Conformality Lost

J.-W. Lee

D.T. Son

M. Stephanov

D.B.K

arXiv:0905.4752

Motivation: QCD at LARGE Nc and Nf

Motivation: QCD at LARGE Nc and Nf

Colors

Motivation: QCD at LARGE N_c and N_f colors CO^{OrS} CO^{OrS}

Motivation: QCD at LARGE N_c and N_f

Colors Flavors

Define $x = N_f/N_c$, treat as a continuous variable

Motivation: QCD at LARGE N_c and N_f colors CO^{Ors} Flavors

Define $x = N_f/N_c$, treat as a continuous variable

Motivation: QCD at LARGE N_c and N_f colors CO^{OrS} Flavors

Define $x = N_f/N_c$, treat as a continuous variable

What is the nature of this transition?

How does the IR scale appear as conformality is lost?

I. A mechanism for vanishing conformal invariance

- I. A mechanism for vanishing conformal invariance
- II. The Berezinskii-Kosterlitz-Thouless (BKT) transition

- I. A mechanism for vanishing conformal invariance
- II. The Berezinskii-Kosterlitz-Thouless (BKT) transition
- III. A quantum mechanics model: the 1/r2 potential

- I. A mechanism for vanishing conformal invariance
- II. The Berezinskii-Kosterlitz-Thouless (BKT) transition
- III. A quantum mechanics model: the 1/r2 potential
- IV. AdS/CFT

- I. A mechanism for vanishing conformal invariance
- II. The Berezinskii-Kosterlitz-Thouless (BKT) transition
- III. A quantum mechanics model: the 1/r2 potential
- IV. AdS/CFT
- V. Relativistic model: defect Yang-Mills

OUTLINE:

- I. A mechanism for vanishing conformal invariance
- II. The Berezinskii-Kosterlitz-Thouless (BKT) transition
- III. A quantum mechanics model: the 1/r2 potential
- IV. AdS/CFT
- V. Relativistic model: defect Yang-Mills
- VI. QCD with many flavors? A partner theory QCD* with a nontrivial UV fixed point?

$$\beta(g) = \mu \frac{\partial g}{\partial \mu} = \frac{\partial g}{\partial t}$$

$$\beta(g) = \mu \frac{\partial g}{\partial \mu} = \frac{\partial g}{\partial t}$$

Suppose the theory has another parameter α such that the fixed point at g=g* vanishes for $\alpha > \alpha *$

$$\beta(g) = \mu \frac{\partial g}{\partial \mu} = \frac{\partial g}{\partial t}$$

Suppose the theory has another parameter α such that the fixed point at g=g* vanishes for $\alpha > \alpha *$

Example: supersymmetric QCD is conformal for $3/2 \le N_f/N_c \le 3$

$$\beta(g) = \mu \frac{\partial g}{\partial \mu} = \frac{\partial g}{\partial t}$$

Suppose the theory has another parameter α such that the fixed point at g=g* vanishes for $\alpha > \alpha *$

Example: supersymmetric QCD is conformal for $3/2 \le N_f/N_c \le 3$ "\alpha" = N_f/N_c , "\alpha*" = 3/2, 3

$$\beta(g) = \mu \frac{\partial g}{\partial \mu} = \frac{\partial g}{\partial t}$$

Suppose the theory has another parameter α such that the fixed point at g=g* vanishes for $\alpha > \alpha *$

Example: supersymmetric QCD is conformal for $3/2 \le N_f/N_c \le 3$ "\alpha" = N_f/N_c , "\alpha*" = 3/2, 3

How is conformality lost?

#1: Fixed point runs to zero:

#1: Fixed point runs to zero:

Example: Supersymmetric QCD at large N_{c} and N_{f}

$$\rightarrow \alpha = N_f/N_c, \alpha_* = 3$$

#1: Fixed point runs to zero:

Example: Supersymmetric QCD at large N_{c} and N_{f}

$$\rightarrow \alpha = N_f/N_c, \alpha_* = 3$$

 $N_f/N_c \le 3 \Rightarrow$ weak coupling Banks-Zaks conformal fixed point

 $N_f/N_c \ge 3 \Rightarrow$ trivial QED-like "free electric" theory

#1: Fixed point runs to zero:

Example: Supersymmetric QCD at large N_{c} and N_{f}

$$\rightarrow \alpha = N_f/N_c, \alpha_* = 3$$

 $N_f/N_c \le 3 \Rightarrow$ weak coupling Banks-Zaks conformal fixed point

 $N_f/N_c \ge 3 \Rightarrow$ trivial QED-like "free electric" theory

$$F_E \sim rac{g^2}{r^2 \ln{(r \Lambda_{
m UV})}}$$

Possible example? SQCD again $\rightarrow \alpha = N_f/N_c$, $\alpha_* = 3/2$

For α≤α* get "free magnetic phase" [Seiberg]

Possible example? SQCD again $\rightarrow \alpha = N_f/N_c$, $\alpha_* = 3/2$

For α≤α* get "free magnetic phase" [Seiberg]

right electric theory dual to a QED-like magnetic theory:

$$F_E \sim \frac{g^2 \ln (r \Lambda_{\rm UV})}{r^2}$$
 $F_M \sim \frac{g_M^2}{r^2 \ln (r \Lambda_{\rm UV})}$ $g_M \sim 1/g$

A toy model: $\beta(g;\alpha) = (\alpha - \alpha_*) - (g - g_*)^2$

A toy model: $\beta(g;\alpha) = (\alpha - \alpha_*) - (g - g_*)^2$

A toy model: $\beta(g;\alpha) = (\alpha - \alpha_*) - (g - g_*)^2$

$$lpha \geq lpha_*: \quad g_\pm = g_* \pm \sqrt{lpha - lpha_*}$$
 UV, IR fixed points

A toy model: $\beta(g;\alpha) = (\alpha - \alpha_*) - (g - g_*)^2$

$$lpha \geq lpha_*: \quad g_\pm = g_* \pm \sqrt{lpha - lpha_*}$$
 UV, IR fixed points

 $\alpha = \alpha_*$: fixed points merge

A toy model:
$$\beta(g;\alpha) = (\alpha - \alpha_*) - (g - g_*)^2$$

$$lpha \geq lpha_*: \quad g_\pm = g_* \pm \sqrt{lpha - lpha_*}$$
 UV, IR fixed points

$$\alpha = \alpha_*$$
: fixed points merge

$$\alpha < \alpha_*$$
: conformality lost

What happens just below the transition to nonconformal behavior?

$$\beta(g; \alpha)$$
 g_{UV}
 g_{*}
 $\alpha \lesssim \alpha_{*}$

- i. Start: $g = g_{UV} < g_*$ in the UV
- ii. g grows, **stalling** near g*
- iii. g strong at scale Λ_{IR}

$$\beta(g; \alpha)$$
 g_{UV}
 g_{*}
 $\alpha \lesssim \alpha_{*}$

- i. Start: $g = g_{UV} < g_*$ in the UV
- ii. g grows, **stalling** near g*
- iii. g strong at scale Λ_{IR}

$$\Lambda_{\mathrm{IR}} \simeq \Lambda_{\mathrm{UV}} e^{-\int \frac{dg}{\beta(g)}}$$

$$= \Lambda_{\mathrm{UV}} e^{-\frac{\pi}{\sqrt{|\alpha_* - \alpha|}}}$$

$$\beta(g; \alpha)$$
 g_{UV}
 g_{*}
 g_{IR}
 $\alpha \lesssim \alpha_{*}$

- i. Start: $g = g_{UV} < g_*$ in the UV
- ii. g grows, **stalling** near g*
- iii. g strong at scale Λ_{IR}

$$\Lambda_{\mathrm{IR}} \simeq \Lambda_{\mathrm{UV}} e^{-\int \frac{dg}{\beta(g)}}$$

$$= \Lambda_{\mathrm{UV}} e^{-\frac{\pi}{\sqrt{|\alpha_* - \alpha|}}}$$

$$\beta(g; \alpha)$$
 g_{UV}
 g_{*}
 $\alpha \lesssim \alpha_{*}$

- i. Start: $g = g_{UV} < g_*$ in the UV
- ii. g grows, **stalling** near g*
- iii. g strong at scale Λ_{IR}

$$\Lambda_{\mathrm{IR}} \simeq \Lambda_{\mathrm{UV}} e^{-\int \frac{dg}{\beta(g)}}$$

$$= \Lambda_{\mathrm{UV}} e^{-\frac{\pi}{\sqrt{|\alpha_* - \alpha|}}}$$

(Not like 2nd order phase transition: $\Lambda_{\rm IR} \simeq \Lambda_{\rm UV} \sqrt{|lpha_* - lpha|}$)

