

Instrumentation for VHE γ-ray Astrophysics

HAWC — Michael Schneider

Photosensors for VERITAS Upgrade and AGIS — *Nepomuk Otte*

AGIS — David Williams

The HAWC (High Altitude Water Cherenkov) Observatory

1.1.0

- highest peak in Mexico

The HAWC site (4100m) Sierra Negra or Tliltepetl (4580m)

- site of the LMT

How Does Milagro Work?

- Detect Particles in Extensive Air Showers from Cherenkov light created in 60m x 80 m x 8m pond containing filtered water
- Reconstruct shower direction to ~0.5° from the time different PMTs are hit
- 1700 Hz trigger rate mostly due to Extensive Air Showers created by cosmic rays
- Field of view is ~2 sr and the average duty factor is >00%

HAWC Collaboration

April 2010

Milagro and HAWC

- Milagro was a *first generation* wide-field gamma-ray telescope:
 - Proposed in 1990
 - Operations began in 2001/04
 - Developed γ /h separation
- Discovered:
 - more than a dozen TeV sources
 - diffuse TeV emission from the Galactic plane
 - a surprising directional excess of cosmic rays
- Showed that most bright galactic GeV sources extend to the TeV
- Best instrument for hard spectrum and extended sources
- HAWC is the next logical step
 - It will be 15x more sensitive than Milagro
 - It can be running in 3 yrs (with Fermi)

How do you make Milagro better?

HAWC Collaboration

From Milagro to HAWC

- Move it to higher altitude
- Improve optical isolation
- Cover more area with water

- Milagro
- 2630m asl
- One big pond
- Pond area 4,000 m²

- HAWC
- 4150m asl
- Individual Cherenkov detectors
- Tank area ~20,000 m²

Science Goals

Understand particle acceleration in astrophysical jets by triggering Multi-Messenger (GWs, neutrino experiments)/ Multi-Wavelength Target of Opportunity programs;

- **observing** GRBs (> 30 GeV with scalers);

Discover the origin of Galactic Cosmic Rays by

- measuring gamma-ray spectra to about 100 TeV: gamma spectra from Inverse Compton of electrons cut-off at ≈10-30 TeV,
- harder spectra require hadronic components;
- •- mapping the multi-TeV Galactic diffuse gamma ray emission looking for strong emission regions correlated to matter in the Galaxy;
- acceleration sites: extended SNRs close to molecular clouds and pulsar winds
- understanding the hadronic anisotropies at energies > 10 TeV (local CR sources?).

Science Goals

***New Physics and exotic phenomena:**

- understanding the astrophysical background for Dark Matter searches requires understanding sources of "backgrounds";
- axion-like particles may explain the lower attenuation of 100 TeV distant AGN spectra than what expected by EBL
- heavy Dark Matter (Kaluza-Klein, Wimpzillas,...);
- Highly ionizing and slow particles (Monopoles, Q-balls);
- Study of energy dependent delays from GRBs: hint of
 Violation of Lorentz Invariance (photon speed depends on energy) or energy dependent particle acceleration?

HAWC Tanks UCSC contribution

HAWC Collaboration

April 2010

HAWC Bladder and Tank (300)

•7.3m diameter and 5m high
•190,000liter of purified water
•3 x8" Hamamatsu PMTs

UCSC contribution

Inside HAWC Bladder

UCSC contribution : Material / Water Test

UCSC contribution : Bladder Material Light Test

UCSC contribution : Water Filtration System

UCSC contribution : Lightning Protection will be built at UCSC (\$120k)

UCSC contribution : Front End Boards

Re-used from Milagro

16 channels: use 5 tanks = 15 tubes/board

HAWC Electronics Overview

HAWC Collaboration

April 2010

HAWC Construction Phases

• VAMOS

- Verification Assessment Measuring Observatory Subsystems

- HAWC-30
 - Implementation of All Subsystems
- HAWC-100
 - Science Operations with 2 times Milagro's Sensitivity

Milestone	Date
Site construction began.	Fall 2009
VAMOS tanks installed.	Summer 2010
HAWC-30 tanks installed.	Funding Start + 9 months
HAWC-100 tanks installed.	Funding Start + 18 months
Detect Crab at 5 sigma.	Funding Start + 24 months
HAWC-300 tanks installed.	Funding Start + 36 months

Working Environment

Cherenkov Light

- ~1° opening angle
- 5 photons / m²

Night Sky Background Loght

- Isotropic
- 10⁸ photons sec⁻¹ cm⁻¹

Photondetector Requirements

Highest possible photon detection efficiency

- Lower energy threshold
- Better event reconstruction

Minimize non-Poisson tails in pulse height distribution (Afterpulsing / Optical Crosstalk)

• Ensure low energy threshold

Other Characteristics::

- Aging
- Temperature dependence of parameters
- <u>م</u>

PDE Measurements

Otte et al., NIM A 567, 1 (2006), pp 360-363

Afterpulsing Measurements I

Afterpulsing Measurements II

PMT illuminated with steady XP 2970 Rate vs. Threshold low light level source Measurement Integral Probability Simulation 10-1 **Fit Function** Measure: 10-2 χ^2 / ndf 16.62/7 10-3 Constant -7.884 ± 0.1528 Slope -0.6095 ± 0.03585 trigger rate 10-4 Mean 0.9998 ± 0.0003718 Sigma 0.3775 ± 0.0004246 VS. 10-5 discriminator threshold 10-6 10 8 10 12 i.e. integral pulse height distribution Photoelectron equivalent signal Afterpulses Single pe's $\frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{\mu - x}{\sqrt{2\sigma^2}}\right) \right] + \exp(a + b \times x)$

VERITAS Upgrade

Aiming at:

Lower energy threshold Better gamma/hadron suppression

Two high-QE candidate tubes

R10408

- Hemispherical window, 1"
- 6 stages
- Gain ~25,000
- Used in MAGIC II telescope

R10560-100

- Flat window, 1"
- 8 stages
- Gain ~1,000,000

VERITAS Upgrade: PDE Measurements

R10408

R9800 / R10560-100

Increase in Cherenkov photon yield:

56%

Both PMTs have comparable QE's but significantly lower collection efficiency (CE) for R10408 ~80%

VERITAS Upgrade: Afterpulsing Measurements

Back on the envelope ->: Afterpulsing level in the R9800 is critical

Two approaches to come to a final conclusion:

1. Building of a cluster with R10560-100 and test it in VERITAS

2. Simulations

Simulations of Accidental Trigger Rates

CFD threshold setting determined by:

Keeping deadtime low Keeping data volume low

-> 10 Hz NSB rate

Afterpulsing in R9800 requires 2 times higher CFD thresholds

4 times lower AP -> almost no impact on Threshold levels

Effective Areas

Afterpulsing has significant impact on the effective area <u>×</u>10⁶ trigger rate a.u. 90 R9800, 3.2 pe Threshold 80 R9800, 4.7 pe Threshold 70 XP2970 no Afterpulsing, 2.7 pe Threshold 60 50 40 30 20 10 9.5 -0.5 -1 0.5 Energy [log10(TeV)]

Threshold energy shifts from 80 GeV (Afterpulsing dominated) to 60 GeV (Afterpulsing free)

present threshold energy ~ 110 GeV

AGIS

UCSC contributions:

- Focal plane instrumentation
- Simulations

Key studies to understand instrument performance

Baseline:

H8500 MAPMT in SBA version

64 pixel a 5x5 mm²

Maybe possible in the future: Geiger Mode APDs or SiPM

O EFFERE

1x1 mm²

MAPMT Measurements

One H8500 in our group

First round of measurements ongoing

- Photoelectron collection efficiencies
- Homogeneity over pixel and MAPMT
- response as function of incident angle
- Afterpulsing
- Crosstalk
- Response to NSB

The G-APD

a promising photon detector concept invented in Russia in the 80's available now in large quantities and from many producers

Major advantages:

- High intrinsic QE of a semiconductor
- Geiger mode operation \rightarrow sensitive to single photons
- Bias voltage < 100 V
- High intrinsic gain
- Is not damaged in daylight
- Mechanical and electrical robust

Geiger Mode APDs

Continuous evaluation of new devices

Hamamatsu 3 year old MPPC is still the most sensitive devices

Two main concerns with available devices

- price

cheaper

PMT is still 5 times

- blue efficiency Similar to R10408

AGIS – The Advanced Gamma-Ray Imaging System

http://www.agis-observatory.org

Institutions:

ADLER ANL Barnard Delaware IAFE INAF (Brera) Iowa State McGill

MSFC Penn State Pittsb. State Purdue SAO Stanford/SLAC UNAM

UCLA UCSC U. Chicago U. Iowa U. Iowa U. Utah Yale Washington U

AGIS Science Drivers

Galactic Sources: Angular Resolution, FoV, Southern site

Digel, Funk and Hinton

Dark Matter: Sensitivity and Energy Resolution GRBs: Energy threshold, FoV and slew speed

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture. Major Steps to advance the **100 GeV - 10 TeV** regime:

- 36 element array
- Wide FOV
- high resolution imaging
- -> angular resolution
- -> better background rejection
- -> better sensitivity

Approaching the limit of the IACT technique in mid Energy regime, where it works best!

Large IACT array technology

IACT Array Natural Scales

Change from "event non-containment" to "event containment" operation regime occurs when

 $A \approx 4A^{1/2} * R(1 \text{ TeV}) \rightarrow A \approx 1 \text{ km}^2$ $A^{1/2} \approx 1 \text{ km}$ $N_{tel} \approx (A^{1/2}/125m+1)^2 \approx 80$

If A << 1 km², containment is inefficient, collective effects are not fully utilized. If A >> 1 km², cost inefficient, sensitivity improves only as N^{-1/2}.

AGIS-36 is 50% contribution toward world-wide AGIS/CTA observatory (either N or S)

Pixel Size Effects

 Smaller pixels (0.05deg) can give substantially better angular resolution than larger pixels (0.1 deg).

AGIS Optical Design

- Demagnifying 2-mirror (Schwarzschild-Coulder) provides *plate scale reduction*, *aberration correction*, isochronous optics for *fast timing*, *lower moment of inertia* for fast slewing.
- Initial design for R&D telescope has a diameter D=11.5m, and f/D=0.56
- Both rail-style (HESS) and pedestal based (VERITAS) mount designs will be studied for ease of deployment, reliability and cost.

Camera Strawman

- 224 2" Hamamatsu MAPMTs
- 14,336 0.058° pixels
- 14,336 1 Gsps analog pipeline channels
- 16 channel x 4k 1 Gsps TARGET ASIC (following up on many generations of the U. Hawaii BLAB/Labrador design)
- 3,586 trigger channels
- Total electronics cost \$1.36M/camera, \$80.7/channel
- Power estimate: 2.3kW/telescope
- Assuming a 5kHz event rate (TBD) a compression ratio of 10:1, the total data rate will be 4PB/year

R&D timelines & management

UC Dark Matter Initiative

- Successful MRPI (Multicampus Research Programs & Initiatives) that grew out of INPAC, the Instutite for Nuclear and Particle Astrophysics and Cosmology
- Bernard Sadoulet (Berkeley) is PI
- \$1.8M over 5 years
- Nurturing the development of next-generation dark-matter experiments
- ~\$135/yr for AGIS in first three years