## GLAST

## Prototype Tracker Tower Construction Status

June 22, 1999<br>R.P. Johnson

Santa Cruz Institute for Particle Physics University of California at Santa Cruz

- 17 Trays, 16 x-y planes, with a total of $13532-\mathrm{cm}$ detector ladders.
- 32 readout sections, all fully instrumented (51,200 channels).

| Tray | Number ladders <br> each side | Pb Thickness | Number 4-in <br> detectors | Number 6-in <br> detectors |
| :---: | :---: | :---: | :---: | :---: |
| 17 | T: 0 B: 3 | $3.5 \%$ | 15 |  |
| $10-16$ | T: 3 B: 3 | $3.5 \%$ | 210 |  |
| 9 | T: 3 B: 4 | $3.5 \%$ | 35 |  |
| 8 | T: 4 B: 5 | $3.5 \%$ |  | 27 |
| $4,5,6,7$ | T: 5 B: 5 | $25 \%$ |  | 120 |
| 2,3 | T: 5 B: 5 | 0 |  | 60 |
| 1 | T: 5 B: 0 | 0 |  | 15 |
| Total: 17 | Total: 126 | Total: $135 \%$ | Total: 260 | Total: 222 |

My corrections to Hartmut's earlier proposal, which had only 16 trays and too many detectors.

Proposed test beam trajectories.


## Tracker Mechanical Status

- Tray components to be assembled at SLAC:
- 16 "middle" closeouts in hand.
- Bottom closeout in fab.
- 3-mil carbon face sheets in hand.
- 1-mil Al hexcell cores in hand.
- 4 2-mil "SuperGLAST" cores still need to be ordered if we are to have the thick Pb trays.
- 10-mil C face sheets for thick-lead trays in hand but need trimming.
- Tray assembly: some delay-new gluing fixture is being made, as prototype tray was out of square. First tray due by end of June. Final tray should be assembled by mid July.
- Other Assembly fixtures:
- Ladder gluing fixtures, in hand.
- Ladder work holders, in hand.
- Back-side ladder prober, in hand.
- Ladder wire bonding support, in hand.
- Ladder potting fixture and mask, in hand.
- Hybrid work holders, in hand.
- Hybrid burn-in fixtures in hand.
- Chip gluing guides, in hand.
- Tray wire-bonding work holders, in progress.
- Fixtures for attaching hybrids to trays and wire bonding, in progress.
- Alignment fixture for mounting detector ladders, in progress.
- Connector mating clamp and special screw drivers, in progress.


## Tracker Silicon-Strip Detector Status

- Detectors from 4-inch wafers
- 300 manufactured.
- 260 are available for the prototype tower.
- 52 ladders have been completed with these detectors, including gluing, wire bonding, testing, and potting.
- Detectors from 6-inch wafers
- 230 manufactured, 5 rejected and 5 still in Japan for studies.
- 73 ladders can be constructed, and 18 are completed, with 15 in progress.
- Detector QC
- Broken capacitors and shorts detected by probing at Hamamatsu.
- Global I-V done at Hamamatsu.
- Visual inspection and global I-V at UCSC/SLAC.
- Visual inspection, optical survey, and $\mathrm{I}-\mathrm{V}$ after edge bonding.
- Global I-V and capacitance measurement on every strip after wire bonding (detects broken capacitors, failed bonds, shorts, opens). Repairs are made at this point, before potting wire bonds.
- Global I-V after potting and before mounting onto tray.


## Tracker Readout Electronics Status

- Front-end Readout Chips
- 20 wafers manufactured.
- 6 wafers tested and then diced.
$-\Rightarrow 1350$ good chips (800 needed).
- Readout Controller Chips
- 100 chips manufactured.
- 75 tested (64 good chips needed).
- Hybrid PC board
- 40 manufactured ( 32 needed).
- 35 loaded with passive components and connectors.
- 2 loaded with chips and tested.
- Remainder are at Promex being loaded with chips.
- Backing plates, in hand.
- Kapton Detector Bias Circuit
- 37 manufactured ( 32 needed).
- 1 bonded to a prototype tray and hybrid for wire bonding tests.
- Kapton Cables
- 2 each of 4 types needed.
- 10 pieces of one type are in hand.
- 1 loaded with connectors for testing.
- DAQ Interface
- 2nd iteration tracker VME card is being designed by Stanford/HEPL.
- Shielded twist-pair cable with

Glenair Micro-D connectors needs to be manufactured.

- Interface board from the kapton cables to the twist-pairs is being laid out. It includes LVDS repeaters and noise filtering.


## Tracker Shielding \& Grounding Scheme

- Analog \& digital grounds are separate on the readout chip. Analog ground connects to the chip substrate; digital ground does not.
- Analog \& digital grounds are separate on the hybrids and kapton cables (optionally, a resistor or jumper can be placed between the grounds on the hybrid).
- Hybrids contain a lot of power filtering and decoupling to ground. The kapton bias circuit includes an analog ground plane between the detector bias and the tray structure.
- Kapton cables plug into interface cards at the base of the tower. Here analog and digital grounds are tied together and tied to the shield (walls) of the tracker.
- The interface card amplifies all signals going from the tracker to the VME crates, using LVDS receivers \& drivers.
- $\quad$ Shielded twisted-pair cables connect the interface cards to the VME crates. The shield ties to the ground on the interface card.
- Ferrite cores on the interface card attenuate common-mode noise coming up from the VME crates.
- The shields on the twisted-pair cables connect to the VME chassis. Ideally, the shield on the tracker tower should be isolated from the mechanical stage.
- The tracker digital ground is not tied directly to the VME digital ground. Each have separate ties to the chassis.


## Tracker Shielding and Grounding Scheme

Analog \& digital GND separate on chips. Only analog GND connects to substrate.

Analog \& digital grounds are separate on the hybrids and kapton cables. Hybrids include power filtering/decoupling.

Analog and digital grounds are connected on the interface cards and there are tied to the tracker shield.

Shielded twist-pair cable. Shield ties to GND on interface card and to the VME chassis.


Analog GND plane in kapton bias circuit shields 100 V bias from tray structure.

Tower shield ideally should be electrically isolated from the $x-y$ table.

Kapton cables have closely coupled power/ground planes for low impedance power transmission.

Interface card amplifies signals from tracker to VME, using LVDS chips. Additional power-supply decoupling. Ferrite cores attenuate noise coming from VME crates.

## Prototype Tracker Schedule Highlights

- June 30: Complete mounting of chips and wire bonding hybrids.
- July 8: Complete hybrid gluing fixtures and begin mounting hybrids.
- July 16: Complete tray wirebonding work holder.
- July 30: Complete ladder production.
- August 11: Complete 3 remaining types of kapton cables.
- August 13: Complete tray mechanical fabrication and detector alignment fixture. Begin mounting detector ladders onto trays.
- August 25: Finish mounting and wire bonding hybrids to trays.
- August 31: Complete fabrication of walls, spacers, cable terminations.
- September 1: Finish mounting detectors ladders. Finish DAQ interface.
- September 10: Complete stacking of trays and begin tower testing.
- Survey.
- Noise scans.
- Threshold calibration.
- Bad-channel masking.
- Cosmic-ray data.
- Conclusion: the schedule has slipped for mechanical components, but we still have a couple of weeks of contingency.


## Prototype Tracker Construction Schedule