Iterative maps:
$$f(x) = \lambda x(1-x)$$

Find 3-pt orbit at $\lambda'_c \approx 3.829$, lost at $\lambda_c \approx 3.831$

Find 3-pt orbit at $\lambda'_c \approx 3.829$, lost at $\lambda_c \approx 3.831$

Find 3-pt orbit at $\lambda'_c \approx 3.829$, lost at $\lambda_c \approx 3.831$

 $3.829 < \lambda < 3.831$: 3-pt orbit -- 3 stable fixed points in $f^{(3)}(x)$

 $3.829 < \lambda < 3.831$: 3-pt orbit -- 3 stable fixed points in $f^{(3)}(x)$

 λ = 3.831 : three stable & unstable fixed point pairs annihilate

 $3.829 < \lambda < 3.831$: 3-pt orbit -- 3 stable fixed points in $f^{(3)}(x)$ $\lambda = 3.831$: three stable & unstable fixed point pairs annihilate

Intermittency for $\lambda > 3.831$: dawdle near "complex fixed point"

 $3.829 < \lambda < 3.831$: 3-pt orbit -- 3 stable fixed points in $f^{(3)}(x)$ $\lambda = 3.831$: three stable & unstable fixed point pairs annihilate Intermittency for $\lambda > 3.831$: dawdle near "complex fixed point"

 $3.829 < \lambda < 3.831$: 3-pt orbit -- 3 stable fixed points in $f^{(3)}(x)$ $\lambda = 3.831$: three stable & unstable fixed point pairs annihilate Intermittency for $\lambda > 3.831$: dawdle near "complex fixed point"

$$\Lambda_{\rm IR} \simeq \Lambda_{\rm UV} e^{-\frac{\pi}{\sqrt{\alpha_* - \alpha}}}$$

$$\Lambda_{\rm IR} \simeq \Lambda_{\rm UV} e^{-\frac{\pi}{\sqrt{\alpha_* - \alpha}}}$$

BKT: a classical phase transition in the 2-d XY-model

$$\Lambda_{\rm IR} \simeq \Lambda_{\rm UV} e^{-\frac{\pi}{\sqrt{\alpha_* - \alpha}}}$$

BKT: a classical phase transition in the 2-d XY-model

Vortices in XY model box size R, vortex core size a:

$$\Lambda_{\rm IR} \simeq \Lambda_{\rm UV} e^{-\frac{\pi}{\sqrt{\alpha_* - \alpha}}}$$

BKT: a classical phase transition in the 2-d XY-model

Vortices in XY model box size R, vortex core size a:

$$E = E_0 \ln R/a , \quad S = 2 \ln R/a$$

$$F = E - TS = (E_0 - 2T) \ln R/a$$

$$\Lambda_{\rm IR} \simeq \Lambda_{\rm UV} e^{-\frac{\pi}{\sqrt{\alpha_* - \alpha}}}$$

BKT: a classical phase transition in the 2-d XY-model

Vortices in XY model box size R, vortex core size a:

$$E = E_0 \ln R/a , \quad S = 2 \ln R/a$$

$$F = E - TS = (E_0 - 2T) \ln R/a$$

Vortices condense for $T>T_c=E_0/2$; can show correlation length forms:

$$\xi \simeq a \, e^{b/\sqrt{T-T_c}}$$

$$\Lambda_{\rm IR} \simeq \Lambda_{\rm UV} e^{-\frac{\pi}{\sqrt{\alpha_* - \alpha}}}$$

BKT: a classical phase transition in the 2-d XY-model

Vortices in XY model box size R, vortex core size a:

$$E = E_0 \ln R/a , \quad S = 2 \ln R/a$$

$$F = E - TS = (E_0 - 2T) \ln R/a$$

Vortices condense for $T>T_c=E_0/2$; can show correlation length forms:

$$\xi \simeq a \, e^{b/\sqrt{T-T_c}}$$

```
XY model = Coulomb gas (vortices = point-like charges with ln(r) Coulomb interaction):
```

XY model = Coulomb gas (vortices = point-like charges with ln(r) Coulomb interaction):

$$Z = \mathcal{N} \sum_{N_+,N_-} \frac{z^{N_+} z^{N_-}}{N_+! N_-!} \int \prod_{i=1}^{N_+} \prod_{j=1}^{N_-} d^2 x_i d^2 y_j \int D\phi \, e^{-\int d^2 x \, \frac{T}{2} (\nabla \phi)^2 + i \sum_{i,j} (\phi(x_i) - \phi(y_j))}$$
 Coulomb field anti-vortices

XY model = Coulomb gas (vortices = point-like charges with ln(r) Coulomb interaction):

$$Z = \mathcal{N} \sum_{N_+,N_-} \frac{z^{N_+} z^{N_-}}{N_+! N_-!} \int \prod_{i=1}^{N_+} \prod_{j=1}^{N_-} d^2 x_i d^2 y_j \int D\phi \, e^{-\int d^2 x \, \frac{T}{2} (\nabla \phi)^2 + i \sum_{i,j} (\phi(x_i) - \phi(y_j))}$$
 Coulomb field vortices

$$= \mathcal{N} \int D\phi \, e^{-\int d^2x \left[\frac{T}{2} (\nabla \phi)^2 - 2z \cos \phi\right]} \\ \text{temp.} \quad \text{fugacity}$$

XY model = Coulomb gas (vortices = point-like charges with ln(r) Coulomb interaction):

$$Z = \mathcal{N} \sum_{N_+,N_-} \frac{z^{N_+}z^{N_-}}{N_+!N_-!} \int \prod_{i=1}^{N_+} \prod_{j=1}^{N_-} d^2x_i d^2y_j \int D\phi \, e^{-\int d^2x \, \frac{T}{2}} (\nabla\phi)^2 + i \sum_{i,j} (\phi(x_i) - \phi(y_j))$$
 Coulomb field vortices

$$= \mathcal{N} \int D\phi \, e^{-\int d^2x \left[\frac{T}{2} (\nabla \phi)^2 - 2z \cos \phi\right]} \\ \text{temp.} \quad \text{fugacity}$$

The XY model is equivalent to the Sine-Gordon model

Classical XY model BKT transition = zero temperature quantum transition in Sine-Gordon model: T

$$\mathcal{L} = \frac{T}{2} (\nabla \phi)^2 - 2z \cos \phi$$

Sine-Gordon model:

$$\mathcal{L} = \frac{T}{2} (\nabla \phi)^2 - 2z \cos \phi$$

New variables:

$$u = 1 - \frac{1}{8\pi T} , \quad v = \frac{2z}{T\Lambda^2}$$

Perturbative β -functions:

$$\beta_u = -2v^2 \;, \qquad \beta_v = -2uv$$

Sine-Gordon model:

$$\mathcal{L} = \frac{T}{2} (\nabla \phi)^2 - 2z \cos \phi$$

New variables:

$$u = 1 - \frac{1}{8\pi T} , \quad v = \frac{2z}{T\Lambda^2}$$

Perturbative
$$\beta$$
-functions:

$$\beta_u = -2v^2 \;, \qquad \beta_v = -2uv$$

- $\sim \Lambda = UV$ cutoff at vortex core
- ~ Dimensionful quantities in units of XY model interaction strength

Sine-Gordon model:

$$\mathcal{L} = \frac{T}{2} (\nabla \phi)^2 - 2z \cos \phi$$

 $\beta_u = -2v^2 \; , \qquad \beta_v = -2uv$

New variables:

New variables:
$$u=1-\frac{1}{8\pi T}\;,\quad v=\frac{2z}{T\Lambda^2}$$

Perturbative β -functions:

$$\sim \Lambda = UV$$
 cutoff at vortex core

~ Dimensionful quantities in units of XY model interaction strength

Sine-Gordon model:

$$\mathcal{L} = \frac{T}{2} (\nabla \phi)^2 - 2z \cos \phi$$

New variables:

$$u = 1 - \frac{1}{8\pi T} , \quad v = \frac{2z}{T\Lambda^2}$$

<u>Perturbative</u> β-functions:

$$\beta_u = -2v^2 \; , \qquad \beta_v = -2uv$$

- $\sim \Lambda = UV$ cutoff at vortex core
- ~ Dimensionful quantities in units of XY model interaction strength

 ν

- •T<T_c
- bound vortices
- trivially conformal

Sine-Gordon model:

$$\mathcal{L} = \frac{T}{2} (\nabla \phi)^2 - 2z \cos \phi$$

New variables:

$$u = 1 - \frac{1}{8\pi T} , \quad v = \frac{2z}{T\Lambda^2}$$

Perturbative
$$\beta$$
-functions:

$$\beta_u = -2v^2 \; , \qquad \beta_v = -2uv$$

 $\sim \Lambda = UV$ cutoff at vortex core

~ Dimensionful quantities in

units of XY model interaction strength

•T<T_c

bound vortices

trivially conformal

screening length

$$u = 1 - \frac{1}{8\pi T} , \quad v = \frac{2z}{T\Lambda^2}$$

$$\beta_u = -2v^2 \;, \qquad \beta_v = -2uv$$

$$u = 1 - \frac{1}{8\pi T} , \quad v = \frac{2z}{T\Lambda^2}$$

$$\beta_u = -2v^2 \;, \qquad \beta_v = -2uv$$

Newer variables:

$$\tau = (u + v) , \qquad \alpha = u^2 - v^2$$

$$\beta_{\tau} = \alpha - \tau^2 , \qquad \beta_{\alpha} = 0$$

$$\beta_{\tau} = \alpha - \tau^2 \; , \qquad \beta_{\alpha} = 0$$

$$u = 1 - \frac{1}{8\pi T} , \quad v = \frac{2z}{T\Lambda^2}$$

$$\beta_u = -2v^2 \; , \qquad \beta_v = -2uv$$

$$\beta_v = -2uv$$

Newer variables:

$$\tau = (u+v) , \qquad \alpha = u^2 - v^2$$

$$\beta_{\tau} = \alpha - \tau^2 \; , \qquad \beta_{\alpha} = 0$$

$$u = 1 - \frac{1}{8\pi T} , \quad v = \frac{2z}{T\Lambda^2}$$

$$\beta_u = -2v^2 \; , \qquad \beta_v = -2uv$$

$$\beta_v = -2uv$$

Newer variables:

$$\tau = (u+v) , \qquad \alpha = u^2 - v^2$$

$$\beta_{\tau} = \alpha - \tau^2 \; , \qquad \beta_{\alpha} = 0$$

For small negative α , assume τ small & positive in UV

For small negative α , assume τ small & positive in UV

T blows up in RG time

$$t = \int \frac{d\tau}{\beta(\tau)} = -\frac{\pi}{2\sqrt{-\alpha}}$$

For small negative α , assume τ small & positive in UV

T blows up in RG time

$$t = \int \frac{d\tau}{\beta(\tau)} = -\frac{\pi}{2\sqrt{-\alpha}}$$

...giving rise to an IR scale (like Λ_{QCD}) which sets the scale for the finite correlation length for $\alpha<0$:

$$\xi_{\rm BKT} \sim \frac{1}{\Lambda} e^{\frac{\pi}{2\sqrt{-\alpha}}}$$

• BKT transition = loss of conformality via fixed point merger

- BKT transition = loss of conformality via fixed point merger
- Mechanism of fixed point merger in general gives rise to "BKT scaling":

$$\Lambda_{\rm IR} \sim \Lambda_{\rm UV} e^{-\frac{\pi}{\sqrt{\alpha_* - \alpha}}}$$

- BKT transition = loss of conformality via fixed point merger
- Mechanism of fixed point merger in general gives rise to "BKT scaling":

$$\Lambda_{
m IR} \sim \Lambda_{
m UV} e^{-\frac{\pi}{\sqrt{lpha_* - lpha}}}$$

Next: other examples:

- QM with 1/r² potential
- AdS/CFT
- Defect Yang-Mills
- QCD with many flavors

$$[-\nabla^2 + V(r) - k^2] \psi = 0 , \qquad V(r) = \frac{\alpha}{r^2}$$

$$\left[-\nabla^2 + V(r) - k^2 \right] \psi = 0 , \qquad V(r) = \frac{\alpha}{r^2}$$

$$\nu_{\pm} = -\left(\frac{d-2}{2}\right) \pm \sqrt{\alpha - \alpha_*} \qquad \alpha_* = -\left(\frac{d-2}{2}\right)^2$$

$$\left[-\nabla^2 + V(r) - k^2 \right] \psi = 0 , \qquad V(r) = \frac{\alpha}{r^2}$$

k=0 solutions: $\psi = c_{-}r^{\nu_{-}} + c_{+}r^{\nu_{+}}$

$$\nu_{\pm} = -\left(\frac{d-2}{2}\right) \pm \sqrt{\alpha - \alpha_*} \qquad \alpha_* = -\left(\frac{d-2}{2}\right)^2$$

• valid for $\alpha_* < \alpha < (\alpha_{*}+1)$

$$\left[-\nabla^2 + V(r) - k^2 \right] \psi = 0 , \qquad V(r) = \frac{\alpha}{r^2}$$

$$\nu_{\pm} = -\left(\frac{d-2}{2}\right) \pm \sqrt{\alpha - \alpha_*} \qquad \alpha_* = -\left(\frac{d-2}{2}\right)^2$$

- valid for $\alpha_* < \alpha < (\alpha_{*}+1)$
 - α < α_* : ν_{\pm} complex, no ground state

$$[-\nabla^2 + V(r) - k^2] \psi = 0 , \qquad V(r) = \frac{\alpha}{r^2}$$

$$\nu_{\pm} = -\left(\frac{d-2}{2}\right) \pm \sqrt{\alpha - \alpha_*} \qquad \alpha_* = -\left(\frac{d-2}{2}\right)^2$$

- valid for $\alpha_* < \alpha < (\alpha_{*}+1)$
 - α < α_* : ν_{\pm} complex, no ground state
 - $\alpha = \alpha_*$: $V_+ = V_-$

$$[-\nabla^2 + V(r) - k^2] \psi = 0 , \qquad V(r) = \frac{\alpha}{r^2}$$

$$\nu_{\pm} = -\left(\frac{d-2}{2}\right) \pm \sqrt{\alpha - \alpha_*} \qquad \alpha_* = -\left(\frac{d-2}{2}\right)^2$$

- valid for $\alpha_* < \alpha < (\alpha_{*}+1)$
 - α < α_* : ν_{\pm} complex, no ground state
 - $\alpha = \alpha_*$: $V_+ = V_-$
 - $\alpha > (\alpha_{*}+1)$: r^{\vee} too singular to normalize

$$[-\nabla^2 + V(r) - k^2] \psi = 0 , \qquad V(r) = \frac{\alpha}{r^2}$$

$$\nu_{\pm} = -\left(\frac{d-2}{2}\right) \pm \sqrt{\alpha - \alpha_*} \qquad \alpha_* = -\left(\frac{d-2}{2}\right)^2$$

$$[-\nabla^2 + V(r) - k^2] \psi = 0 , \qquad V(r) = \frac{\alpha}{r^2}$$

k=0 solutions: $\psi = c_{-}r^{\nu_{-}} + c_{+}r^{\nu_{+}}$

$$\nu_{\pm} = -\left(\frac{d-2}{2}\right) \pm \sqrt{\alpha - \alpha_*} \qquad \alpha_* = -\left(\frac{d-2}{2}\right)^2$$

• $c_+ = 0$ or $c_- = 0$ are scale invariant solutions

$$\left[-\nabla^2 + V(r) - k^2 \right] \psi = 0 , \qquad V(r) = \frac{\alpha}{r^2}$$

k=0 solutions:
$$\psi=c_-r^{\nu_-}+c_+r^{\nu_+}$$

$$\nu_{\pm} = -\left(\frac{d-2}{2}\right) \pm \sqrt{\alpha - \alpha_*} \qquad \alpha_* = -\left(\frac{d-2}{2}\right)^2$$

