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The basic foundations of superstring perturbation theory –
superconformal symmetry, worldsheet anomaly cancellation and
modular invariance, fermion vertex operators – were all well
established by the mid 1980’s.

Just a few points were not fully
clarified and I will be talking about them today.
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Roughly speaking, to complete the story from the 1980’s only
requires a couple of steps:

(1) One should formulate all essential arguments, and especially
those that involve integration by parts, on the moduli space M of
super Riemann surfaces, and not on the moduli space M of
ordinary Riemann surfaces.

(2) The integrals one has to study are only conditionally
convergent in the infrared region and need to be treated carefully.
For this, it is very helpful to use the supersymmetric version of the
Deligne-Mumford compactification of moduli space.
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It is a little dry to explain these points in the abstract, and anyway
I have done so several times already. Instead, today I will explain
these points in the context of a concrete model which has long
been known to be an interesting test case for superstring
perturbation theory.



The model was first studied by Dine, Ichinose and Seiberg (Nucl.
Phys. B293, 253 (1987)) and Atick, Dixon, and Sen (Nucl. Phys.
B292, 109 (1987)),

with further insight by Green and Seiberg
(Nucl. Phys. B299, 559 (1988)), following a field theory analysis
by Dine, Seiberg, and EW (Nucl. Phys. B289, 589 (1987)).



The model was first studied by Dine, Ichinose and Seiberg (Nucl.
Phys. B293, 253 (1987)) and Atick, Dixon, and Sen (Nucl. Phys.
B292, 109 (1987)), with further insight by Green and Seiberg
(Nucl. Phys. B299, 559 (1988)),

following a field theory analysis
by Dine, Seiberg, and EW (Nucl. Phys. B289, 589 (1987)).



The model was first studied by Dine, Ichinose and Seiberg (Nucl.
Phys. B293, 253 (1987)) and Atick, Dixon, and Sen (Nucl. Phys.
B292, 109 (1987)), with further insight by Green and Seiberg
(Nucl. Phys. B299, 559 (1988)), following a field theory analysis
by Dine, Seiberg, and EW (Nucl. Phys. B289, 589 (1987)).



The model is not terribly exotic. The basic example is
compactification of the SO(32) ten-dimensional heterotic string to
four dimensions on a Calabi-Yau manifold K , with the spin
connection embedded in the gauge group in the usual way.



The holonomy group of the Calabi-Yau manifold K is SU(3), and
if one embeds SU(3) in the gauge group of the E8 ⇥ E8 heterotic
string, using the subgroup

SU(3)⇥ E6 ⇥ E8 ⇢ E8 ⇥ E8,

one gets a model in which the four-dimensional gauge group is
E6 ⇥ E8.

This, with minor modifications, can be used to make
semirealistic models of particle physics.
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However, for today, we want to do the same thing for the SO(32)
heterotic string, in which case the embedding is

SU(3)⇥ U(1)⇥ SO(26) ⇢ SO(32)

so the unbroken gauge group in four dimensions is U(1)⇥ SO(26).
The logic in setting up the model is the same as for the E8 ⇥ E8

heterotic string, but the model is much less familiar because
U(1)⇥ SO(26) is much less interesting as a starting point for
phenomenology in four dimensions. But it leads us directly to the
questions of interest for today because of the U(1) factor. (I
should note that with a little more work, we could set up a
semi-realistic model in which the same questions that we will be
discussing would arise.)
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One can calculate the low energy spectrum of the model by the
same methods used for the possibly more familiar case of E8 ⇥ E8,
and it turns out that for a generic choice of the Calabi-Yau
manifold K , the U(1) is anomalous. There are various anomalies,
but there is always a U(1)-gravity-gravity anomaly with a
coe�cient proportional to TrY , where Y is the U(1) generator
and the trace is taken in the space of massless chiral superfields.



In string theory, the anomaly is canceled by the Green-Schwarz
mechanism.

But what this means in the present case is as follows:
At one-loop, the Green-Schwarz interaction

R
R4⇥K B ^ TrF 4 is

generated, where B is the usual B-field and the integral is over
Minkowski spacetime times K . Assuming that p =

R
K TrSU(3)F

3 is
non-zero, we induce in four dimensions an interaction p

R
R4 B ^ F .

The e↵ect of this interaction is to cause the U(1) photon to
become massive.



