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Everyone’s first lesson in asymptotic freedom includes the 
equation

which implies that asymptotic freedom disappears at 

When I learn this subject, this was a curiosity which obviously 
had no reasonable application in physics.
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But there is real physics in the region of large     .   Here is a 
sketch of the phase diagram.  David Kaplan will describe the 
critical endpoint this afternoon.

The blue line shows a line of IR attractive fixed points.  Where 
they are at finite coupling, these are the ‘Banks-Zaks fixed points’.
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The Banks-Zaks fixed points were discovered by 
William Caswell.  Along with Belavin and Jones, he 
was the first to compute the 2-loop beta function of 
QCD *.  Here is a figure from his 1974 paper:

 

* Tom Banks was in the race with a clever method that did not succeed 
in time.



This fixed point was of little interest in 1974, but it 1980 it was 
another story.  Everyone was talking about ‘Massless Composite 
Fermions’.

Tom Banks had just written an amazing paper with Frishman, 
Schwimmer and Yankielowicz that discovered the result that 
the massless fermion triangle has a delta function singularity at 

and used this to give a rigorous proof of ’t Hooft’s new  
anomaly matching condition.

q2 = 0

∼ δ(q2)



So it was quite remarkable to note that, near 16.5 flavors, there is 
a zero of the QCD beta function.  Banks and Zaks argued that this 
behavioir was real and not an artifact by setting up a well-defined 
perturbative expansion in

In this expansion,

Banks and Zaks argued that this fixed point represented a new 
phase of QCD, similar in some respects to the zero coupling 
region, but also having conformal invariance and nontrivial scaling 
as a consequence of the fixed point.  
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The story of this new phase of QCD languished for a long time.

Three developments of the 1990’s brought it back.

You are very familiar with the first of these:

In 1994, Seiberg discovered his duality of supersymmetric Yang-
Mills theory.   This included a nontrivial solution of the ’t Hooft
anomaly matching conditions based on the massless fermions in 
the multiplets of a dual gauge theory:

This construction gave a conformally-invariant theory with 
nontrivial scaling dimensions in the region  (for SU(3)): 
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The second was the setback for technicolor models that came 
from the interpretation of the precision electroweak 
experiments.    

It was already known from Holdom’s work that a realistic 
technicolor model required large anomalous dimensions to 
suppress dangerous flavor-changing operators.

The precision electroweak results gave another challenge, that

where  S is a quantity that, in a technicolor theory, can be 
extracted from the spectrum of vector and axial vector mesons. 

In QCD, this sum rule is dominated by the     meson and gives 
much too  large a value.
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But, consider building a technicolor theory by starting with a 
model whose parameters put it into the conformally-invariant 
phase and softly breaking conformal invariance.

It is very tempting to say that changing the short-distance 
behavior of the theory can change the spectrum of vector and 
axial vector mesons in such a way as to give a more complete 
cancellation in S.



There is some evidence for this from AdS/CFT duality.  For 
example, from a recent paper of Mintakevich and Sonnenschein,



Finally, in 1992, Iwasaki, Kanaya, Sakai, and Yoshie, in lattice 
gauge theory studies of SU(3) Yang-Mills theory mainly directed 
at the finite-temperature phase transition, claimed qualitatively 
different behavior for the cases               and               .

This led them to claim that the transition to conformal behavior 
extended all the way down to              .

These studies were done on very small lattices,

 
and with Wilson fermions, for which the order parameter          
must be carefully subtracted.

In a moment, I will review more recent lattice gauge theory 
attempts to locate the bottom of the conformal regime.
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Stimulated by Seiberg’s result, many authors tried to estimate 
the lower boundary of the ‘conformal window’ in non-
supersymmetric QCD.

Gardi and Karliner applied a variety of aggressive resummation 
methods to the known 3 terms of the QCD beta function.  They 
estimated                   .

Miransky and Yamawaki made an estimate based on the idea that, 
when the value of the Banks-Zaks fixed point coupling increases, 
it eventually reaches the critical coupling for chiral symmetry 
breaking *.   This gave

*  A concept best explained in the classic paper of Banks and Raby.
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Ryttov and Sannino analyzed the problem by assuming that the 
beta function of nonsupersymmetric QCD takes an exact form 
similar to that of the NSVZ exact beta function of 
supersymmetric theories:

This formula does predict a conformal window.  To match the 
known QCD beta function, we find a function for      which, 
at the fixed point, becomes

Now imposing                                       , we find the lower 
boundary of the conformal window at
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The method of Ryttov and Sannino allows estimation of the 
conformal window for other representations of SU(N) -- in the 
same handwaving way.