- $c_+ = 0$ or $c_- = 0$ are scale invariant solutions
- If $c_{+}\neq 0$, $\psi \rightarrow c_{+}r^{\vee +}$ for large $r(\nu_{+} > \nu_{-})$

$$[-\nabla^2 + V(r) - k^2] \psi = 0 , \qquad V(r) = \frac{\alpha}{r^2}$$

k=0 solutions:
$$\psi=c_-r^{\nu_-}+c_+r^{\nu_+}$$

$$\nu_{\pm} = -\left(\frac{d-2}{2}\right) \pm \sqrt{\alpha - \alpha_*} \qquad \alpha_* = -\left(\frac{d-2}{2}\right)^2$$

- $c_+ = 0$ or $c_- = 0$ are scale invariant solutions
- If $c_{+}\neq 0$, $\psi \rightarrow c_{+}r^{\vee +}$ for large $r(\nu_{+} > \nu_{-})$
- to make sense of BC at r=0, introduce δ -function:

$$\left[-\nabla^2 + V(r) - k^2\right]\psi = 0 , \qquad V(r) = \frac{\alpha}{r^2} .$$

$$V(r) = \frac{\alpha}{r^2}$$

k=0 solutions:
$$\psi=c_-r^{\nu_-}+c_+r^{\nu_+}$$

$$\nu_{\pm} = -\left(\frac{d-2}{2}\right) \pm \sqrt{\alpha - \alpha_*} \qquad \alpha_* = -\left(\frac{d-2}{2}\right)^2$$

$$\alpha_* = -\left(\frac{d-2}{2}\right)^2$$

- $c_{+} = 0$ or $c_{-} = 0$ are scale invariant solutions
- If $c_{+}\neq 0$, $\psi \rightarrow c_{+}r^{\vee +}$ for large $r(\nu_{+} > \nu_{-})$
- to make sense of BC at r=0, introduce δ -function:

$$V(r) = \frac{\alpha}{r^2} - g\delta^d(r)$$

$$\left[-\nabla^2 + V(r) - k^2\right]\psi = 0 , \qquad V(r) = \frac{\alpha}{r^2} .$$

$$V(r) = \frac{\alpha}{r^2}$$

k=0 solutions:
$$\psi=c_-r^{\nu_-}+c_+r^{\nu_+}$$

$$\nu_{\pm} = -\left(\frac{d-2}{2}\right) \pm \sqrt{\alpha - \alpha_*} \qquad \alpha_* = -\left(\frac{d-2}{2}\right)^2$$

$$\alpha_* = -\left(\frac{d-2}{2}\right)^2$$

- $c_{+} = 0$ or $c_{-} = 0$ are scale invariant solutions
- If $c_{+}\neq 0$, $\psi \rightarrow c_{+}r^{\vee+}$ for large $r(\nu_{+} > \nu_{-})$
- to make sense of BC at r=0, introduce δ -function:

$$V(r) = \frac{\alpha}{r^2} - g\delta^d(r)$$

- \bullet r^{v+} corresponds to IR fixed point of q
- r^{v-} corresponds to unstable UV fixed point of q

$$\alpha_* = -(d-2)^2/4$$
 so work in $d=2+\epsilon$

$$\alpha_* = -(d-2)^2/4 \quad \text{so work in d=2+} \epsilon$$

$$S = \int dt \, d^d \mathbf{x} \, \left(i \psi^{\dagger} \partial_t \psi - \frac{|\nabla \psi|^2}{2m} + \frac{g \pi}{2} \psi^{\dagger} \psi^{\dagger} \psi \psi \right)$$

$$- \int dt \, d^d \mathbf{x} \, d^d \mathbf{y} \, \psi^{\dagger}(t, \mathbf{x}) \psi^{\dagger}(t, \mathbf{y}) \frac{\alpha}{|\mathbf{x} - \mathbf{y}|^2} \psi(t, \mathbf{y}) \psi(t, \mathbf{x})$$

$$\alpha_* = -(d-2)^2/4 \quad \text{so work in } d=2+\epsilon$$

$$S = \int dt \, d^d \mathbf{x} \, \left(i\psi^{\dagger} \partial_t \psi - \frac{|\nabla \psi|^2}{2m} + \frac{g\pi}{2} \psi^{\dagger} \psi^{\dagger} \psi \psi \right)$$

$$- \int dt \, d^d \mathbf{x} \, d^d \mathbf{y} \, \psi^{\dagger}(t, \mathbf{x}) \psi^{\dagger}(t, \mathbf{y}) \frac{\alpha}{|\mathbf{x} - \mathbf{y}|^2} \psi(t, \mathbf{y}) \psi(t, \mathbf{x})$$

propagator:
$$\frac{i}{\omega - \mathbf{p}^2/2m}$$

contact vertex: $i\pi g\mu^{-\epsilon}$

"meson exchange": $\frac{2\pi i\alpha}{\epsilon}\frac{1}{|\mathbf{q}|^{\epsilon}}$

$$\alpha_* = -(d-2)^2/4 \quad \text{so work in } d=2+\epsilon$$

$$S = \int dt \, d^d \mathbf{x} \, \left(i\psi^{\dagger} \partial_t \psi - \frac{|\nabla \psi|^2}{2m} + \frac{g\pi}{2} \psi^{\dagger} \psi^{\dagger} \psi \psi \right) - \int dt \, d^d \mathbf{x} \, d^d \mathbf{y} \, \psi^{\dagger}(t, \mathbf{x}) \psi^{\dagger}(t, \mathbf{y}) \frac{\alpha}{|\mathbf{x} - \mathbf{y}|^2} \psi(t, \mathbf{y}) \psi(t, \mathbf{x})$$

propagator:
$$\frac{i}{\omega - \mathbf{p}^2/2m}$$

contact vertex: $i\pi g\mu^{-\epsilon}$

"meson exchange": $\frac{2\pi i\alpha}{\epsilon} \frac{1}{|\mathbf{q}|^{\epsilon}}$

Find g runs: +

$$\beta(g; \alpha) = \mu \frac{\partial g}{\partial \mu} = \left(\alpha + \frac{\epsilon^2}{4}\right) - (g - \epsilon)^2$$

Same as toy model! $\alpha_* = -\epsilon^2/4$, $g_* = \epsilon$

$$\alpha_* = -(d-2)^2/4 \quad \text{so work in d=2+} \epsilon$$

$$S = \int dt \, d^d \mathbf{x} \, \left(i \psi^{\dagger} \partial_t \psi - \frac{|\nabla \psi|^2}{2m} + \frac{g\pi}{2} \psi^{\dagger} \psi^{\dagger} \psi \psi \right)$$

$$- \int dt \, d^d \mathbf{x} \, d^d \mathbf{y} \, \psi^{\dagger}(t, \mathbf{x}) \psi^{\dagger}(t, \mathbf{y}) \frac{\alpha}{|\mathbf{x} - \mathbf{y}|^2} \psi(t, \mathbf{y}) \psi(t, \mathbf{x})$$

propagator:
$$\frac{i}{\omega - \mathbf{p}^2/2m}$$

contact vertex: $i\pi g\mu^{-\epsilon}$

"meson exchange": $\frac{2\pi i\alpha}{\epsilon} \frac{1}{|\mathbf{q}|^{\epsilon}}$

$$\beta(g; \alpha) = \mu \frac{\partial g}{\partial \mu} = \left(\alpha + \frac{\epsilon^2}{4}\right) - (g - \epsilon)^2$$