In string theory, the anomaly is canceled by the Green-Schwarz
mechanism. But what this means in the present case is as follows:
At one-loop, the Green-Schwarz interaction

R
R4⇥K B ^ TrF 4 is

generated, where B is the usual B-field and the integral is over
Minkowski spacetime times K . Assuming that p =

R
K TrSU(3)F

3 is
non-zero, we induce in four dimensions an interaction p

R
R4 B ^ F .

The e↵ect of this interaction is to cause the U(1) photon to
become massive.



To understand in a possibly more familiar way the mechanism for
this mass generation, we can dualize B to a periodic scalar field a,
which actually is the imaginary part of a chiral multiplet

Y =
1

�2
+ ia,

where here � is the dilaton, normalized so that gst = �.

The B ^ F
interaction dualizes to p@µa · Aµ, and this means that including
one- and two-loop e↵ects, the kinetic energy of a is not @µa · @µa,
but

DµaD
µa = (@µa+ pAµ)

2.

In other words, the one-loop Green-Schwarz interaction causes the
field a to transform non-trivially under U(1) gauge transformations,
and the chiral multiplet Z = exp(�Y ) acquires a U(1) charge of p.
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There is no way we can make Y or Z vanish while doing
superstring perturbation theory.

Inevitably, Y is of order 1/g2
st.

The consequence of this is, from a field theory point of view, that
the D-auxiliary field of four-dimensional N = 1 supersymmetry will
acquire an expectation value at one-loop order. That is because D
receives a contribution from Y (or Z ) as well as from all of the
massless chiral superfields �i .
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Of course, an expectation value of D spontaneously breaks
supersymmetry.

So in this kind of model, supersymmetry is
spontaneously broken in perturbation theory even though it is
unbroken at tree level. It is the only known type of string theory
model with this property. This makes the model an interesting test
case for superstring perturbation theory; oversimplified treatments
tend to go wrong when applied to this model.
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Since the potential energy has a term

1

g2
st

D2,

where D = p
ReY +

P
i ei |�i |2, it follows that a one-loop

expectation value of D will give masses to the �i – without shifting
the masses of their fermionic partners. At two-loop order, there
will be a non-zero cosmological constant or more precisely a
non-zero potential energy for the dilaton field.



One could try to avoid these conclusions by giving suitable
expectation values to the �i , so as to make D vanish again and
restore supersymmetry.

That is an interesting question to
investigate, but our interest for today is rather what happens if we
do not do this and instead simply proceed in perturbation theory
with the model obtained by embedding the spin connection in the
gauge group.
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The rest of the talk is devoted to the following topics:

(1) First – following the original 1987-8 papers that were cited at
the beginning – we describe the one-loop mass renormalization of
bosons, unaccompanied by such a mass renormalization for
fermions.

(2) Then we will discuss the two-loop “cosmological constant,” or
rather dilaton potential.

(3) Finally we will try to understand the essential di↵erence
between spacetime supersymmetry and bosonic gauge symmetries
that it makes it possible for supersymmetry to be spontaneously
broken by closed-string loop e↵ects.
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Simple considerations of chirality and gauge-invariance prevent the
relevant massless charged chiral fermions from getting one-loop
masses; we would like to understand how the charged bosons �i
that are massless at tree level manage to get such masses.



We have to calculate a two-point function in genus 1 (with an
even spin structure:

We have to
integrate over the modular parameter ⌧ of the torus, but this does
not play any important role; we lose nothing essential if we keep it
fixed. The really interesting parameters are only the positions z |✓
and w |✓0 at which the vertex operators are inserted.
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Because of the translation symmetry of the torus, we can shift w
to zero, so the remaining moduli are z |✓, ✓0.

These are the
important moduli that we have to integrate over. (With an even
spin structure, the torus does not have any fermionic symmetries
that could be used to eliminate ✓ or ✓0.)
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How are we going to integrate over z , ✓, and ✓0?

What one might
regard as the obvious procedure is to integrate over ✓ and ✓0 first,
holding z fixed, and then integrate over z . Dine, Seiberg, and
Ichinose explained what happens if we do that, as follows.
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The vertex operator for the scalar field in a massless chiral
multiplet in the 261 of SO(26)⇥ U(1) is

V a(ez ; z |✓) = �a�
eibei i (X )D✓X

i exp(ik · X )

where �a are left-moving worldsheet fermions in the 261, �
ei are

left-moving worldsheet fermions that carry an SU(3) index (here
SU(3) is the holonomy group of the Calabi-Yau manifold K ), and
X (ez ; z |✓) describes the motion of the string in spacetime; the
wavefunction bei i (X ) is a function on K but exp(ik · X ) is a
function on R4.

