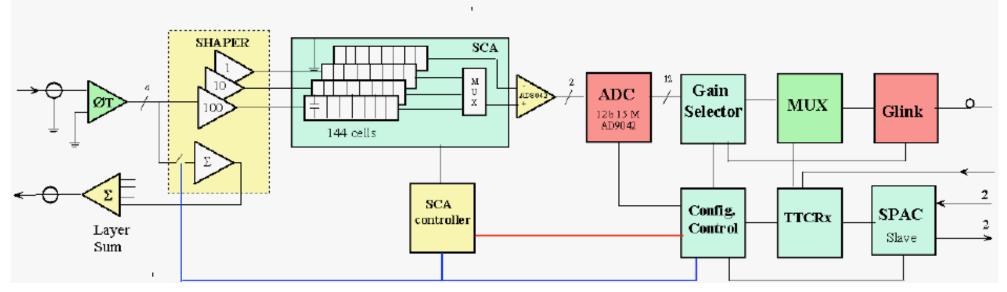
Upgrade Work at Nevis

Gustaaf Brooijmans

UCSC, May 4th 2007


Gustaaf Brooijmans

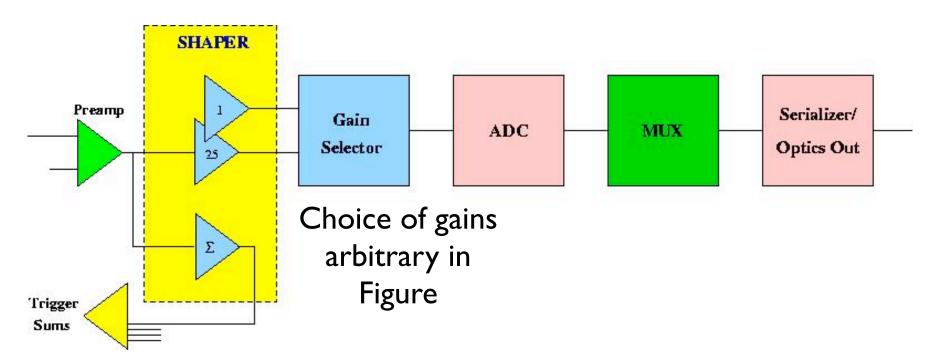
- Initial plan (June 2005)
 - What we have done
 - What we decided not to do, and
 - What we decided to do instead
- Revised plan (~today)
 - Current work
 - Future evolution

Initial Plan

- Focus on architecture for FEB2 first
 - Design for dataflow (FY06) \checkmark
 - Implementation in COTS components (ADC, FPGAs, transmitter & receiver) (FY06 & FY07) √
 - Develop surrounding test infrastructure (DAQ, signal injection, analysis) (FY06 & FY07) √
 - Extensive testing of dataflow (FY07) (underway)
 - Radiation testing (FY06 & FY07) X
 - Development of MUX in 0.13 μ m CMOS (FY07) X
 - MUX preproduction (FY08?) X

Dataflow Design Considerations

- Rebuild FEB1?
 - Complex, 11 ASICs
 - Analog pipeline implies communication <u>to</u> FEB
 - Single transmitter = single point of failure
 - Single clock for readout, transmitter, etc.

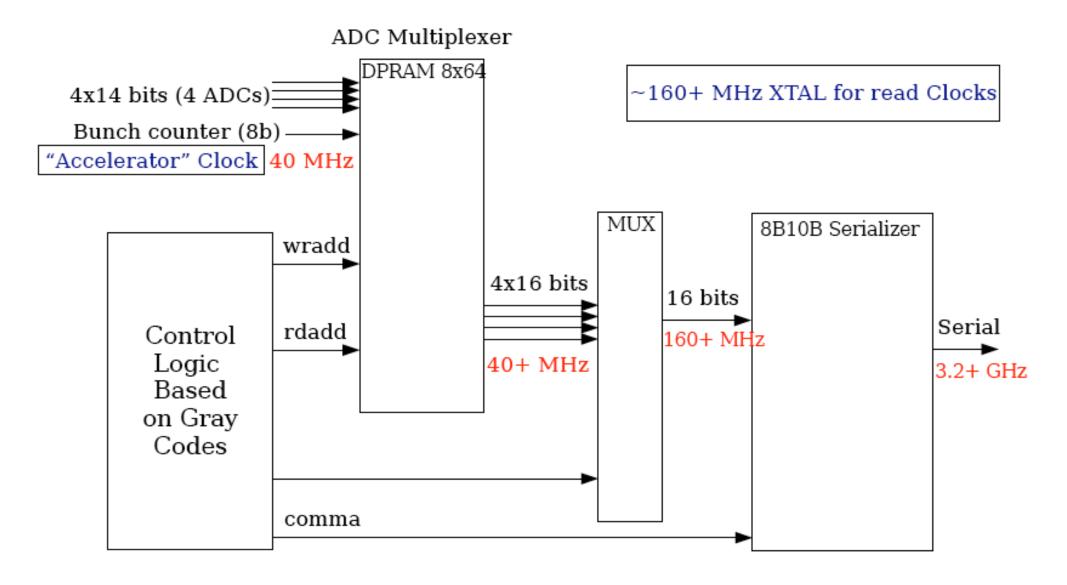

Rebuild?