Same as toy model! $\alpha_* = -\epsilon^2/4$, $g_* = \epsilon$

 $\alpha>\alpha_*$: conformal

 $\alpha = \alpha_*$: critical

 $\alpha<\alpha_*$: g blows up in IR

RG treatment of $1/r^2$ potential: I. Perturbative

$$\alpha_* = -(d-2)^2/4 \quad \text{so work in d=2+} \epsilon$$

$$S = \int dt \, d^d \mathbf{x} \, \left(i \psi^{\dagger} \partial_t \psi - \frac{|\nabla \psi|^2}{2m} + \frac{g\pi}{2} \psi^{\dagger} \psi^{\dagger} \psi \psi \right)$$

$$- \int dt \, d^d \mathbf{x} \, d^d \mathbf{y} \, \psi^{\dagger}(t, \mathbf{x}) \psi^{\dagger}(t, \mathbf{y}) \frac{\alpha}{|\mathbf{x} - \mathbf{y}|^2} \psi(t, \mathbf{y}) \psi(t, \mathbf{x})$$

propagator:
$$\frac{i}{\omega - \mathbf{p}^2/2m}$$

contact vertex: $i\pi g\mu^{-\epsilon}$

"meson exchange": $\frac{2\pi i\alpha}{\epsilon} \frac{1}{|\mathbf{q}|^{\epsilon}}$

$$\beta(g;\alpha) = \mu \frac{\partial g}{\partial \mu} = \left(\alpha + \frac{\epsilon^2}{4}\right) - (g - \epsilon)^2$$

Same as toy model! $\alpha_* = -\epsilon^2/4$, $g_* = \epsilon$

 $\alpha>\alpha_*$: conformal

 $\alpha = \alpha_*$: critical

 $\alpha<\alpha_*$: g blows up in IR

$$B \sim \left(\frac{\Lambda_{\rm IR}^2}{m}\right) \sim \left(\frac{\Lambda_{\rm UV}^2}{m}\right) e^{-2\pi/\sqrt{\alpha_* - \alpha}}$$

BKT scaling

bound state energy

regulate with square well:

$$V(r) = \begin{cases} \alpha/r^2 & r > r_0 \\ -g/r_0^2 & r < r_0 \end{cases}$$

E=0 solution for r>r₀:
$$\psi = c_{-}r^{\nu_{-}} + c_{+}r^{\nu_{+}}$$

regulate with square well:

$$V(r) = \begin{cases} \alpha/r^2 & r > r_0 \\ -g/r_0^2 & r < r_0 \end{cases}$$

E=0 solution for r>r₀:
$$\psi = c_{-}r^{\nu_{-}} + c_{+}r^{\nu_{+}}$$

Solve for c_+/c_- (a physical dimensionful quantity) and require invariance: $d(c_+/c_-)/dr_0 = 0$:

regulate with square well:

$$V(r) = \begin{cases} \alpha/r^2 & r > r_0 \\ -g/r_0^2 & r < r_0 \end{cases}$$

E=0 solution for r>r₀:
$$\psi = c_{-}r^{\nu_{-}} + c_{+}r^{\nu_{+}}$$

Solve for c_+/c_- (a physical dimensionful quantity) and require invariance: $d(c_+/c_-)/dr_0 = 0$:

Find exact β -function for g. Eg, for d=3:

$$\beta = \frac{2\sqrt{g}\left(\alpha + \sqrt{g}\cot\sqrt{g} - g\cot^2\sqrt{g}\right)}{-\cot\sqrt{g} + \sqrt{g}\csc^2\sqrt{g}}$$

$$\alpha_* = -\frac{1}{4}, g_* \approx 1.36$$

regulate with square well:

$$V(r) = \begin{cases} \alpha/r^2 & r > r_0 \\ -g/r_0^2 & r < r_0 \end{cases}$$

E=0 solution for r>r₀: $\psi = c_{-}r^{\nu_{-}} + c_{+}r^{\nu_{+}}$

Solve for c_+/c_- (a physical dimensionful quantity) and require invariance: $d(c_+/c_-)/dr_0 = 0$:

Qualitatively same as pert. result

Find exact β -function for g. Eg, for d=3:

$$\beta = \frac{2\sqrt{g}\left(\alpha + \sqrt{g}\cot\sqrt{g} - g\cot^2\sqrt{g}\right)}{-\cot\sqrt{g} + \sqrt{g}\csc^2\sqrt{g}}$$

$$\alpha_* = -\frac{1}{4}, g_* \approx 1.36$$

Even better: define

$$\gamma = \left(\frac{\sqrt{g} J_{d/2}(\sqrt{g})}{J_{d/2-1}(\sqrt{g})}\right)$$

Condition $d(c_+/c_-)/dr_0$ yields exact β -function in d-dimensions:

$$\beta_{\gamma} = \frac{\partial \gamma}{\partial t} = (\alpha - \alpha_*) - (\gamma - \gamma_*)^2 , \qquad \gamma_* = \frac{d-2}{2}$$

- Toy model is exact!
- Y is a periodic function of g, Y=±∞ equivalent
- Limit cycle behavior for α<α*: explains "Efimov states" for trapped atoms at Feschbach resonance

Limit cycle behavior

 $E_{n+1}/E_n = 1/515.03 , \quad n \to \infty$

$E_{n+1}/E_n = 1/515.03 \; , \quad n \to \infty$ Limit cycle behavior

Experimental evidence for Efimov states in $^{133}\mathrm{Cs}$

(Kraemer et al. (Innsbruck), Nature 440 (2000)

Conformal phases: measure correlations, not β -functions! Look at operator scaling dimensions:

From Nishida & Son, 2007:

- Replace $V(r_1-r_2) \rightarrow V(r_1-r_2) + \frac{1}{2} \omega^2 |r_1^2+r_2^2|$
- Compute 2-particle ground state energy E₀
- Operator dimension of $\psi\psi$ is $\Delta_{\psi\psi} = E_0/\omega$

From Nishida & Son, 2007:

- Replace $V(r_1-r_2) \rightarrow V(r_1-r_2) + \frac{1}{2} \omega^2 |r_1^2+r_2^2|$
- Compute 2-particle ground state energy E₀
- Operator dimension of $\psi\psi$ is $\Delta_{\psi\psi} = E_0/\omega$

2-particle wavefunction at $|r_1-r_2|=0$

From Nishida & Son, 2007:

- Replace $V(r_1-r_2) \rightarrow V(r_1-r_2) + \frac{1}{2} \omega^2 |r_1^2+r_2^2|$
- Compute 2-particle ground state energy E₀
- Operator dimension of $\psi\psi$ is $\Delta_{\psi\psi} = E_0/\omega$

2-particle wavefunction at $|r_1-r_2|=0$

As the two conformal theories merge when $\alpha \! \to \! \alpha_*$, operator dimensions in the two CFTs merge

From Nishida & Son, 2007:

- Replace $V(r_1-r_2) \rightarrow V(r_1-r_2) + \frac{1}{2} \omega^2 |r_1|^2 + \frac{1}{2} |r_2|^2$
- Compute 2-particle ground state energy E₀
- Operator dimension of $\psi\psi$ is $\Delta_{\psi\psi} = E_0/\omega$

2-particle wavefunction at $|r_1-r_2|=0$

As the two conformal theories merge when $\alpha \rightarrow \alpha_*$, operator dimensions in the two CFTs merge

For $1/r^2$ potential -- find for the two conformal theories:

From Nishida & Son, 2007:

- Replace $V(r_1-r_2) \rightarrow V(r_1-r_2) + \frac{1}{2} \omega^2 |r_1^2+r_2^2|$
- Compute 2-particle ground state energy E₀
- Operator dimension of $\psi\psi$ is $\Delta_{\psi\psi} = E_0/\omega$

2-particle wavefunction at $|r_1-r_2|=0$

As the two conformal theories merge when $\alpha \rightarrow \alpha_*$, operator dimensions in the two CFTs merge

For $1/r^2$ potential -- find for the two conformal theories:

[
$$\psi\psi$$
]: $\Delta_{\pm} = (d + \nu_{\pm}) = \left(\frac{d+2}{2}\right) \pm \sqrt{\alpha - \alpha_{*}}$ "+" = UV fixed point "-" = IR fixed point

Note: $(\Delta_{+}+\Delta_{-}) = (d+2)$: scaling dimension of nonrelativistic spacetime.