What I call ez is usually called z ; I write ez instead
of z because the claim that ez is the complex conjugate of z is not
invariant under superconformal transformations of z |✓. The vertex
operator for a conjugate field in the 26�1 is similar with i $ i .



The vertex operator for the scalar field in a massless chiral
multiplet in the 261 of SO(26)⇥ U(1) is

V a(ez ; z |✓) = �a�
eibei i (X )D✓X

i exp(ik · X )

where �a are left-moving worldsheet fermions in the 261, �
ei are

left-moving worldsheet fermions that carry an SU(3) index (here
SU(3) is the holonomy group of the Calabi-Yau manifold K ), and
X (ez ; z |✓) describes the motion of the string in spacetime; the
wavefunction bei i (X ) is a function on K but exp(ik · X ) is a
function on R4. What I call ez is usually called z ; I write ez instead
of z because the claim that ez is the complex conjugate of z is not
invariant under superconformal transformations of z |✓.

The vertex
operator for a conjugate field in the 26�1 is similar with i $ i .



The vertex operator for the scalar field in a massless chiral
multiplet in the 261 of SO(26)⇥ U(1) is

V a(ez ; z |✓) = �a�
eibei i (X )D✓X

i exp(ik · X )

where �a are left-moving worldsheet fermions in the 261, �
ei are

left-moving worldsheet fermions that carry an SU(3) index (here
SU(3) is the holonomy group of the Calabi-Yau manifold K ), and
X (ez ; z |✓) describes the motion of the string in spacetime; the
wavefunction bei i (X ) is a function on K but exp(ik · X ) is a
function on R4. What I call ez is usually called z ; I write ez instead
of z because the claim that ez is the complex conjugate of z is not
invariant under superconformal transformations of z |✓. The vertex
operator for a conjugate field in the 26�1 is similar with i $ i .



If we want to integrate first over the ✓’s, we can do this by simply
replacing each vertex operator by

W a(ez ; z) =
Z
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�
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We now want to calculate (and integrate over z) a two-point
function

hW a(ez ; z)cW a(0; 0)i

where cW a is a similar vertex operator with i $ i which describes a
conjugate massless scalar. If we drop the right-moving fermions,
we get a nonzero contribution by contracting h@X i@X i i, but this
contribution, since it does not involve the RNS fermions at all,
vanishes when we sum over spin structures by the same
cancellation that causes the one-loop cosmological constant to
vanish.
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There also are contractions that do involve the RNS fermions  
and therefore depend on the spin structure. But these contractions
are all proportional to k2, which is zero for an on-shell massless
scalar.

So it seems the answer is zero. What are we do do? Dine
et. al. showed a simple answer: if we simply analytically continue
o↵-shell then what multiplies k2 is an integral

k2
Z

d2z
1

(ezz)1+k2/2

that behaves as 1/k2 for k2 ! 0 so the product has a nonzero
k2 ! 0 limit, after integrating over z . Clearly for k2 ! 0, the
nonzero result has, in a sense, delta function support at z = 0. So
computed this way, there is a nonzero answer, but very subtle.
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that behaves as 1/k2 for k2 ! 0 so the product has a nonzero
k2 ! 0 limit, after integrating over z .

Clearly for k2 ! 0, the
nonzero result has, in a sense, delta function support at z = 0. So
computed this way, there is a nonzero answer, but very subtle.
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Moreover, Dine, Ichinose and Seiberg argued convincingly that this
answer is the right one by embedding the computation in a larger
calculation in which the massless scalar appears as a resonance
that can be slightly o↵-shell:

No ad hoc regularization is required.
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They also showed that the term in

k2
Z

d2z
1

|ezz |1+k2/2

that survives for k ! 0 is the one-point function, on a torus, of
what they called the vertex operator for the D-auxiliary field:

VD = �i�igi i 
j jgj j .

This interpretation was useful and VD will appear in some of our
later formulas, though unfortunately I don’t have much to say
about how general is its role as an auxiliary field vertex operator.



I want to explain another interpretation that was explained soon
later by Green and Seiberg (1988).

