*} \]
Analog in AdS/CFT:

AdS:
\[ds^2 = \frac{1}{z^2} \left(dz^2 + \sum_{i=1}^{d} dx_i^2 \right) \]

Massive scalar in the bulk
two solutions to eq. of motion:

\[\varphi = c_+ z^{\Delta^+} + c_- z^{\Delta^-} \]

\[\Delta_\pm = \frac{d}{2} \pm \sqrt{m^2 + \left(\frac{d}{2} \right)^2} \equiv \frac{d}{2} \pm \sqrt{m^2 - m_*^2} \]

- \((\Delta^+_\psi \psi + \Delta^-_\psi \psi) = (d+2) = \) conformal wt. of nonrelativistic d-space+time
Analog in AdS/CFT:

AdS:
\[ds^2 = \frac{1}{z^2} \left(dz^2 + \sum_{i=1}^{d} dx_i^2 \right) \]

Massive scalar in the bulk:
Two solutions to eq. of motion:
\[\varphi = c_+ z^{\Delta_+} + c_- z^{\Delta_-} \]
\[\Delta_\pm = \frac{d}{2} \pm \sqrt{m^2 + \left(\frac{d}{2} \right)^2} \equiv \frac{d}{2} \pm \sqrt{m^2 - m_*^2} \]

- \((\Delta_+ + \Delta_-) = d = \text{spacetime dim of CFT}\)
- when \(m^2 = m_*^2 = -d^2/4\), \(\Delta_\pm = d/2\)
- \((\Delta_+^\psi\psi + \Delta_-^\psi\psi) = (d+2) = \text{conformal wt. of nonrelativistic d-space+time}\)
- \(\alpha = \alpha_* = -(d-2)^2/4 \Rightarrow \Delta_\pm = (d+2)/2\)
Analog in AdS/CFT:

AdS:
\[ds^2 = \frac{1}{z^2} \left(dz^2 + \sum_{i=1}^{d} dx_i^2 \right) \]

Massive scalar in the bulk:

two solutions to eq. of motion:

\[\varphi = c_+ z^{\Delta+} + c_- z^{\Delta-} \]

\[\Delta_\pm = \frac{d}{2} \pm \sqrt{m^2 + \left(\frac{d}{2}\right)^2} = \frac{d}{2} \pm \sqrt{m^2 - m_{*}^2} \]

- \((\Delta_+ + \Delta_-) = d = \text{spacetime dim of CFT}\)
- when \(m^2 = m_{*}^2 = -d^2/4\), \(\Delta_\pm = d/2\)
- Instability (no AdS or CFT) for \(m^2 < m_{*}^2\) (B-F bound)

QM:

- \((\Delta_+ \varphi \varphi + \Delta_- \varphi \varphi) = (d+2) = \text{conformal wt. of nonrelativistic d-space+time}\)
- \(\alpha = \alpha_{*} = -(d-2)^2/4 \Rightarrow \Delta_\pm = (d+2)/2\)
- Conformality lost for \(\alpha < \alpha_{*}\)
Analog in AdS/CFT:

AdS:
\[ds^2 = \frac{1}{z^2} \left(dz^2 + \sum_{i=1}^{d} dx_i^2 \right) \]

Massive scalar in the bulk:

Two solutions to eq. of motion:

\[\varphi = c_+ z^{\Delta_+} + c_- z^{\Delta_-} \]

\[\Delta_\pm = \frac{d}{2} \pm \sqrt{m^2 + \left(\frac{d}{2} \right)^2} \equiv \frac{d}{2} \pm \sqrt{m^2 - m_*^2} \]

AdS

- \((\Delta_+ + \Delta_-) = d = \text{spacetime dim of CFT}\)
- When \(m^2 = m_*^2 = -d^2/4\), \(\Delta_\pm = d/2\)
- Instability (no AdS or CFT) for \(m^2 < m_*^2\) (B-F bound)
- Lower bound on \(\Delta_-\)

QM

- \((\Delta^+_{\psi\psi} + \Delta^-_{\psi\psi}) = (d+2) = \text{conformal wt. of nonrelativistic d-space+time}\)
- \(\alpha = \alpha_* = -(d-2)^2/4 \Rightarrow \Delta_\pm = (d+2)/2\)
- Conformality lost for \(\alpha < \alpha_*\)
- Lower bound on \(\Delta^-_{\psi\psi}\)
As with QM example, 2 different solutions \Rightarrow 2 different CFTs
AdS/CFT cont’d:

As with QM example, 2 different solutions ⇒ 2 different CFTs

\[\varphi = \varphi_0 z^{\Delta_+} : \quad Z_{\text{grav.}} |_{\varphi \to \varphi_0 z^{\Delta_+}} = Z_{\text{CFT}}[\varphi_0] \]
AdS/CFT cont’d:

As with QM example, 2 different solutions \Rightarrow 2 different CFTs

$$\varphi = \varphi_0 z^{\Delta^+} : \quad Z_{\text{grav.}} \bigg|_{\varphi \rightarrow 0^+ \varphi_0 z^{\Delta^+}} = Z_{\text{CFT}}[\varphi_0]$$

$$S = S_{\text{CFT}} + \int d^d x \phi_0 \mathcal{O}$$
As with QM example, 2 different solutions \(\Rightarrow \) 2 different CFTs

\[
\begin{align*}
\phi &= \phi_0 z^{\Delta^+} : \\
&= \frac{Z_{\text{grav.}}}{Z_{\text{CFT}}} \bigg|_{\phi \to \phi_0} = Z_{\text{CFT}}[\phi_0] \\
S &= S_{\text{CFT}} + \int d^d x \phi_0 \mathcal{O} \\
\phi &= J z^{\Delta^-} : \\
&= \frac{Z_{\text{grav.}}}{Z_{\text{CFT}}} \bigg|_{\phi \to J} = Z_{\text{CFT}}[J] \\
&= \int D\phi Z_{\text{CFT}}[\phi] e^{i \int d^d x J \phi}
\end{align*}
\]
AdS/CFT cont’d:

As with QM example, 2 different solutions \Rightarrow 2 different CFTs

\[\varphi = \varphi_0 z^\Delta^+ : \quad Z_{\text{grav.}}_{\varphi \xrightarrow{z \to 0} \varphi_0 z^\Delta^+} = Z_{\text{CFT}}[\varphi_0] \]

\[\varphi = J z^\Delta^- : \quad Z_{\text{grav.}}_{\varphi \xrightarrow{z \to 0} J z^\Delta^-} = Z_{\text{CFT}}[J] \]

$S = S_{\text{CFT}} + \int d^d x \varphi_0 \mathcal{O}$

$= \int D\varphi Z_{\text{CFT}}[\varphi] e^{i \int d^d x J \varphi}$

UV fine-tuning: $m^2\varphi^2...$adds $\mathcal{O\mathcal{O}}$ operator. Eg: $\mathcal{O} = \bar{\psi}\psi$, $\mathcal{O\mathcal{O}} = \bar{\psi}\psi\bar{\psi}\psi$
AdS/CFT cont’d:

As with QM example, 2 different solutions \Rightarrow 2 different CFTs

\[\varphi = \varphi_0 z^\Delta^+ : \quad Z_{\text{grav.}} \bigg|_{\varphi \to \varphi_0 z^\Delta^+} = Z_{\text{CFT}}[\varphi_0] \]

\[\varphi = J z^\Delta^- : \quad Z_{\text{grav.}} \bigg|_{\varphi \to J z^\Delta^-} = Z_{\text{CFT}}[J] \]

UV fine-tuning: $m^2 \varphi^2$...adds OO operator. Eg: $O = \bar{\psi} \psi$, $OO = \bar{\psi} \psi \bar{\psi} \psi$

\[\Rightarrow \text{analog of } \delta(r) \text{ in QM example tuned to unstable UV fixed pt.} \]
A relativistic example: defect Yang-Mills theory
A relativistic example: defect Yang-Mills theory

Charged relativistic fermions on a d-dimensional defect + 4D conformal gauge theory (eg, N=4 SYM)

\[S = \int d^{d+1}x \, i \bar{\psi} \gamma^{\mu} D_{\mu} \psi - \frac{1}{4g^2} \int d^4x \, F^{a}_{\mu\nu} F^{a,\mu\nu} \]
A relativistic example: defect Yang-Mills theory

Charged relativistic fermions on a d-dimensional defect + 4D conformal gauge theory (eg, N=4 SYM)

\[
S = \int d^{d+1}x \, i\bar{\psi} \gamma^\mu D_\mu \psi - \frac{1}{4g^2} \int d^4x \, F^\alpha_{\mu\nu} F^{\alpha,\mu\nu}
\]

\(g\) doesn’t run
g doesn’t run by construction

Expect a phase transition as a function of g:

\[\langle \bar{\psi} \psi \rangle = \begin{cases}
0 & g < g_* \\
\Lambda_{d}^{d} & g > g_*
\end{cases} \]
g doesn’t run by construction

Expect a phase transition as a function of g:

\[\langle \bar{\psi} \psi \rangle = \begin{cases}
0 & g < g_* \\
\Lambda_{\text{IR}}^d & g > g_*
\end{cases} \]

