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Abstract- The GLAST satellite will use
twenty thousand front-end readout chips.  An
efficient testing procedure was thus needed to
check the functions of each chip before its
installation into the satellite.  This paper describes
the hardware, software and procedures developed
during the Summer REU program at the Santa
Cruz Institute for Particle Physics.

I. INTRODUCTION

LAST, the Gamma-ray Large Area Space
Telescope will  be the next generation  gamma

ray observatory.  It will convert high-energy gamma
rays to charged particle anti-particle pairs and use
silicon strip detectors to observe their trajectories.  A
calorimeter is also used to observe the energy of pair
of particles and thus the gamma-ray energy.

The telescope consists of a five by five array
of towers.  Each tower has sixteen trays and a
calorimeter base.  The trays consist of two planes of
detector strips oriented perpendicular to each other to
create a two-dimensional read out image.  The planes
are composed of a five by five system of silicon strip
detectors, SSD’s, all oriented in the same direction.
The detectors each have 320 strips and are bonded to
the detectors immediately in front of and in back of it
such that each strip is connected to the corresponding
strip on the next detector.   Thus each plane consists
of five 320-strip ladders.

On one end of each plane the ladders are
connected to a hybrid electronics board.  It is called
hybrid because it combines unpacked chips bonded
directly to a circuit board.  Each 320-strip ladder is

directly bonded to five 64 channel front-end chips, the
GTFE64 (GLAST Tracker Front End 64 channel).

The GTFE64 chip amplifies the signals from
the SSD’s, converts the signals to a bit pattern, sends
out a trigger, and holds the data until it is called upon
to read out the data.  Each of the GTFE64’s output
and input functions are daisy chained, or bussed
together with a controller chip at each end of the
hybrid board.  Two controllers are used for
redundancy so that the data can be read out in either
direction if there is a malfunction somewhere on the
hybrid or on a chip. The controller chips
communicate between the front-end chips and the
tower control.   The controller chips input and output
functions are connected to corresponding functions on
the chips directly above and below it.  Again the
connections are done by either daisy chain or bus
depending on the function.  Kapton, a flexible plastic
circuit board material, is used to connect the
controller chips and power functions of each plane.

II. THE GLAST TRACKER FRONT

END SIXTY FOUR CHANNEL CHIP

The primary function of the front end chip is
to amplify the output of the SSD’s and convert it to a
digital bit pattern that can be serially read out to a
controller chip when required.  All of the input and
output functions of the chip are sent and received by
differential signal in order to cancel out any noise that
may be picked up between chips.  To convert to a bit
pattern there is a discriminator1 following each of  the

                                                          
1A discriminator is a switching device that switches its

output between two control voltages depending on the voltage
level of the input.  It thus creates an on or off type output.



Grayscale image of GTFE64A: actual chip size 2.2mm by 11.7mm.

amplifiers.  After the data is converted to a bit pattern
it is latched which means that it is saved in memory
buffers2 until the data is called on to be read out.

♦Setting the Operating Conditions of the Chip
Before normal operation several of the

functions on the chip need to be preset.  First each
chip on a plane needs an address so that the controller
chip can send command signals along a bus line.
Each chip has two command line inputs one for the
controller on the right and one for the controller on
the left.  The controller chip’s command line output is
connected to all the front end chips in the plane.
Since there are 25 front-end chips we assign a five bit
binary address to each chip.  This way when the
controller chip sends a command it first sends a start
bit of 1 followed by a five bit address least significant
bit first, and finally a three bit command.  To assign
the chip its address there are five address pads that are
hard wired to on or off voltages on the hybrid.  In
addition to each chip’s individual address there is a
broadcasting address of 11111 that all chips on the
plane will accept commands under.

A control register3 is used in the front-end
chip to hold its operational settings while the chip is
reading out data.  The timing clock for all the front-
end chips is located on the controller chip, this saves
power and allows all the chips to operate on the same
timing cycle.  To input new data into a chip’s control

                                                          
2
Buffering is what it is called when the output

impedance of a stage is lowered so that its output voltage stays
virtually constant while its output current can fluctuate.  In the
memory buffer the voltage level of the data is held constant in
much the same way.