We go back to the beginning
and do not integrate over ✓. On the other hand, we set k = 0 from
the outset. So the vertex operator is

V a(ezz |✓) = �a�ibi i (X )D✓X
i .

Since we have set k = 0, we are not going to get a nonzero result
from k2/k2.
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In fact, if we calculate the two-point function of V a, we get a
result that is independent of the ✓’s, roughly

hV a(ez ; z |✓)bV a(0; 0|✓0)i = hVDi
ez

+ less singular

This comes from the OPE expansion

Va(ez ; z |✓)bV b(0; 0|✓0) ⇠ �abVD

ez
+ . . .
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Now, we still have to integrate over ez and z |✓, ✓0. But how can we
get a nonzero result from the integral

Z
dez dz d✓ d✓0 hVDi

ez

since the Berezin integral over ✓, ✓0 trivially gives 0?

The answer,
according to Green and Seiberg, is that we are not supposed to
integrate over ✓ and ✓0 keeping z and ez fixed. Instead of keeping
fixed z , we should keep fixed the supersymmetric combination
ẑ = z � ✓✓0.
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Why does it matter what we hold fixed when we do the ✓ and ✓0

integrals? The reason is that what we are dealing with here is a
superspace analog of a conditionally convergent integral in the
bosonic world.

The integral

I =

Z
dez dz d✓ d✓0 hVDi

ez

converges but not absolutely, because of the singularity at ez = 0;
to define the integral, we need to supply an infrared regulator, for
instance by explaining the order in which we are going to perform
the integrations near z = ez = 0.
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In general, under any infinitesimal change of variables, any integral
changes by a total derivative.

But in the present case, if we take
z ! z � ✓✓0, we run into

I ! I + hVDi
Z

dez dz d✓ d✓0 @
@z

✓
✓✓0

ez

◆

and because of

@z
1

ez = 2⇡i�2(ez ; z),

this particular infinitesimal change of variables does not leave the
integral I invariant. Moreover, now we have a factor ✓✓0 so the
Berezin integral gives a nonzero result. So the answer we get
depends on what variable we use near z = 0; we get the wrong
answer if we use z , and the right answer if we use z � ✓✓0.
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Many analogous conditionally convergent integrals arise in
superstring perturbation theory in genus g when we study
questions like tadpole cancellation and the cosmological constant.

To have any hope of understanding superstring perturbation theory
systematically, we need a general prescription for treating them. If
we just interpret it properly, then what I have just explained is
actually a prototype of a general procedure. Let us look at what is
happening as z ! w in a di↵erent conformal frame:
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This is a special case of a more general process in which a string
worldsheet ⌃ splits into a pair of worldsheets ⌃` and ⌃r joined by
a long tube:

What we have been studying is the special case in which ⌃r is a
genus 0 surface with two punctures z and w .
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In general, for any such splitting or “degeneration” of a string
worldsheet, there is a distinguished parameter analogous to z � ✓✓0

which we should use in the infrared regularization.

We just need to
know the appropriate supersymmetric generalization of the
“plumbing fixture” by which two branches are joined together. On
an ordinary Riemann surface, one glues ⌃` with local coordinate x
to ⌃r with local coordinate y by

xy = q

where q is the gluing parameter – the tube joining the two branches
has length log 1/|q|. There is a supersymmetric version of this; one
glues a branch parametrized by x |✓ to one parametrized by y | by

xy = "2, y✓ = " , x = �"✓.
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The parameter " (or more precisely "2) is the generalization of
ẑ = z � ✓✓0 in the example of Dine et. al.

All we need to know to
dispose of the traditional “ambiguities” of superstring perturbation
theory is that there is a good variable that we are supposed to use
in the infrared regularization, namely ". This generalizes the good
variable z � ✓✓0 for the special case we started with.
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Notice, though, that it is impossible to say this if one has already
integrated out the odd variables.