Finally, there is an interesting proposal of Appelquist, Cohen, and 
Schmaltz.  These authors suggest that we should simply make a 
direct comparison of the IR and UV degrees of freedom, defined 
by 

and insist that

This comparison can enable us to rule out the hypothesis that we 
have simple quark confinement and chiral symmetry breaking.  In 
that case, the IR degrees of freedom would be the QCD Goldstone 
bosons.  The number of this grows like       as       increases.

For supersymmetric QCD, this gives                      in agreement 
with Seiberg.

For nonsupersymmetric QCD, 
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Can we obtain a more reliable estimate of the position of the 
Banks-Zaks phase ? 

In the remainder of this lecture, I will review two very recent 
attempts to do this using lattice gauge theory.



First, I will review some results of Deuzeman, Lombardo, and 
Pallente  (DLP).  They have been trying for many years to establish 
a qualitative change in the physics of QCD as a function of     .

In principle, one can simulate QCD with      flavors, vary the bare 
coupling g, and look for a phase transition as a function of g.  
However, there are (at least) three difficulties.

FIrst, there is no straightforward way to vary       continuously.  
The order parameter           is an important indicator of the 
properties of the phase transition.  To make a zero value of      
meaningful, we should start from a theory with at least a discrete 
chiral symmetry.  Thus, use we want to use the Kogut-Susskind 
fermion prescription.  This prescription has fermion doubling, so 
that each Kogut-Susskind fermion corresponds in the continuum to 
4 quark flavors.

Thus, I will show results for                    and                     . 
Hopefully, the results will be different.         
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Second, it is not actually possible to work at zero quark mass.  
We have to take the quark masses finite, and even order 1 with 
respect to the real hadron masses, and then extrapolate to zero 
mass.

Finally, a lattice that can be simulated on a computer must be 
finite, both in the space direction and in the (Euclidean) time 
direction.   DLP work on a lattice of size

In particular, the time direction is finite, so we are actually at 
finite temperature.  The lattice spacing is related to the physical 
length (in fm) by the renormalization group.  The relation 
depends on the bare coupling.  Thus, the temperature of a fixed 
lattice changes as a function of the bare coupling.

If we observe a phase transition as a function of g, this might be 
the deconfining phase transition that occurs at finite 
temperature.
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At                 DLP find first-order transitions at

The (significant) difference is consistent with the renormalization 
group scaling of a critical temperature fixed in physical length.

What about                  ?   Here is the result:

1/g2 = 4.11(1) Nt = 6
1/g2 = 4.34(4) Nt = 12
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The order parameter               is observed to be nonzero below 
the transition, but these calculation are done at finite mass.
Here is the extrapolation to zero mass:

ψψ



A different set of measurements that give more direct access to 
the running of the coupling constant have been done (actually, 
somewhat earlier) by Appelquist, Fleming, and Neil  (AFN).

These authors use a different setup, the ‘Schrodinger Functional’ 
formalism of Luscher, Sommer, Weisz, and Wolff.  In this setup, 
we choose open boundary conditions in Euclidean time, both for 
the quarks and for the gauge fields.

AFN again use Kogut-Susskind fermions and so are limited to 
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Heller has worked out a formalism for measuring the coupling 
constant renormalization in this framework.

Choose boundary conditions for the lattice gauge U variables to 
give a twist from              to                 .  The solution is a 
constant electric field through the system.

The value of the Schrodinger functional is then

so we can read off                 by taking derivatives (or 
differences) as a function of the twist:
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Lattice artifacts contribute to this observable.  These must be 
understood and cancelled off.



At                 ,  Heller found that the physical coupling decreases 
with increasing lattice size, as expected from the form of the 
beta function.
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Appelquist, Fleming, and Neil  applied this technology to the 
cases                     .   Here are some results.nf = 8, 12
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Thus, there is now strong evidence from lattice gauge theory 
that the bottom of the Banks-Zaks phase in QCD occurs in the 
range                       , and probably not very close to either 
end.

The next challenge is to obtain higher resolution by 
understanding better the evaluation of fraction powers of the 
quark determinant.
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Over his career, Tom Banks has introduced many fascinating 
ideas into quantum field theory and particle physics.

The Banks-Zaks phase diagram is only one example.

A way of measuring the fascination of these ideas is the amount 
of effort that many members of our community have put into 
exploring their consequences, and in making the original visions 
more precise.

Here, and in many other places, you have given us the spark !

Thank you,  Tom  !