AdS:
$$ds^2 = \frac{1}{z^2} \left(dz^2 + \sum_{i=1}^d dx_i^2 \right)$$

AdS:
$$ds^2 = \frac{1}{z^2} \left(dz^2 + \sum_{i=1}^d dx_i^2 \right)$$

Massive scalar in the bulk two solutions to eq. of motion:

$$\varphi = c_+ z^{\Delta_+} + c_- z^{\Delta_-}$$

$$\Delta_{\pm} = \frac{d}{2} \pm \sqrt{m^2 + (\frac{d}{2})^2} \equiv \frac{d}{2} \pm \sqrt{m^2 - m_*^2}$$

AdS:
$$ds^2 = \frac{1}{z^2} \left(dz^2 + \sum_{i=1}^d dx_i^2 \right)$$

Massive scalar in the bulk two solutions to eq. of motion:

$$\varphi = c_+ z^{\Delta_+} + c_- z^{\Delta_-}$$

$$\Delta_{\pm} = \frac{d}{2} \pm \sqrt{m^2 + \left(\frac{d}{2}\right)^2} \equiv \frac{d}{2} \pm \sqrt{m^2 - m_*^2}$$

AdS

• $(\Delta_{+}+\Delta_{-})=d=$ spacetime dim of CFT

QM

• $(\Delta^+_{\psi\psi} + \Delta^-_{\psi\psi}) = (d+2) = conformal wt.$ of nonrelativistic d-space+time

AdS:
$$ds^2 = \frac{1}{z^2} \left(dz^2 + \sum_{i=1}^d dx_i^2 \right)$$

Massive scalar in the bulk two solutions to eq. of motion:

$$\varphi = c_+ z^{\Delta_+} + c_- z^{\Delta_-}$$

$$\Delta_{\pm} = \frac{d}{2} \pm \sqrt{m^2 + \left(\frac{d}{2}\right)^2} \equiv \frac{d}{2} \pm \sqrt{m^2 - m_*^2}$$

AdS

- $(\Delta_{+}+\Delta_{-})=d=$ spacetime dim of CFT
- when $m^2 = m_*^2 = -d^2/4$, $\Delta_{\pm} = d/2$

QM

- $(\Delta^+_{\psi\psi} + \Delta^-_{\psi\psi}) = (d+2) = conformal wt.$ of nonrelativistic d-space+time
- $\alpha = \alpha_* = -(d-2)^2/4 \Rightarrow \Delta_{\pm} = (d+2)/2$

AdS:
$$ds^2 = \frac{1}{z^2} \left(dz^2 + \sum_{i=1}^d dx_i^2 \right)$$

Massive scalar in the bulk two solutions to eq. of motion:

$$\varphi = c_+ z^{\Delta_+} + c_- z^{\Delta_-}$$

$$\Delta_{\pm} = \frac{d}{2} \pm \sqrt{m^2 + \left(\frac{d}{2}\right)^2} \equiv \frac{d}{2} \pm \sqrt{m^2 - m_*^2}$$

AdS

- $(\Delta_{+}+\Delta_{-})=d=$ spacetime dim of CFT
- when $m^2 = m_*^2 = -d^2/4$, $\Delta_{\pm} = d/2$
- Instability (no AdS or CFT) for m² < m_{*}² (B-F bound)

QM

- $(\Delta^+_{\psi\psi} + \Delta^-_{\psi\psi}) = (d+2) = conformal wt.$ of nonrelativistic d-space+time
- $\alpha = \alpha_* = -(d-2)^2/4 \Rightarrow \Delta_{\pm} = (d+2)/2$
- Conformality lost for $\alpha < \alpha_*$

AdS:
$$ds^2 = \frac{1}{z^2} \left(dz^2 + \sum_{i=1}^d dx_i^2 \right)$$

Massive scalar in the bulk two solutions to eq. of motion:

$$\varphi = c_+ z^{\Delta_+} + c_- z^{\Delta_-}$$

$$\Delta_{\pm} = \frac{d}{2} \pm \sqrt{m^2 + \left(\frac{d}{2}\right)^2} \equiv \frac{d}{2} \pm \sqrt{m^2 - m_*^2}$$

AdS

- $(\Delta_{+}+\Delta_{-})=d=$ spacetime dim of CFT
- when $m^2 = m_*^2 = -d^2/4$, $\Delta_{\pm} = d/2$
- Instability (no AdS or CFT) for m² < m_{*}² (B-F bound)
- lower bound on Δ_{-}

QM

- $(\Delta^+_{\psi\psi} + \Delta^-_{\psi\psi}) = (d+2) = conformal wt.$ of nonrelativistic d-space+time
- $\alpha = \alpha_* = -(d-2)^2/4 \Rightarrow \Delta_{\pm} = (d+2)/2$
- Conformality lost for $\alpha < \alpha_*$
- lower bound on Δ-_{ψψ}

$$\varphi = \varphi_0 z^{\Delta_+} : Z_{\text{grav.}} \Big|_{\varphi \xrightarrow{z \to 0} \varphi_0 z^{\Delta_+}} = Z_{\text{CFT}}[\varphi_0]$$

$$arphi = arphi_0 \, z^{\Delta_+} : \qquad Z_{
m grav.} \Big|_{arphi = z_{
m O}} = Z_{
m CFT}[arphi_0]$$

$$S = S_{
m CFT} + \int d^d x \, \phi_0 \mathcal{O}$$

$$\varphi = \varphi_0 \, z^{\Delta_+} :$$

$$arphi = arphi_0 \, z^{\Delta_+}: \qquad Z_{
m grav.} \Big|_{arphi = \overline{z}_{
m o}} = Z_{
m CFT}[arphi_0]$$
 $S = S_{
m CFT} + \int d^d x \, \phi_0 \mathcal{O}$

$$=Z_{\mathrm{CFT}}[arphi_0]$$

$$\varphi = J z^{\Delta_-} :$$

$$arphi = J z^{\Delta_-} : \qquad Z_{\mathrm{grav.}} \Big|_{\varphi \xrightarrow[z \to 0]{} J z^{\Delta_-}} = Z_{\mathrm{CFT}}[J]$$

$$= Z_{\text{CFT}}[J]$$

$$= \int D\varphi Z_{\text{CFT}} [\varphi] e^{i \int d^d x J \varphi}$$

As with QM example, 2 different solutions \Rightarrow 2 different CFTs

$$\varphi = \varphi_0 z^{\Delta_+} : Z_{\text{grav.}} \Big|_{\varphi \xrightarrow{z \to 0} \varphi_0 z^{\Delta_+}} = Z_{\text{CFT}}[\varphi_0]$$

$$S = S_{\text{CFT}} + \int d^d x \, \phi_0 \mathcal{O}$$

$$\varphi = J z^{\Delta_-} : Z_{\text{grav.}} \Big|_{\varphi \xrightarrow{z \to 0} J z^{\Delta_-}} = Z_{\text{CFT}}[J]$$

$$= \int D\varphi \, Z_{\text{CFT}}[\varphi] e^{i \int d^d x J \varphi}$$

UV fine-tuning: $m^2\phi^2$...adds OO operator. Eg: $O=\overline{\Psi}\Psi$, OO $=\overline{\Psi}\Psi\overline{\Psi}\Psi$

As with QM example, 2 different solutions \Rightarrow 2 different CFTs

$$\varphi = \varphi_0 z^{\Delta_+} : Z_{\text{grav.}} \Big|_{\varphi \xrightarrow{z \to 0}} \varphi_0 z^{\Delta_+} = Z_{\text{CFT}}[\varphi_0]$$

$$S = S_{\text{CFT}} + \int d^d x \, \phi_0 \mathcal{O}$$

$$\varphi = J z^{\Delta_-} : Z_{\text{grav.}} \Big|_{\varphi \xrightarrow{z \to 0}} J z^{\Delta_-} = Z_{\text{CFT}}[J]$$

$$= \int D\varphi \, Z_{\text{CFT}}[\varphi] e^{i \int d^d x J \varphi}$$

UV fine-tuning: $m^2\phi^2$...adds OO operator. Eg: $O=\overline{\Psi}\Psi$, OO $=\overline{\Psi}\Psi\overline{\Psi}\Psi$

 $X \Rightarrow$ analog of $\delta(r)$ in QM example tuned to unstable UV fixed pt.