- Still need to redesign ASICs in current technology
 - Large effort
- Current technologies have lower voltages, more leakage
 - Makes large dynamic range potentially more challenging
- <u>BUT</u>:
 - Significant architectural changes probably means rebuilding RODS as well
- Do we need better L1 trigger selectivity for EM objects? (Probably yes)

Design Considerations

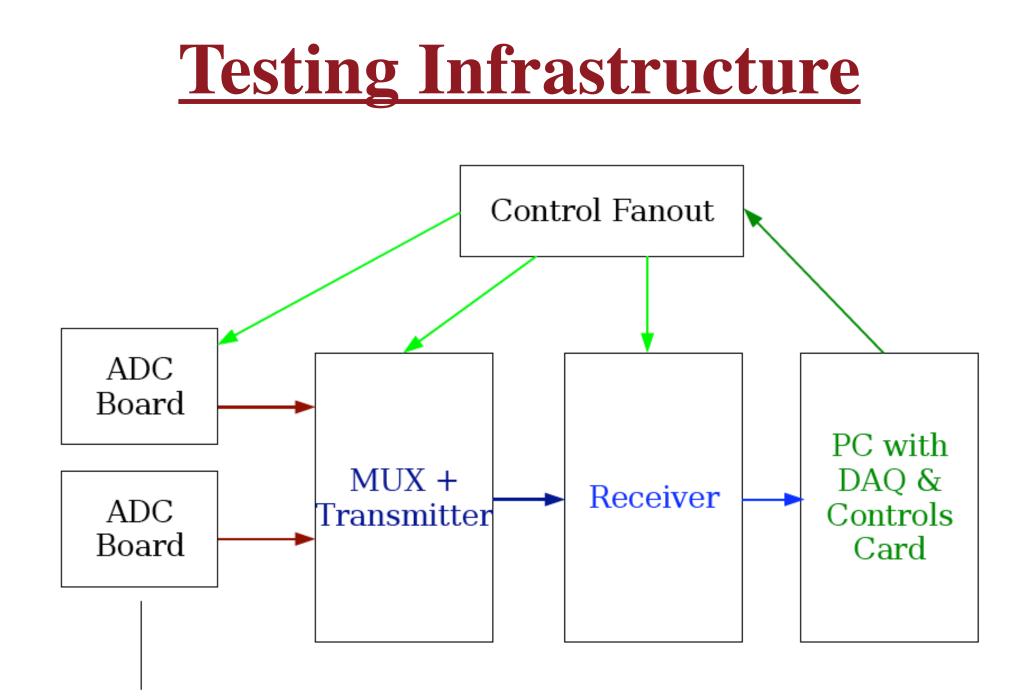
- Digital vs analog pipeline:
 - Analog pipeline difficult given dynamic range (16 bits) and noise requirements
 - Harder with lower voltages and larger leakage currents
 - Digital means digitizing at bunch crossing rate, within ~800 mW/channel total power budget
 - Digital pipeline could be on or off detector
 - On: triply redundant pipeline chip, should be ok (still ASIC)
 - Off: large datavolume to transfer, *but*: no L1 accept down to FEB, potential for decoupled trigger upgrade