3 The control register is a shift register, a digital device
that reads and holds new data by shifting its old data over bit by
bit.  When the register reads a new bit, the oldest bit can be read
at the register output.  The read and shift routine takes place at
the ticks of a timing clock.

register a  signal  must  be  sent to the  command  line
input.  The command for changing the control
register’s contents consists of a start bit, the chip
address, the three bit command 001, and a 207 bit
string of data for operational settings.  The control
register’s data consists of three types of masks for
each of the 64 channels, two 7 bit settings for digital
to analog converters, and one bit for controller
direction.  The 001 command is unique to the chip in
that if the chip is currently receiving its commands
from one controller and the other controller sends this
command the chip will still respond.  This is
necessary because it is this command that tells the
chip which controller it is operating with.  The control
direction is set by the last bit of the 207-bit string, a 0
for left and a 1 for right.  The default value is 0.

♦The Masks
The three masks are used to test and turn off

the functions of channels that are not working
properly.  The masks are the calibration mask, the
channel mask, and the trigger mask.  The calibration
mask allows a controllable amount of charge to be
placed on the masked channels of the chip.  If a
channel is selected for the calibration mask and the
chip receives the 011 calibration strobe command
then charge will be placed onto the masked channels.
This allows us to test the other functions of the chip
without having actual hits on those channels.  To
calibration mask a channel a one is placed on the
corresponding bit of the 207 bit string being input into
the control register.  The first bit of the pattern
corresponds to channel 0 and the 64th bit corresponds
to channel 63.

The channel mask is used to ignore the data
output of noisy or damaged channels.  If the channel
is mask value is 0 then the channel can still send
triggers to the controller chip but its data output will
always register as having no hits.  In normal operation



a trigger mask almost always accompanies the
channel mask.  To set a channel mask a 0 is placed in
the corresponding bit between the 65th and 128th bits
of the 207-bit string.  For the channel mask however
the 65th bit corresponds to channel 63, and the 128th

bit to channel 0.
The trigger mask is used to ignore the triggers

of noisy or damaged channels.  The trigger mask’s
job is to avoid having false triggers sent to the
controller chip, yet still allowing the data of trigger
masked channels to be collected when other channels
trigger a significant event.  Trigger masking is done
in the same fashion as calibration masking but from
bits 129 to 192 of the 207 bit string.

♦The Digital to Analog Converters.
The digital to analog converters, DAC’s, are

used to set the voltage level of both the discriminator
threshold and the calibration pulse.  The calibration
DAC’s seven-bit string is located between bits 193
and 199 of the 207-bit control register string.  The
voltage value of the calibration pulse is set
approximately by the following equation:

V=6.2+6.0xDAC.
Where the DAC value is the binary value (least
significant bit first) of the last six bits of the 7-bit
string.  If the first bit of the 7-bit string is a 1 then the
voltage value is multiplied by 4.  If the chip receives
the 011 calibration strobe command then the
calibration DAC‘s voltage value is seen on all
calibration masked channels.

The discriminators turn their output voltage to
on whenever their input voltage goes higher than a
preset voltage threshold level.  Bits 200 to 206 of the
control register input string set the threshold level.
The voltage level of the threshold is set in a way
similar to the calibration DAC level using the
equation:

V=5.4+5.5xDAC.
Again the first bit of the 7-bit string multiplies the
equation by approximately 4 when its value is 1.  The
threshold value is typically set to a level where noise
is rarely seen but SSD hits show up clearly.