A relativistic example: defect Yang-Mills theory

A relativistic example: defect Yang-Mills theory

Charged relativistic fermions on a d-dimensional defect + 4D conformal gauge theory (eg, N=4 SYM)

$$S = \int d^{d+1}x \ i\bar{\psi}\gamma^{\mu}D_{\mu}\psi - \frac{1}{4g^2} \int d^4x F^{a}_{\mu\nu}F^{a,\mu\nu}$$

A relativistic example: defect Yang-Mills theory

Charged relativistic fermions on a d-dimensional defect + 4D conformal gauge theory (eg, N=4 SYM)

$$S = \int d^{d+1}x \ i\bar{\psi}\gamma^{\mu}D_{\mu}\psi - \frac{1}{4g^2}\int d^4x \, F^a_{\mu\nu}F^{a,\mu\nu}$$
 g doesn't run

g doesn't run by construction

Expect a phase transition as a function of g:

$$\langle \bar{\psi}\psi \rangle = \begin{cases} 0 & g < g_* \\ \Lambda_{\rm IR}^d & g > g_* \end{cases}$$

g doesn't run by construction

Expect a phase transition as a function of g:

$$\langle \bar{\psi}\psi \rangle = \begin{cases} 0 & g < g_* \\ \Lambda_{\rm IR}^d & g > g_* \end{cases}$$

Add a contact interaction to the theory (as in QM & AdS/CFT examples!) and study its running:

$$\Delta S = \int d^{d+1}x \left(-\frac{c}{2} (\bar{\psi} \gamma_{\mu} T_a \psi)^2 \right)$$

g doesn't run by construction

Expect a phase transition as a function of g:

$$\langle \bar{\psi}\psi \rangle = \begin{cases} 0 & g < g_* \\ \Lambda_{\rm IR}^d & g > g_* \end{cases}$$

Add a contact interaction to the theory (as in QM & AdS/CFT examples!) and study its running:

$$\Delta S = \int d^{d+1}x \left(-\frac{c}{2} (\bar{\psi} \gamma_{\mu} T_a \psi)^2 \right)$$

Phase transition is in perturbative regime for $d=1+\epsilon$ (spatial dimensions of "defect"): compute β -function

(c) **Stc):** a $1/\epsilon$ factor from the glion propagator (40) and $1/\epsilon$ pole for $d=(1+\epsilon)$

$$(9) \equiv \epsilon c - \frac{N_c}{2\pi} c^2 - \frac{g^2}{2\pi}$$

 $\mathcal{G}_{*} \text{ where } \mathcal{B}(c) \text{ has a double zero}, \\
\mathcal{I}_{*} \equiv \frac{\pi^{2} \epsilon^{\epsilon}}{N_{c}} = \frac{\pi^{2} \epsilon^{\epsilon}}{N_{c}}$

$$\hat{J}_{*} = \frac{\pi^2 \epsilon}{N_c} \frac{1}{N_c}$$

RG equation,

$$\frac{\partial c}{\partial \mu \mu} = \beta(c)$$

(588)

DAVID B. KAPLAN

 $\mathcal{L} \equiv \cdots - \frac{\mathcal{C}}{2} (\bar{\psi} \gamma^{\mu} t^{a} \psi)^{2}$ $\mathcal{L} \equiv \cdots - \frac{\mathcal{C}}{2} (\bar{\psi} \gamma^{\mu} t^{a} \psi)^{2}) - \frac{1}{4} \int d^{4}x F_{\mu\nu}^{a} F_{\mu\nu}^{a} + \cdots$ of the factor from the glion propagator (40) and 1/ε pole for d=(1+ε)

$$\mathcal{G}_{\mathcal{S}} = \frac{N_c}{2\pi} \mathcal{G}_{\mathcal{T}}^2 \frac{\mathcal{G}_{\mathcal{T}}^2}{2\pi} \mathcal{G}_{\mathcal{T}}^2 \frac{\mathcal{G}_{\mathcal{T}}^2}{2\pi} c^2 \qquad (56)$$

$$\mathcal{G}_{\mathcal{T}} = \mathcal{G}_{\mathcal{T}}^2 \mathcal{G}$$

$$\mathcal{G}_{*}^{*} \text{ where } \mathcal{G}_{C}^{1} \text{ has a double zero}_{N_{c}}^{2\pi} \left(c - \frac{\epsilon \pi}{N_{c}}\right)^{2}$$

$$\mathcal{G}_{*}^{*} \text{ where } \mathcal{G}_{C}^{1} \text{ has a double zero}_{N_{c}}^{2\pi} \left(c - \frac{\epsilon \pi}{N_{c}}\right)^{2}$$

$$\mathcal{G}_{*}^{*} \equiv \frac{\pi^{2} \epsilon}{N_{c}^{2}}$$

$$\mathcal{G}_{*}^{*} = \frac{\pi^{2} \epsilon}{N_{c}^{2}}$$
(577)

RG equation,

$$\frac{\partial \mathcal{C}}{\partial \mathcal{H} u} = \beta(\mathcal{C}) \tag{58}$$

DAVID B. KAPLAN

 $L \equiv \cdots = \frac{\mathcal{E}}{2} (\bar{\psi} \gamma^{\mu} t^{\alpha} \psi)^{2}$ $= \frac{1}{4} \int d^{4}x F_{\mu\nu}^{a} F_{\mu\nu}^{a} + \cdots$ $= \frac{\mathcal{E}}{2} (\bar{\psi} \gamma^{\mu} t^{\alpha} \psi)^{2} = \frac{1}{4} \int d^{4}x F_{\mu\nu}^{a} F_{\mu\nu}^{a} + \cdots$ $= \frac{\mathcal{E}}{2} (\bar{\psi} \gamma^{\mu} t^{\alpha} \psi)^{2} = \frac{1}{4} \int d^{4}x F_{\mu\nu}^{a} F_{\mu\nu}^{a} + \cdots$ $= \frac{\mathcal{E}}{2} (\bar{\psi} \gamma^{\mu} t^{\alpha} \psi)^{2} = \frac{1}{4} \int d^{4}x F_{\mu\nu}^{a} F_{\mu\nu}^{a} + \cdots$ $= \frac{\mathcal{E}}{2} (\bar{\psi} \gamma^{\mu} t^{\alpha} \psi)^{2} = \frac{1}{4} \int d^{4}x F_{\mu\nu}^{a} F_{\mu\nu}^{a} + \cdots$ $= \frac{\mathcal{E}}{2} (\bar{\psi} \gamma^{\mu} t^{\alpha} \psi)^{2} = \frac{1}{4} \int d^{4}x F_{\mu\nu}^{a} F_{\mu\nu}^{a} + \cdots$ $= \frac{\mathcal{E}}{2} (\bar{\psi} \gamma^{\mu} t^{\alpha} \psi)^{2} = \frac{1}{4} \int d^{4}x F_{\mu\nu}^{a} F_{\mu\nu}^{a} + \cdots$ $= \frac{\mathcal{E}}{2} (\bar{\psi} \gamma^{\mu} t^{\alpha} \psi)^{2} = \frac{1}{4} \int d^{4}x F_{\mu\nu}^{a} F_{\mu\nu}^{a} + \cdots$ $= \frac{\mathcal{E}}{2} (\bar{\psi} \gamma^{\mu} t^{\alpha} \psi)^{2} = \frac{1}{4} \int d^{4}x F_{\mu\nu}^{a} F_{\mu\nu}^{a} + \cdots$ $= \frac{\mathcal{E}}{2} (\bar{\psi} \gamma^{\mu} t^{\alpha} \psi)^{2} = \frac{1}{4} \int d^{4}x F_{\mu\nu}^{a} F_{\mu\nu}^{a} + \cdots$ $= \frac{\mathcal{E}}{2} (\bar{\psi} \gamma^{\mu} t^{\alpha} \psi)^{2} = \frac{1}{4} \int d^{4}x F_{\mu\nu}^{a} F_{\mu\nu}^{a} + \cdots$ $= \frac{\mathcal{E}}{2} (\bar{\psi} \gamma^{\mu} t^{\alpha} \psi)^{2} = \frac{1}{4} \int d^{4}x F_{\mu\nu}^{a} F_{\mu\nu}^{a} + \cdots$ $= \frac{\mathcal{E}}{2} (\bar{\psi} \gamma^{\mu} t^{\alpha} \psi)^{2} = \frac{1}{4} \int d^{4}x F_{\mu\nu}^{a} F_{\mu\nu}^{a} + \cdots$ $= \frac{\mathcal{E}}{2} (\bar{\psi} \gamma^{\mu} t^{\alpha} \psi)^{2} = \frac{1}{4} \int d^{4}x F_{\mu\nu}^{a} F_{\mu\nu}^{a} + \cdots$ $= \frac{\mathcal{E}}{2} (\bar{\psi} \gamma^{\mu} t^{\alpha} \psi)^{2} = \frac{1}{4} \int d^{4}x F_{\mu\nu}^{a} F_{\mu\nu}^{a} + \cdots$ $= \frac{\mathcal{E}}{2} (\bar{\psi} \gamma^{\mu} t^{\alpha} \psi)^{2} = \frac{1}{4} \int d^{4}x F_{\mu\nu}^{a} F_{\mu\nu}^{a} + \cdots$ $= \frac{\mathcal{E}}{2} (\bar{\psi} \gamma^{\mu} t^{\alpha} \psi)^{2} = \frac{1}{4} \int d^{4}x F_{\mu\nu}^{a} F_{\mu\nu}^{a} + \cdots$ $= \frac{\mathcal{E}}{2} (\bar{\psi} \gamma^{\mu} t^{\alpha} \psi)^{2} = \frac{1}{4} \int d^{4}x F_{\mu\nu}^{a} F_{\mu\nu}^{a} + \cdots$ $= \frac{\mathcal{E}}{2} (\bar{\psi} \gamma^{\mu} t^{\alpha} t^{\alpha} \psi)^{2} = \frac{1}{4} \int d^{4}x F_{\mu\nu}^{a} + \cdots$ $= \frac{\mathcal{E}}{2} (\bar{\psi} \gamma^{\mu} t^{\alpha} t^{\alpha}$