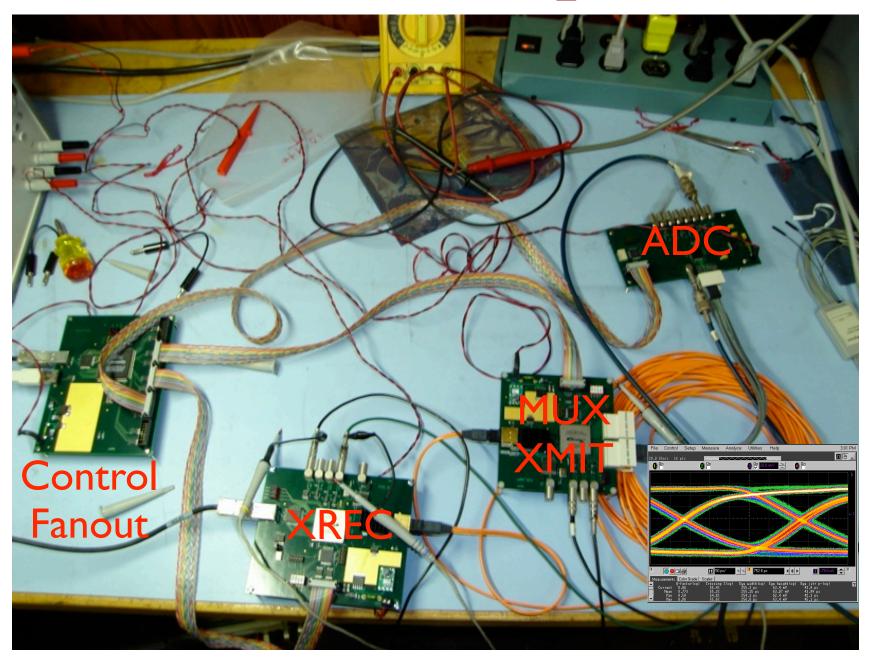
"Baseline" FEB2 Architecture



- Digitize at full bunch crossing rate
- Provide analog sums for decoupled trigger upgrade
- ~100 Gbps without zero suppression
- "Fallback" has digital pipeline on detector

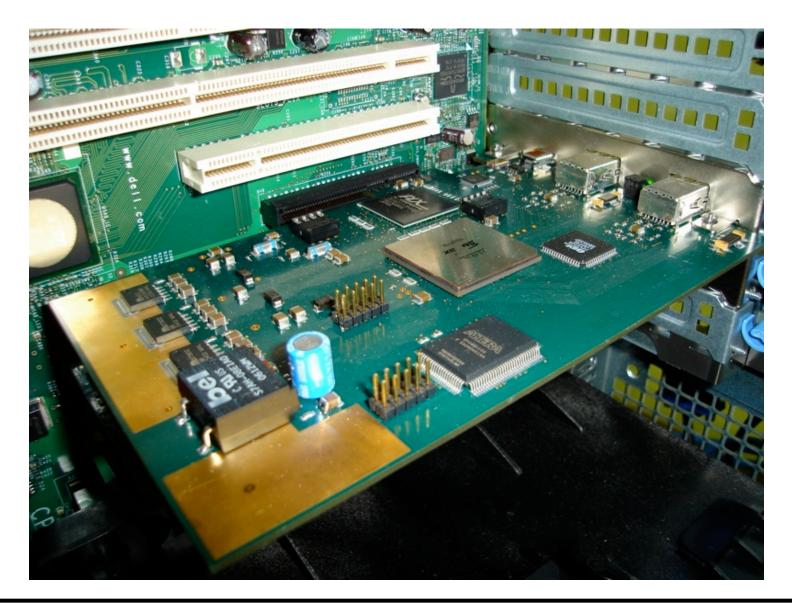
- Important part of testing infrastructure
 - All data flows through there!
- Good starting point to focus ideas
 - Understand data rate constraints at multiple points
 - "Easy" to implement in FPGA for initial studies
- Where we started




- Two independent clocks
 - ADCs clocked to accelerator, fill "ADC multiplexer" at that rate
 - Clock needs to be brought down to the board
 - MUX, serializer (all high speed components) use clock derived from crystal
 - Much better jitter control
 - Choose frequency to be (4+\varepsilon) x accelerator clock, allowing regular insertion of control words
- Gray code to manage multiplexer addresses
 - Minimize effect of upsets

- Data spends very little time in ADC multiplexer (< 8 bunch crossings)
 - minimize upsets
- Triple redundant MUX
- IBM 8B10B encoding at serializer level
 - Standard in many high speed applications, part of libraries
 - Low complexity (5B6B + 3B4B)
 - Sufficient transition density for clock recovery, DC balanced
 - Error detection + control characters

• Also considering a "scrambling" model



Test Setup

• DAQ card using PCI Express

Digital Data Flow/Testbed: Status

- All functionalities implemented in individual testboards using COTS
 - Allows for gradual replacement with prototypes & final components
- Full DAQ chain tested & debugged
 - Results as expected, can "analyze" data (pedestals)
 - User-friendly GUIs to be developed this summer
- Bought waveform generator to inject signal
 - Plan to start working with it over summer as well
- New postdoc will spend 50% FTE on project