♦During Satellite Operation
During operation signals coming in to the

channel pads are amplified.  If the amplified signal is
larger than the threshold level the discriminator will
be switched to its on voltage, and a trigger signal will
be sent to either the chip on the immediate left or
right depending on what control direction the chip
was given when it was initialized.  The chip will also
send a trigger if it received a trigger from the chip
immediately before it.  Thus each chip has a 65 input
fast-or gate, one input for each channel and one input
for the previous chip’s output.  This connection
arrangement of each chip's fast-or connected to the
fast-or of the next chip is an example of the daisy
chain.

The trigger will travel through each chip until
it gets to the control chip at the end of the chain.  The
control chip receives the trigger and sends it on to the
tower control.  The control chip also takes a reading
of how long the trigger pulse was.  This is known as
the time over threshold or TOT.   The TOT can be
used to tell us something about the source of the
signal.  Noise will give a short TOT while a charged
particle will commonly give a much larger TOT.

♦The First in First out Memory Buffer and
    reading out data.

If the tower controller registers enough
triggers it will send a trigger acknowledge signal.
When the trigger acknowledge signal is received by
the front-end chip it latches its data and saves it in an
8 event first in first out (FIFO) memory buffer.  The
FIFO Operates by having two pointers, a read pointer
and a write pointer.  Every time we send a trigger
acknowledge signal the write pointer inputs a 65-bit
pattern from the discriminator outputs into the FIFO,
64-bits for the channels and an initial bit of whether
the chip received any hits.  Then the write pointer
moves to the next position in the FIFO.  This can be
done eight times at which point the FIFO will be full.
To read the data in the FIFO the 010 read event
command needs to be sent to the chip.  When the
front-end chip receives this signal the FIFO read
event pointer places the oldest line of the FIFO onto a
data output shift register and the shift register begins
moving the data serially towards the control chip.



The data output of one chip is directly connected to
the data input of the next chip in a daisy chain.  The
controller chip must allow enough clocks to read out
the data from the shift registers of all the chips it
controls.  After enough clocks have been sent for the
wanted data to be read out the 111 end read event
command is sent to the chip.  This command disables
the clock to the data output shift register.

If an unwanted line is latched in the FIFO the
100 clear event command can be sent.  This command
moves the read pointer down one event without
reading out the current data line.  If we would like to
reset the entire FIFO we can do so by sending the 110
command.  This command doesn’t remove any
previous data lines it only sets the read and write
pointers to the same data line.  This allows the data in
the FIFO to be written over, and does not allow the
old data to be read.  If the need arises to reset the chip
including the FIFO and all data registers, 101 the
reset chip command can be sent.  This returns the chip
to its default settings.

III. TESTING PROCEDURES

FOR THE FRONT-END CHIP

The following are the functions of the front-
end chip that require testing.

•The trigger fast or function.
•Data in and out.
•The command functions, including the control

register command.
•The chip reset function.
•The addressing of the chip.
•The first in first out memory buffer.
•The chip’s zero suppression function.
•The Power consumption of the chip.

Each of these tests had to be performed twice, once
for the left decoder and once for the right.

The automatic probing station at the Santa
Cruz Institute for Particle Physics was used to
interface the chip with exterior testing devices.  A
probe card was used to make contact between the
bonding pads of the chip and the testing hardware.  A
Hewlett-Packard 16500A logic analyzer generated the
input signals to the chip and read its outputs.  A PC

was used to write and send the control pattern to the
logic analyzer via a GPIB cable.  The logic analyzer
sends TTL4 logic signals out and the chip reads
differential signals of different levels.  For this reason
a converter board that changed TTL to LVDS5 signals
and an interface board that changed the voltage levels
of the LVDS signals had to be built.  A parameter
analyzer was used as a voltage source for the chip so
that the chip’s power consumption could be
measured.