Add a contact interaction to the theory (as in QM & AdS/CFT examples!) and study its running:

\[\Delta S = \int d^{d+1}x \left(-\frac{c}{2} (\bar{\psi} \gamma_{\mu} T_a \psi)^2 \right) \]
g doesn’t run by construction

Expect a phase transition as a function of g:

\[
\langle \bar{\psi} \psi \rangle = \begin{cases}
0 & g < g_* \\
\Lambda_{IR}^d & g > g_*
\end{cases}
\]

Add a contact interaction to the theory (as in QM & AdS/CFT examples!) and study its running:

\[
\Delta S = \int d^{d+1}x \left(-\frac{c}{2} (\bar{\psi} \gamma_\mu T_a \psi)^2 \right)
\]

Phase transition is in perturbative regime for d=1+\varepsilon (spatial dimensions of “defect”): compute β-function
The phase transition occurs at

So we find that there is a phase transition occurring at

The dynamically generated mass gap is

The RG equation can be written in a way very similar to the RG equation for the

The solution is

when

Friday, April 10, 2009

Friday, April 10, 2009

This substitution also works for mass gap at $g > g^*$ and conforms with BKT scaling.

$\beta(c)$:

$1/\varepsilon$ pole for $d = (1 + \varepsilon)$
\[\beta(c) = \frac{-g^2}{2\pi} - \epsilon c - \frac{N_c}{2\pi} c^2 \]
\[= \frac{1}{2\pi} \left(\frac{\pi^2 \epsilon^2}{N_c} - g^2 \right) - \frac{N_c}{2\pi} \left(c - \frac{\epsilon \pi}{N_c} \right)^2 \]
\[\beta(c) = -\frac{g^2}{2\pi} - \epsilon c - \frac{N_c}{2\pi} c^2 \]

\[= \frac{1}{2\pi} \left(\frac{\pi^2 \epsilon^2}{N_c} - g^2 \right) - \frac{N_c}{2\pi} \left(c - \frac{\epsilon \pi}{N_c} \right)^2 \]

- Find BKT transition at \(g^2 = g_*^2 = (\epsilon \pi)^2/N_c \)
 \(\Lambda_{\text{IR}} \sim \Lambda_{\text{UV}} \exp[-\pi/\sqrt{(g^2-g_*^2)}] \)

- Schwinger-Dyson gap eq (rainbow approx) gives qualitatively same results
Back to QCD at LARGE N_c and N_f:

Asymptotic freedom \Rightarrow conformal \Rightarrow trivial

$\langle \bar{\psi}\psi \rangle \neq 0$

Transition at $x=x_c$?

Gauge coupling: α_*

$0 \cdots x_c \cdots 11/2 \cdots x$

Banks-Zaks fixed point
Back to QCD at LARGE N_c and N_f:

\[\langle \bar{\psi} \psi \rangle \neq 0 \quad \text{at } x = x_c \]

gauge coupling: α_*

Transition at $x = x_c$?

Schwinger-Dyson (rainbow approximation):

Miransky 1985

Appelquist, Terning, Wijewardhana 1996
Back to QCD at LARGE N_c and N_f:

Asymptotic freedom $\xrightarrow[\text{conformal}]{}$ trivial

$0 \quad \langle \bar{\psi} \psi \rangle \neq 0 \quad x_c \quad 11/2 \quad x$

Gauge coupling: α_*

Transition at $x=x_c$?

Schwinger-Dyson (rainbow approximation):

Found: BKT scaling for $\langle \bar{\psi} \psi \rangle$...not rigorous, but qualitatively correct?
Conjecture: loss of conformality for QCD at x_c is of BKT type, due to fixed point merger.
Conjecture: loss of conformality for QCD at x_c is of BKT type, due to fixed point merger.
Conjecture: loss of conformality for QCD at x_c is of BKT type, due to fixed point merger.
Conjecture: loss of conformality for QCD at x_c is of BKT type, due to fixed point merger.
Conjecture: loss of conformality for QCD at x_c is of BKT type, due to fixed point merger.

Near Banks-Zaks (IR) fixed point:

$\Delta^+ + \Delta^- = 4$?
Conjecture: loss of conformality for QCD at x_c is of BKT type, due to fixed point merger.

Near Banks-Zaks (IR) fixed point:

\[\Delta^+ + \Delta^- = 4? \]

\[\Delta^+ \psi \bar{\psi} = 3 - \# g^2 N_c \]

(almost free quarks)
Conjecture: loss of conformality for QCD at x_c is of BKT type, due to fixed point merger.