If one follows the traditional
approach of first integrating out the odd moduli such as ✓ and ✓0

and then trying to decide what to do next, it is already too late.
What one needed to do to tame the conditionally convergent
integrals was to say at the beginning that the good variable is " or
z � ✓✓0. That is the lesson of superstring perturbation theory:
simple recipes are possible, but they are only simple when stated in
terms of the full set of even and odd variables, not in an e↵ective
description with the odd variables integrated out.
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Now we turn to the second topic, which is the two-loop
cosmological constant. First I want to say a little about the
celebrated calculation made by D’Hoker and Phong for superstring
theory in R10. A genus two super Riemann surface

has three even moduli
m1,m2,m3 and two odd ones ⌘1 and ⌘2. However, as in the
previous case where the freedom z ! z � ✓✓0 was important, we
run into the fact that the even moduli can be redefined by
functions of the odd ones, e.g. m1 ! m1 + f (m1,m2,m3)⌘1⌘2.
Unless one has a nice definition of the variables, one runs into
unmanageably complicated calculations.



The basic idea of D’Hoker and Phong was very simple: Just as a
Riemann surface has a period matrix, a super Riemann surface has
a super period matrix (which is entirely bosonic).

In genus 2, one
can take the moduli of a Riemann surface to be the matrix
elements of the period matrix, and similarly one can take the
bosonic moduli m1,m2,m3 of a super Riemann surface to be the
matrix elements of its super period matrix. (This does not work
above genus 2 because the matrix elements of the super period
matrix are not independent.)
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The procedure of D’Hoker and Phong was simply to integrate out
the odd variables keeping fixed m1,m2,m3. Technically, it was a
hard calculation, but because m1,m2, and m3 were
globally-defined, they had a sound framework for the calculation,
and were able to carry it out successfully.



However, from what I have told you, there is something one might
worry about. A genus two surface can split into two components

and when it does, we may get the wrong answer if we integrate out
the odd moduli keeping the wrong bosonic variables fixed. Are
m1,m2,m3 the correct variables that should be kept fixed when we
integrate out the odd variables in the limit that the worldsheet is
degenerating?



The answer to this question is actually “no, but it doesn’t matter
for most supersymmetric models,” such as the ones actually
studied by D’Hoker and Phong.

However, precisely in the case of
the SO(32) heterotic string on a Calabi-Yau manifold, to get the
right answer, we need to correct their procedure near the
degeneration limit, in a way that is just analogous to z ! z � ✓✓0

in our genus 1 discussion. When we do this, we get the expected
D2 contribution to the two-loop cosmological constant. Roughly
speaking, what happens is that, just like in the previous example,
the integral that we have to perform has a singular but
conditionally convergent contribution that comes from the o↵-shell
state corresponding to the D-auxiliary vertex operator VD

propagating through the long neck. So in that region, we have to
be careful to keep the right bosonic variable fixed when we
integrate over the odd moduli.
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Our third topic is to clarify at a fundamental level how it can
happen that supersymmetry is spontaneously broken in loops even
though it is unbroken at tree level.

This is actually not possible for
bosonic gauge symmetries of closed string theories. Let me
consider two rather di↵erent examples: momentum conservation
and the anomalous U(1) of the SO(32) heterotic string on a
Calabi-Yau. In each case, the symmetry is associated to a
conserved worldsheet current Jµ, either J I = ?dX I in the case of

momentum conservation, or J =
P3

i=1 �
i�ī in the case of the

anomalous U(1).
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Once one has a worldsheet conservation law, one can derive a
Ward identity saying that the expectation value of a product of
vertex operators is zero unless the conservation law is satisfied.

In
the usual way, one considers a correlation function

@

@�µ
hT (Jµ V1 . . .Vni)i

where �µ are the worldsheet coordinates (for example, for the
heterotic string, the �µ are ez , z , ✓).
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If the Vi have definite charge in the sense that
I

`i

Jµd�
µ · Vi = qiVi ,

then

0 =

Z

⌃

@

@�µ
hT (Jµ V1 . . .Vni)i =

X
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qi hV1 . . .Vni,

so hV1 . . .Vni = 0 unless
X

i

qi = 0.
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That is our conservation law, and since we proved it without any
integration over moduli, we can take it to the bank: the
contribution to a scattering amplitude with

P
i qi 6= 0 vanishes

even before any integration over moduli, and so such an amplitude
is certainly zero.

It is very instructive to observe that this conclusion is valid even in
the case of the anomalous U(1) of the SO(32) heterotic string.
The U(1) gauge boson gets mass at one-loop order, but the
associated global conservation law – which is what we proved via
the Ward identity – remains valid in perturbation theory. (It breaks
down nonperturbatively, via spacetime instantons.)
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Spacetime supersymmetry is not associated to a conserved
worldsheet current in this sense. The supersymmetry generator is
the fermion vertex operator S↵ of Friedan, Martinec, and Shenker
(at zero spacetime momentum).