♦The Hewlett-Packard 16500A Logic Analysis
System

We used the pattern generator and the logic
analyzer, the two primary functions of the logic
analysis system for the testing.  The pattern generator
creates output patterns based on input data.  Before
inputting data the system must be initialized.  This
consists of naming each of the input and output
channels used, setting the clock time, and setting the
logic type.   The computer program that was created
for the testing procedure will initialize the logic
analysis system on command.  Data input is done by
individually setting the output signal (1 or 0), for each
channel of the pattern generator being used.  The data
output must be specified for every clock.  Separate
data lines are not required if the inputs for all the
channels remain constant for more than one clock
cycle.  It is necessary only to specify for how many
clocks the data will be repeated.  A maximum of 4092
lines of data can be input into the pattern generator.
The test developed uses 3950 lines for testing the
functions of each direction and as a result data input
and testing must be done separately for each side.
The computer program used for testing translates
simple commands from a text file into the bit patterns
used by the pattern generator.  In addition the
program will enter the pattern into the pattern
generator.  Unfortunately the program loads one line
at a time into the pattern generator instead of loading
                                                          
4 TTL is a form of logic used by bipolar transistor logic devices.
The front-end chip is made of CMOS transistors not bipolar.

5 LVDS stands for low voltage differential signal.  LVDS is used
both because the chip’s functions are differential and differential
signals can be sent over long distances without being susceptible
to noise.



the pattern in a more efficient block data form.  The
data transmission for the test pattern of one side takes
over an hour, but once loaded into the pattern
generator can be saved to a floppy disk in block data
form.  This way we have two 3950 line patterns that
we can switch between in seconds.

♦The Converter and Interface Boards
Signals coming out of the pattern generator

are immediately converted to LVDS signals by a
converter board.  The LVDS signals travel
approximately one foot via flat cable and are received
by the chip interface board.  The interface board
converts the LVDS signals to the voltage levels the
chip uses.  The interface board also converts the
output signals of the chip back to LVDS.  The
converter board then turns the signals back into TTL
logic to be read by the logic analyzer.

Both the converter board and the interface
board had to be custom built.  A piece of G10
fiberglass with a grid of aluminum clad holes was
used as a base plate for the board.  Chip location for
the boards was laid out and a power grid was
designed to give the chips power.  The chips used
were all of surface mount technology and had to be
soldered to adapters so that they could be placed into
the grid.  The adapters, like most common IC’s
contain two parallel lines of pins.

Power was brought to the IC’s by laying
copper foil between the parallel lines of pins and
soldering the VDD connection to the foil.  The
geometry of the foil gives it a low current density, this
gives the power connections a very low inductance.
The rest of the board was then covered with the
copper foil to create a ground plane.  The ground pins
of the IC were then soldered to the ground plane.
Using a ground plane does more than just reduce the
inductance to the chip, it also provides shielding to
the transmission lines on the chip. The ground and
power to the chip were wired in from an external
voltage source and connections were made at the edge
of the board.  To lower the effect of fast switching to
the VDD’s 10µF capacitors were placed between the
power voltages and ground at the power line
connection.  Such large capacitors have a large
inductance so in addition to the 10µF capacitors,

0.01µF capacitors, having lower inductance, were
connected between the VDD’s of each chip and
ground.  All interconnections on the boards were
made via wire wrapping, so that they could be easily
changed if needed.

♦The Testing Software
The software developed for the testing

procedure lets the user write commands to the chip
using a text editor such as Windows notepad.   The
program translates the commands into the data input
lines for the pattern generator.  A copy of the final
text program for the right decoder is attached.  The
program it is broken up into in the following manner:

•7HVW�SDWWHUQ�IRU�ULJKW�GHFRGHU
7HVW�FRQWURO�UHJLVWHU

7HVW�FDOLEUDWLRQ�PDVN
7HVW�FKDQQHO�PDVN
7HVW�WULJJHU�PDVN
7HVW�'$&·V

7HVW�VWRS�UHDGLQJ�HYHQWV
7HVW�),)2
7HVW�7ULJJHU�ULJKW�LQSXW⇒752
7HVW�DGGUHVV�GHFRGLQJ

The program for the left decoder is identical accept
that the control and trigger directions are reversed.