MUX -> ADC

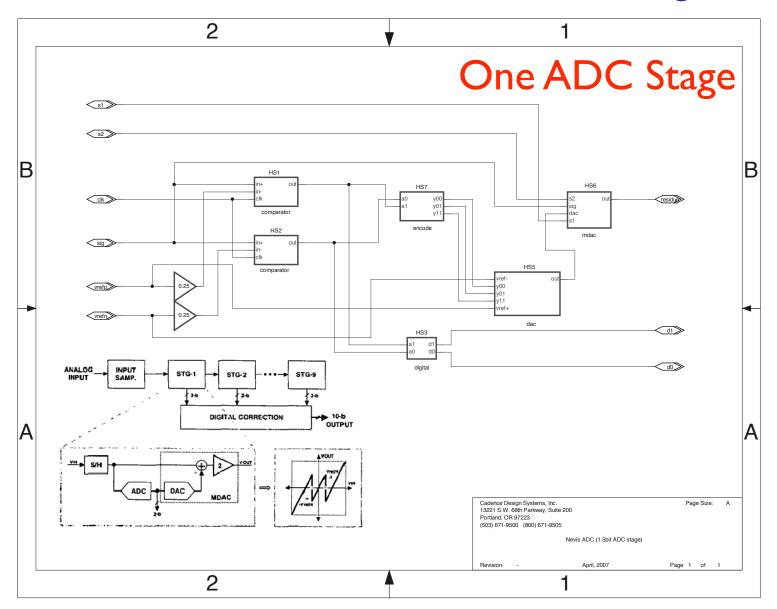
- In principle, at this stage planned to start design of MUX in .13 µm technology
- While this is an ASIC and will need corresponding attention, do not believe this presents significant technical or schedule risk
 - Large CERN-based effort means technology rather well understood
 - Our application in principle not particularly complex
- ADC, however, is a very different matter
 - Focus on ADC rather than MUX

• Issues:

- Technology: .13 µm SiGe BiCMOS looks promising
 - Join SiGe radiation performance/qualification effort, will contribute proton irradiation studies
 - Got design kit, getting familiar with evolved software tools
- ADC design
 - Planned to start with analog gain selector as "warm-up exercise"
 - Evolving into integrated gain selector/ADC
 - Pipelined architecture with digital correction logic
 - Initial ~3 stages in parallel, then gain selection is done and rest of stages in common

Radiation Tolerance Testing

- Putting together measurement setup at Nevis
 - Almost identical to UCSC and Penn/BNL setup
 - We have ~all components, putting together now (new postdoc has started) with help from Penn
- Experience with proton irradiation
 - Massachusetts General
 - Can get 10¹⁵ p/cm² in a few hours (equivalent to 2 10¹⁵ n/cm²) for samples < 5x5 mm²
 - Volunteering to irradiate samples when available, then measure complementary to Ljubljana neutron irradiation
 - Will need to qualify components later as well


- Pipelined ADC with digital correction
 - Each stage resolves more bits than the subsequent amplification
 - Allows for inaccuracies in comparators, flash ADC
 - DAC/amplifier need to be accurate however
 - Sample & Hold capacitor ultimately limiting factor
 - Noise ~ sqrt(kT/C)
 - From design point of view, amplifier at stage output is critical
 - x2 is likely to be most stable
 - Implies each stage is 1.5 bits

Digital Correction

- Overlap between stages allows correction before outputs are "added"
 - Calibrate amplifiers starting from the back (LSB side) by digitizing known signal, store error terms
 - Apply correction from error terms when "adding"
- Question is where to store/apply error terms
 - On FEB: need a (redundant) "memory"
 - Off detector: almost double necessary bandwidth....
 - Note: commercial ADCs store info in RAM in chip -> rad soft!

Current ADC Work (I)

• "Schematic" in cadence done (10 bit, no gain selection)

Upgrade Work at Nevis

Current ADC Work (II)

- Bill Sippach starting with full design of mdac amplifier in IBM 8WL
 - Precision most critical for this "component"
 - Will tell us what is possible
 - Initial experience will tell us something about timescales
 - Currently guessing in ~1 year will want to submit to MOSIS with some of the key structures
 - Amplifier
 - S&H cap

• E.E.:

- 50% FTE B. Sippach + 50% FTE L. Zhang
- E.Tech:
 - 50% FTE N. Bishop
- Total personpower: \$220k
 - (Physicists: 50% FTE postdoc T. Gadfort, summer students, + John & me, all paid from other funds)
- Equipment/other costs:
 - Radiation testing \$20k
 - Amplifier in IBM 8WL through MOSIS ~\$50-100k (?)
 - "Small" items (improvements in test setup) \$10k

Past Plan and Achievements

- We had planned to design a dataflow architecture, implement it in COTS and test it
 - We have done that, on the anticipated timescale
- We thought we would then develop the MUX ASIC
 - With our current, better knowledge, we think it is more important to tackle the gain selector/ADC
 - Technologically more challenging
 - Key to the whole digital architecture
 - MUX parameters will potentially depend on ADC
 - So we've started work on the ADC first

- Making steady progress, on timescale predicted two years ago
 - Slight revision of priorities (MUX <-> ADC), to be expected in evolution of an R&D project
- Stepping up physicist involvement by injection of 50% postdoc (started this week)
- Plan to continue steady progress, will need to increase budget in not-too-distant future (MOSIS submission, engineering increase: ASICs + integration)