$$g_{*} \text{ where } g(c) \text{ has a double zero.}^{N_{c}} \left(c - \frac{\epsilon \pi}{N_{c}}\right)^{2}$$

$$f_{*} = \frac{\pi^{2} \epsilon}{N_{c}}$$
• Find g_{*} transition at $g^{2} = g_{*}^{2} = (\epsilon \pi)^{2}/N_{c}$

- Find \overline{BW}_{T} transition at $g^2 = g_*^2 = (\epsilon \pi)^2/N_c$ $RG = \frac{\Lambda_{W}}{2} \frac{1}{2} \frac{1}{2$
 - Schwinger-Dyson gap eq (rainbow approx) gives gualitatively same results

DAVID B. KAPLAN

BANKS-FISCHLER SYMPOSIUM

JUNE 15, 2009

the bare four-fermi coupling is zero at the ItAV gutofff.

Back to QCD at LARGE N_c and N_f:

Transition at $x=x_c$?

Back to QCD at LARGE N_c and N_f:

Transition at $x=x_c$?

Schwinger-Dyson (rainbow approximation):

Miransky 1985

Appelquist, Terning, Wijerwardhana 1996

Back to QCD at LARGE N_c and N_f:

Transition at $x=x_c$?

Schwinger-Dyson (rainbow approximation):

Miransky 1985

Appelquist, Terning, Wijerwardhana 1996

Found: BKT scaling for $\langle \overline{\psi} \psi \rangle$...not rigorous, but qualitatively correct?

Near Banks-Zaks (IR) fixed point:

Conjecture: loss of conformality for QCD at x_c is of BKT type, due to fixed point merger.

Near Banks-Zaks (IR) fixed point:

QCD:

$$\Delta_{\Psi\Psi}^{\dagger} = 3 - \# g^2 N_c$$
(almost free quarks)

Conjecture: loss of conformality for QCD at x_c is of BKT type, due to fixed point merger.

Near Banks-Zaks (IR) fixed point:

QCD:

$$\Delta_{\Psi\bar{\Psi}}^{+} = 3 - \# g^2 N_c$$

(almost free quarks)

Partner theory QCD*:

$$\Delta_{\psi\bar{\psi}}^{-} = d - \Delta_{\psi\bar{\psi}}^{+} = I + \# g^2 N_c$$

(almost free scalar?)

defined at nontrivial
UV fixed point
to merge with QCD
at x=xc

LAST SEEN WITH WEAKLY

COUPLED SCALAR

defined at nontrivial
UV fixed point
to merge with QCD
at x=x_c

LAST SEEN WITH WEAKLY

COUPLED SCALAR

Consider:

- SU(N_c) gauge theory
- N_f massless Dirac fermions Ψ
- M_f^2 scalars ϕ , tuned to be massless
- coupling Ψφψ
- Model has $SU(M_f) \times SU(M_f)$ chiral symmetry, $\varphi = (\Box, \Box)$

defined at nontrivial
UV fixed point
to merge with QCD
at x=xc

LAST SEEN WITH WEAKLY

COUPLED SCALAR

Consider:

- SU(N_c) gauge theory
- N_f massless Dirac fermions Ψ
- M_f^2 scalars ϕ , tuned to be massless
- coupling Ψφψ
- Model has $SU(M_f) \times SU(M_f)$ chiral symmetry, $\varphi = (\Box, \Box)$

Conformal fixed point?

Find analog of Banks-Zaks pt. for:

iff
$$M_f \le \frac{5}{2\sqrt{11}} N_f \simeq .75 N_f$$

defined at nontrivial
UV fixed point
to merge with QCD
at x=x_c

LAST SEEN WITH WEAKLY

COUPLED SCALAR

Consider:

- SU(N_c) gauge theory
- N_f massless Dirac fermions Ψ
- Mf^2 scalars ϕ , tuned to be massless
- coupling Ψφψ
- Model has $SU(M_f) \times SU(M_f)$ chiral symmetry, $\varphi = (\Box, \Box)$

Conformal fixed point?

Find analog of Banks-Zaks pt. for:

iff
$$M_f \le \frac{5}{2\sqrt{11}} N_f \simeq .75 N_f$$

..but QCD* needs full flavor symmetry. Possibly only at stronger coupling?

QCD*?

UV fixed point starts at strong-ish coupling?

QCD*?

UV fixed point starts at strong-ish coupling?

Or possibly $(\Delta_+ + \Delta_-) \neq d$ in QCD?

Eg: like effect of Casimir energy in AdS/CFT

QCD*?

UV fixed point starts at strong-ish coupling?

Or possibly $(\Delta_+ + \Delta_-) \neq d$ in QCD?

Eg: like effect of Casimir energy in AdS/CFT

 Fixed point annihilation appears to be a generic mechanism for the loss of conformality

- Fixed point annihilation appears to be a generic mechanism for the loss of conformality
- II. Leads to similar scaling as in the BKT transition: $\Lambda_{IR} \sim \Lambda_{UV} e[-\pi/\sqrt{(-\alpha-\alpha_*)}]$

- Fixed point annihilation appears to be a generic mechanism for the loss of conformality
- II. Leads to similar scaling as in the BKT transition: $\Lambda_{IR} \sim \Lambda_{UV} e[-\pi/\sqrt{(-\alpha-\alpha_*)}]$
- III. Both relativistic & non-relativistic examples

- Fixed point annihilation appears to be a generic mechanism for the loss of conformality
- II. Leads to similar scaling as in the BKT transition: $\Lambda_{IR} \sim \Lambda_{UV} e[-\pi/\sqrt{(-\alpha-\alpha_*)}]$
- III. Both relativistic & non-relativistic examples
- IV. Analog in AdS/CFT; implications for AdS below the Breitenlohner-Freedman bound?

- I. Fixed point annihilation appears to be a generic mechanism for the loss of conformality
- II. Leads to similar scaling as in the BKT transition: $\Lambda_{IR} \sim \Lambda_{UV} e[-\pi/\sqrt{(-\alpha-\alpha_*)}]$
- III. Both relativistic & non-relativistic examples
- IV. Analog in AdS/CFT; implications for AdS below the Breitenlohner-Freedman bound?
- V. Implications for QCD with many flavors? Is there a pair of conformal QCD theories? What is QCD*? Finding QCD* should be on field theory / lattice QCD "to-do" list.