 ♦A Detailed Explanation of the Testing Program.
The final text file used for the testing (See

Appendix) Starts with the command:
SODFH3DWWHUQ���$''5���

this tells the pattern generator to hold the parallel
voltages of outputs A0-A5 constant at the binary
value 10001.  Now the chip will only respond to
commands addressed to chip 17 or to the broadcasting
address11111.

The following commands are then input into
the program:

DGGUHVV����
FRPPDQG2Q��ULJKW
FWUO'LU��ULJKW

These are not commands sent to the pattern generator,
they are reference values for the program.  The
“address: 17,” line tells the program to use address 17
whenever commands are sent.  “commandOn: right,”
Tells the program to only send the following



commands to the command right input.  The program
can allow commands to be sent to either of the
command line inputs or to both.  The “ctrlDir: right,”
tells the computer to set the control direction bit to the
right value when ever a control register command is
sent.

For testing the control register we want to
input data into the control register and then read it
out.  Several more reference values need to be set for
the control register.  The reference values for the
masks  are set by:

PDVN��FDOLE�������
PDVN��FKDQ�������
PDVN��WULJ�������

The number sequence simply means starting with the
first number, ending with the second number, and
setting 1 to every third bit, three being the third
number of the sequence.  A 1 enables the function
indicated by the mask.  In addition the control register
command requires values to be set for the DAC’s, so
the reference commands are put in:

WKUHVK'DF�����KLJK
FDOLE'DF�����KLJK

The program will then input all the values in their
correct places into the control register whenever
“register:” appears in the program.  In the control
register test before we use the “register:” command
we have the line “placePattern: RESET 1 0.”  This
sends a pulse to the reset pad of the chip to reset the
decoder.  The command lines that are necessary to
input new control register data after the input values
are defined are:

SODFH3DWWHUQ��5(6(7����
UHJLVWHU�

SODFH3DWWHUQ��&/.6��
�����

The “*placePattern: CLKS 1*250 0” lets the logic
analyzer sample the outputs of the chip for 250 clocks
and the * means that it is done at the same time as the
command before it.  This allows us to read out the
output of the control register.  At this point all we can
read is the default settings of the chip, but if we send
the last two commands again we can read out the
control register pattern we just placed in the chip.
Next we want to see if the reset chip command
actually works so we send “resetChip:” to reset all of
the values to the default settings.  To make sure the
default settings were placed in the chip we send the

“register:” command again and expect to see the
default settings at the output.

The calibration mask is used to simulate the
chip getting hits. When the strobe command is sent to
the chip all masked channels will receive the charge
indicated by the calibration DAC.  To test the
calibration mask we do three separate tests each one
masking every third channel.  This way we test every
channel’s calibration mask.  After we set the
reference values for the control register and input the
pattern into the chip we reset the FIFO.  Resetting
FIFO does not fill the FIFO with eight lines of 0’s, it
only re alines the read and write pointers.  Resetting
the FIFO is done with the commands:

UHVHW)LIR�
GHIDXOW�����

The default command simply holds the addressing
constant and sends no signals for 256 clocks while the
control register is loaded.  This is done because
loading the control register is very noisy.  The
following commands then appear in the program:

VWUREH�

SODFH3DWWHUQ��7$&.5��
������

SODFH3DWWHUQ��&/.6��
����

The strobe command puts the charge on the chip
while both the logic analyzer samples the outputs and
the trigger acknowledge command stores the 64
channel bit pattern into the FIFO. The data sampled
during the 50 clocks should show a trigger pulse on
the trigger right output.  The trigger acknowledge
pulse is delayed for 12 clocks to give the DAC and
the discriminators more than enough time to register
hits. To check that the calibration masks work we use
the read event sequence:

UHDG(YW�

SODFH3DWWHUQ��'5,��
��������
�
       ���
�����
���

SODFH3DWWHUQ��&/.5��
�����

SODFH3DWWHUQ��&/.6��
�����
HQG5HDG�

The read event command places the first line of the
FIFO onto the data output shift register.  The CLKR
sends the shift register its timing clock.  While the
shift register is outputting the chip’s 64+1 channel
data output the data right input is reading the DRI
pattern.  The sampling clock goes for 100 clocks
which is more than enough time for the chip to output
its data and for us to read our input pattern at its



output.  The end read command makes the chip
unresponsive to the shift register clock, that way the
controller chip can keep its CLKR pulses going
without the chip responding.  This cycle is repeated
three times in order to test every channel’s calibration
mask.  Each test requires new “mask: calib” values, 0-
63-3 for the first, 1-63-3 for the second, and 2-63-3
for the third.  By examining the output data sampled
by the logic analyzer we expect to see a hit on every
third bit of the data left output.

The channel mask and trigger mask tests are
done in much the same way as the calibration mask
test.  Each one consists of three different tests, each
masking every third channel.  For the channel mask
test we enable every second and third channel
(011011011…) and calibration mask the other
channels:

PDVN��WULJ�����
PDVN��FKDQ��������������
PDVN��FDOLE�������

When we examine the output data we expect to see
triggers indicating that the calibration masks worked,
but we should find only one 0 followed by our test
pattern.   This one 0 is an example of the use of the
zero suppression bit, the 65th bit.  Whenever a chip
receives no hits instead of sending a long string of
zeros it only needs to send one.  This cuts down on
readout time for the chip.

For the trigger mask tests the same method is
used, we enable the triggers of all the channels accept
for the channels where we enable the calibration
mask:

PDVN��WULJ��������������
PDVN��FKDQ�����
PDVN��FDOLE�������

The data we read out from this test should show a hit
on every third channel followed by our test pattern,
however there should be no triggers registered.

The DAC’s are tested by first setting the
calibration DAC high enough above the threshold
DAC so that we read a hit on every channel of the
chip.  The second DAC test consists of setting the
control DAC low enough so that we have no hits on
the read out data.  The same commands are used as in
the above tests to set the values and read out the data.

The next test is the stop read event test.  It
works simply by placing a hit onto every third

channel of the chip.  Then the read event sequence is
given however only 30 clocks are given to the chip
and then the end read event command is sent.  After
the end read event command the sampling clock and
CLKR continue working as before for 70 more
clocks.  The data that we expect to read out is the first
30 channels and then 70 zeros.  After the seventy
zeros we reset the FIFO and again read out the data,
this time reading out all the data.

The FIFO test is done by inputting 8 events
into the FIFO and then reading 8 events out.  To
distinguish the events from each other each event has
a different channel mask pattern:

PDVN��FKDQ�������
for the first event,

PDVN��FKDQ�������
for the second event, and so on.  These events are
then read out in the usual way.  In addition to this test
we reset the FIFO, scipp two events, and read out the
third event.  To scipp an event we use the command:

FOHDU)LIR�
This just moves the read pointer down one event
without reading the event.

The trigger right input to trigger right output
test was done by simply placing our test pattern on
the TRI pad and sampling the output of the TRO pad
to make sure we see our pattern.

The addressing functions of the chip were
tested by assigning the chip an address then sending
the normal test commands to that address.  The
outputs of the chip were sampled to make sure that
the chip responds.  After each address was tested
commands were sent to address 17 while the chip was
still assigned to another address.  No response was
expected for these commands.  Not all 32 of the
different address possibilities were checked.  All 0’s
were checked as well as the five combinations of one
1 and four 0’s.  The broadcasting address was
checked by assigning the chip address 17 and sending
commands to address 31.  We expect to read out a
response for these commands when we check the
data.

♦How to Check the Data
The program reads the sampled data and saves

it to a text file.  A sample of one page of a text file



can be found in the appendix.  It lists the number of
the clock sample and the sampled values for trigger
right output, trigger left output, the differential signal
outputs for the data left and right outputs, and the
control register output.  Sixty-five pages of data are
printed out listing the outputs of 3949 lines of data.
Without an efficient way to check the data for the
twenty-thousand chips the test would be somewhat
useless.