Near Banks-Zaks (IR) fixed point:

QCD:
$$\Delta^+_{\psi\bar{\psi}} = 3 - \# g^2 N_c$$
(almost free quarks)

Partner theory QCD*:
$$\Delta^-_{\psi\bar{\psi}} = d-\Delta^+_{\psi\bar{\psi}} = 1 + \# g^2 N_c$$
(almost free scalar?)
WANTED

Conformal theory
defined at nontrivial
UV fixed point
to merge with QCD
at $x = x_c$

LAST SEEN WITH WEAKLY
COUPLED SCALAR
Consider:

- SU(N_c) gauge theory
- N_f massless Dirac fermions ψ
- M_f^2 scalars φ, tuned to be massless
- coupling $\bar{\psi}\varphi\psi$
- Model has SU(M_f)\timesSU(M_f) chiral symmetry, $\varphi = (\bullet, \square)$
WANTED

Conformal theory defined at nontrivial UV fixed point to merge with QCD at $x=x_c$

LAST SEEN WITH WEAKLY COUPLED SCALAR

Consider:

- SU(N_c) gauge theory
- N_f massless Dirac fermions ψ
- M_f^2 scalars φ, tuned to be massless
- coupling $\bar{\psi}\varphi\psi$
- Model has SU(M_f)\timesSU(M_f) chiral symmetry, $\varphi = (\Box, \Box)$

Conformal fixed point?

Find analog of Banks-Zaks pt. for:

$$\text{iff } M_f \leq \frac{5}{2\sqrt{11}} N_f \approx .75 N_f$$
WANTED

Conformal theory defined at nontrivial UV fixed point to merge with QCD at $x = x_c$

Last seen with weakly coupled scalar

Conformal theory defined at nontrivial UV fixed point to merge with QCD at $x = x_c$

Last seen with weakly coupled scalar

Consider:

- SU(N_c) gauge theory
- N_f massless Dirac fermions ψ
- M_f^2 scalars φ, tuned to be massless
- coupling $\Psi \varphi \psi$
- Model has $SU(M_f) \times SU(M_f)$ chiral symmetry, $\varphi = (\square, \square)$

Conformal fixed point?

Find analog of Banks-Zaks pt. for:

\[
\text{iff } M_f \leq \frac{5}{2\sqrt{11}} N_f \approx .75 N_f
\]

..but QCD* needs full flavor symmetry. Possibly only at stronger coupling?
QCD* ?

Free fermions

\[\Delta \bar{\psi}\psi \]

UV fixed point starts at strong-ish coupling?

\[\Delta^+ \]

\[\Delta^- \]

\[QCD \]

\[QCD^* \]

\[x_{BZ} = 11/2 \]
QCD*?

Free fermions

UV fixed point starts at strong-ish coupling?

Or possibly \((\Delta^+ + \Delta^-) \neq d\) in QCD?

Eg: like effect of Casimir energy in AdS/CFT
QCD*?

UV fixed point starts at strong-ish coupling?

Or possibly $(\Delta_+ + \Delta_-) \neq d$ in QCD?

Eg: like effect of Casimir energy in AdS/CFT
Conclusions:
Conclusions:

I. Fixed point annihilation appears to be a generic mechanism for the loss of conformality
Conclusions:

I. Fixed point annihilation appears to be a generic mechanism for the loss of conformality

II. Leads to similar scaling as in the BKT transition:
\[\Lambda_{IR} \sim \Lambda_{UV} e^{-\pi/\sqrt{(-\alpha-\alpha_*)}} \]
Conclusions:

I. Fixed point annihilation appears to be a generic mechanism for the loss of conformality

II. Leads to similar scaling as in the BKT transition:
\[\Lambda_{\text{IR}} \sim \Lambda_{\text{UV}} e^{[-\pi/\sqrt{(-\alpha-\alpha_*)}]} \]

III. Both relativistic & non-relativistic examples
Conclusions:

I. Fixed point annihilation appears to be a generic mechanism for the loss of conformality

II. Leads to similar scaling as in the BKT transition:
\[\Lambda_{\text{IR}} \sim \Lambda_{\text{UV}} e^{-\pi/\sqrt{(-\alpha-\alpha*)}} \]

III. Both relativistic & non-relativistic examples

IV. Analog in AdS/CFT; implications for AdS below the Breitenlohner-Freedman bound?
Conclusions:

I. Fixed point annihilation appears to be a generic mechanism for the loss of conformality

II. Leads to similar scaling as in the BKT transition:
\[\Lambda_{\text{IR}} \sim \Lambda_{\text{UV}} e^{-\pi/\sqrt{(-\alpha-\alpha*)}} \]

III. Both relativistic & non-relativistic examples

IV. Analog in AdS/CFT; implications for AdS below the Breitenlohner-Freedman bound?

V. Implications for QCD with many flavors? Is there a pair of conformal QCD theories? What is QCD*?
Finding QCD* should be on field theory / lattice QCD “to-do” list.