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The GLAST Project
• An orbiting gamma-ray pair conversion telescope for observation of

photons above 10 MeV from astronomical sources.

• GLAST will view nearly half the sky at once, with excellent sensitivity
to rapidly varying sources.

• GLAST will improve by one to two orders of magnitude on the
sensitivity of the highly successful EGRET experiment operating since
1991 on the Compton Gamma Ray Observatory.

• A compact silicon-strip based tracker affords a very large field of view
with low dead-time, excellent pattern-recognition capability and
background rejection, and optimal angular resolution.

• Plastic scintillator veto counters work together with the tracker to
provide a fast trigger.  Segmentation minimizes self-veto from the
calorimeter back-splash.

• A highly segmented CsI calorimeter provides good energy resolution
over a large dynamic range and aids in background rejection.
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Tracker Electronics Requirements

Challenge:  1.3 million readout channels operating with high reliability in
a space environment.

• Power less than 300 µW/channel, including amplifiers and digital
readout.

• Low noise occupancy (<0.05%) and good threshold uniformity.

• Microsecond peaking time for the amplifiers.

• Self triggering.

• Radiation hard to 10 kRad with latch-up immunity.

• <1% dead-time at a 10 kHz trigger rate (must be able to acquire data
while reading out previous events).

• Sparse readout and data formatting close to the front end.

• Sufficient redundancy to be immune to single-point failures.



Electronics Status
• 16-channel prototype produced on the HP 0.8µm process and tested.

• 32-channel prototype produced and 60 used in an extensive beam test last
month (data analysis is in progress).

• Final 64-channel design with full digital readout capability is nearly ready for
prototype production.

• Digital readout controller design is in progress.

GLAST Silicon-Strip Dectectors

• Single sided 6.4 cm square wafers 400 µm thick.

• AC coupling; polysilicon resistors for biasing.

• 195 µm strip pitch; 50 µm strip width.

• 5 detectors ganged together in series, for a total strip capacitance of ≈38 pF.



Preamplifier Design
• Standard folded cascode

amplifier with 2V bias for the
front end, to save power.

• ≈25 µA bias current set by an
external resistor.

• Slow differential amplifier
stabilizes the bias point and
provides a continuous reset.

• Input impedance ≈5 kΩ gives
≈200 ns time constant with
GLAST 38 pF detector load.

• Open loop gain:  64 dB at 0 Hz

• Power: ≈90 µW

Preamplifier schematic.



Shaping Amplifier Design
• AC coupling from the preamplifier.

• Conventional cascode amplifier
with capacitive feedback.

• Slow differential amplifier in the
feedback provides the
“differentiation” function and
stabilizes the output bias point.
(Ref.:  I. Kipnis, LBNL)

• Open loop gain:  62 dB at 0 Hz

• Voltage gain: ≈26

• Peaking time: ≈1.3 µs

• Pulse shape:  reset current source
makes a tail that is more linear than
exponential, except at the lowest
pulse heights.

• Power: ≈35 µW

Shaping Amplifier Schematic



Comparator Design

• Conventional two-stage
comparator, with DC
coupling from the shaper
output.

• No current in the second
stage in the quiescent state
(with no input signals).

• Only 17µW of quiescent
power.

Comparator Schematic



Analog Signal
Shapes

• Top:  preamp, shaper,
and comparator outputs
for a 4 fC input charge.

• Bottom:  1 fC input
charge.

• In both cases, the shaper
baseline and the
threshold (90 mV) are
shown by solid black
horizontal lines.

4 fC

1 fC



Measured Amplifier Performance

• Gain (shaper output):  ≈125 mV/fC

• Peaking time:  ≈1.3 µ s

• Power consumption, including bias
circuitry:  150 µW/channel

• Noise:  ENC=204 + 30.3×C
electrons, with C in pF, measured by
several methods, as shown here.

ENC=204 + 30.3 C
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Threshold Matching
• Threshold matching from

channel to channel across a
given chip depends primarily
on the transistor pairs in the
shaper feedback.

• Most chips meet the desired
upper limit of about 15 mV
rms threshold variation
(compared with the ≈32 mV
rms noise level).

• Work is in progress to try to
improve this figure further in
the next prototypes.
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Digital Readout Design
• The 64-channel chip currently being

designed has the following
additional features:

– Calibration mask, to select any
subset of channels to be pulsed.

– 7 bit DACs for setting calibration
and threshold levels.

– Separate masks for data and trigger.

– 8-deep FIFO event buffer.

– Dual redundant serial command
decoders.

– Dual redundant output shift
registers and trigger outputs.

– Bypasses to avoid clocking out data
from empty chips.

– External communication via low-
voltage-swing differential signals.

Simplified block diagram of a readout chip.



Digital Readout Design
• 25 64-channel readout chips handle

a single detector layer.

• Data can shift out left or right, or in
both directions, with a readout-
controller chip at each end of the
chain.

• Trigger signals also move left or
right, or in both directions.

• Either readout controller chip can
reprogram the readout direction of
any of the front-end readout chips,
so a single dead chip can be
bypassed without losing data from
any other chips.

• The readout controller chips pass
data down the tower in a token-
controlled protocol.
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Readout Controller Chip

• Control initialization, calibration,
and readout of the front-end readout
chips.

• Sparse readout—build list of hit-
strip addresses.

• Calculate the time-over-threshold of
the prompt trigger output.

• Build events and coordinate the
readout with neighboring layers via
a serial data line and a token.

• External communication via low-
voltage-swing differential lines.

• Currently being designed for the HP
0.8 µm process using the CMOSX
standard cells.
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Conclusions

• The basic amplifier-discriminator requirements of the GLAST
silicon-strip tracker have been met and demonstrated with
prototypes.

• A month-long beam test with electrons and tagged-photons has just
been completed.  (See another poster in this session with
preliminary results.)

• Design of a complete readout system meeting the GLAST flight
requirements is in progress.

• A complete prototype GLAST tower, utilizing this readout system
for the tracker, will be fabricated and tested during the next two
years.

• The electronics design will continue to be improved (and must
migrate away from the HP 0.8 µm process), leading up to a GLAST
construction start projected for the year 2000.