To quickly check the output files a template
file was created.  The template file is a text file
similar to the output files of the chips, except that it is
perfect and has X’s for output values that don’t
matter.  The testing program will compare the
template file to the output files.  The comparison
makes sure that the output file has 1’s and 0’s in the
same positions as the template file.  Every line that
doesn’t match the template is marked and saved to a
text file to be examined.  Sample pages of the
template and error files can also be found in the
appendix.

IV. TESTING RESULTS

Thirty-eight chips were tested from two
different prototypes, the GTFE64A and the
GTFE64B.  Of the thirty-eight chips only four were
found to have problems, and one chip was abused so
much during testing that we recommended it not be
used.  Several of the chips had minor scratches that
didn’t have any effect on their performance.  We
found that contact between the probe tips and the
bonding pads is crucial to the testing results.  The tips
may appear to be making contact but the results may
indicate that the chip needs to be repositioned.
Repositioning the chip is the first thing we do when
we find bad results.  Other typical errors were trigger
noise, indicated by one or more zeros in a trigger
pulse.  When trigger noise is found we immediately
retest the chip and see if the noise disappears. It
normally would.  The results of the testing are
summarized in the following table.

 GLAST Front End Chip Test Results

Chip # AIDD
mA

@5V

AIDD2
mA

@2V

DIDD
µA

@3V

Power
mW

Works? Comments

A2 1.10m
A

9*10-3 >200
0

>11 No This chip was crushed with the probe tips.

A6    Yes* *This is the chip we used to debug the system,
and should be avoided.

A10 1.29 1.47 >200
0

>15 No The Power drain is too large.

A16 1.23 1.59 400 10 Yes Scratches on ch.57 pad and near ch39.

A17 1.35 1.40 440 11 Yes Spot on line to FIFO and int. pad 25.

A19 1.30 1.45 430 11 Yes Scratch on ch.46 and in free space by DAC.

A20 1.26 1.53 410 11 Yes Scratch on ch.58

A21 1.34 1.41 440 11 Yes

A22 1.31 1.53 460 11 Yes

A23 1.34 1.38 430 11 Yes Spot found near discriminator and free space.

A24 1.27 1.61 400 11 No Tested several times and found to be bad.



A25 1.30 1.55 430 11 Yes Scratch around power array on DAC.

A26 1.25 1.52 430 11 Yes Scratch on ch. pads 4 and 11 and near FIFO.

A27 1.29 1.53 400 11 Yes

B1 1.35 1.49 420 11 Yes

B2 1.32 1.53 440 11 Yes Scratch on ch. Pad 3

B3 1.32 1.50 430 11 Yes

B4 1.33 1.50 430 11 Yes

B5 1.32 1.50 430 11 Yes Originally looked bad, but more contact gave
good results.

B6 1.35 1.47 430 11 No Many scratches, edge destroyed.

B10 1.30 1.51 440 11 Yes

B11 1.31 1.50 440 11 Yes

B12 1.31 1.52 450 11 Yes

B13 1.34 1.50 480 11 Yes           Trigger noise.  Not too unusual.

B14 1.34 1.51 430 11 Yes

B15 1.33 1.47 450 11 Yes There are some marks on TROP pad.

B16 1.35 1.50 430 11 Yes Trigger noise.

B17 1.35 1.50 440 11 Yes Trigger noise.

B18 1.33 1.51 420 11 Yes

B19 1.33 1.46 440 11 Yes

B20 1.32 1.51 440 11 Yes

B21 1.35 1.48 430 11 Yes Scratch on ch. Pad 60

B22 1.31 1.49 450 11 Yes Trigger noise.

B23 1.31 1.51 440 11 Yes

B24 1.35 1.46 430 11 Yes

B25 1.32 1.51 440 11 Yes Trigger noise.

B26 1.29 1.50 420 11 Yes

B27 1.33 1.49 420 11 Yes