It is holomorphic and is on-shell
in the sense that it obeys the holomorphic part of the physical
state conditions. An NS sector vertex operator with those
properties would be a conserved current that could be used to
generate a Ward identity by the procedure that I explained. But
S↵ is a Ramond sector vertex operator, and the framework that we
used to derive Ward identities on a fixed worldsheet does not make
sense for Ramond sector vertex operators.
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That is because a Ramond vertex operator is inserted at a
singularity in the superconformal structure of ⌃.

It does not make
sense to move this singularity while keeping the other moduli of ⌃
fixed; there is no notion of two super Riemann surfaces being the
same except for the location of a Ramond singularity. So the
procedure in which we derived a Ward identity by integration over
⌃ does not apply for spacetime supersymmetry. This is true even
for superstring theory in R10. At string tree level, it is possible to
reduce the discussion of spacetime supersymmetry to the
“conserved worldsheet current” framework, but in loops that does
not really work. Trying to express results as much as possible in a
framework that really does not apply made the literature of the
1980’s cumbersome in places.
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If we cannot interpret S↵ as a conserved current on the worldsheet,
how can we use it to derive a Ward identity and why is spacetime
supersymmetry ever valid?

The answer to this question begins with
the fact that the correlation function

hS↵ · V1 . . .Vni,

where the Vi are physical state vertex operators, is not a number,
or a measure on Mg ,n, the moduli space of super Riemann surfaces
(of genus g with n punctures), that can be integrated to get a
number, because the ghost number is wrong by 1. (That is
because the antiholomorphic part of S↵ is 1, of ghost number 0
rather than 1.)
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But that does not mean that the correlation function

hS↵ · V1 . . .Vni

is meaningless.

It means that this correlation function is not a
measure on Mg ,n but a conserved current or better a closed form
of codimension 1. The fact that this current is conserved leads to
our consevation law:

0 =

Z

Mg,n

dhS↵ · V1 . . .Vni =
Z

@Mg,n

hS↵ · V1 . . .Vni,

where @Mg ,n is the “boundary” of the moduli space of super
Riemann surface. Here we are using the supermanifold version of
Stokes’s theorem in order to integrate by parts. Unfortunately
there isn’t time today to explain such matters.
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This “boundary” is the union of components Di that represent
di↵erent ways that the surface ⌃ can degenerate. So we get a
Ward identity

0 =
X

i

Z

Di

hS↵ · V1 . . .Vni

and this is the identity that will under favorable conditions lead to
spacetime supersymmetry.



The Di correspond to all possible degenerations of a super
Riemann surface with all ways of dividing the various vertex
operators:

However, any component in which the momentum flowing between
the two sides is generically not on-shell does not contribute to the
Ward identity. That identity hence receives contributions from only
rather special components.
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One type of contribution that is always relevant looks like this:

One branch of the worldsheet contains the supercurrent S↵ and
precisely one other vertex operator V.
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The contribution of this type of component is an S-matrix element
obtained by replacing the branch that contains the product S↵ · V
by an e↵ective operator that couples to the right hand side of the
picture. This operator is linear in S↵ and V, so we can call it
{Q↵,V}, where this formula defines a linear operator Q↵ acting on
vertex operators.

If these are the only contributions, we get a
conservation law

0 =
X

i

hV1 . . .Vi�1{Q↵,Vi}Vi+1 . . .Vni = 0.

Q↵ is the spacetime supercharge and this formula is the Ward
identity of spacetime supersymmetry. But spacetime
supersymmetry only holds if these are the only contributions.
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There is one other type of contribution that is conceivable; it does
arise in the SO(32) heterotic string on a Calabi-Yau manifold:

In field theory terms, this contribution involves the matrix element
for the supercurrent to create a Goldstone fermion that then
couples to V1 . . .Vn.
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So we have a framework that can accomodate the possibility of
spontaneous supersymmetry breaking by loop e↵ects in a model in
which supersymmetry is unbroken at tree level.

To make this
possible, we have to take super Riemann surfaces seriously,
recognize that S↵ cannot be interpreted as a conserved current on
the string worldsheet, and use the supermanifold version of
Stokes’s theorem to derive the Ward identity by integration by
parts on Mg ,n. I claim that these are the main points that were
not fully developed in the literature of the 1980’s.
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