

Vertex '98, Santorini (Greece), Sep 29-Oct 4 1998

The Silicon Strip Tracker for the

Gamma-ray Large Area Space Telescope

University of California, Santa Cruz

Bill Atwood (SLAC)

Jose A. Hernando

Masaharu Hirayama

Robert P. Johnson

Wilko Kroeger

Hartmut Sadrozinski

U. California, Santa Cruz

GLAST Silicon Tracker Gamma-ray Astrophysics

• <u>Gamma-Rays</u> = <u>Energy range 20 MeV-300GeV</u>

- Studying the Nature largest accelerators.
- Point directly back to the source.

• There are incredible Objects in the Sky in this regime!

- They only can be studied with satellites.
- Large discoveries by EGRET (90's):
 - γ 's from Active Galactic Nuclei (Blazars)
 - γ 's from pulsars
 - High energy γ 's Gamma-Ray Bursts.
 - Unidentified sources.

View of the NASA's Compton Gamma Ray Observatory.

• GLAST is the new generation of gamma-ray satellite telescope:

- Improves the position resolution by a factor 10-100 (Silicon Detectors)
- Enters in a UNEXPLORED region in Energy!
 - How many sources are waiting for discovery?
- What are they?, Where are they?, How do they emit gamma-rays?

U. California, Santa Cruz

A glimpse of the Physics: Gamma-Ray Bursts

1.- BATSE results 1991: they are isotropic distributed2.- BepperCosmological OriginGRB 9

Release an enormous amount of energy (GRB 971214 $5 \times 10^{18} L_{o}$)

Varying times scales : 0.01-1000 s

Each one has an unique fingerprint!

What is the mechanism that produces this flashes of gamma-rays?

U. California, Santa Cruz

2.- BeppoSAX june 1997: associate X-rayGRB 970228 optical counterpart:galaxy.

Gamma-ray Large Area Space Telescope

GLAST: detector technique

• E>10 MeV Pair conversion dominates!

 $? \rightarrow e+ \ e$

• Measure the gamma direction and energy.

GLAST Physics Requirements:

- Large Effective Area 8000 cm²
- Large Field of View 2.5 steradians
- Good timing resolution $\sim 1 \ \mu s$
- Good position resolution 3-0.05 deg
- Good comics-ray rejection 1:10⁻⁵
- Source sensibility (1yr) $4 \times 10^{-9} \text{ ph/cm}^2 \text{s}$

GLAST constraints: Space conditions:

Mass 3000 kg (500 kg Tracker)

Power 650 W (250 W Tracker)

Reliability & DAQ Redundancy

Mechanical Stability and strength (for launch)

Vertex98, Santorini

U. California, Santa Cruz

GLAST Silicon Tracker GLAST Instrument

GLAST sub-detectors:

- Veto shield (against cosmic rays)
- Tracker (also it's the target)
- Calorimeter (additional target)
- DAQ & CPU boards

U. California, Santa Cruz

GLAST instrument: 5x5 Towers

GLAST Tower:

• Silicon Tracker: 16 XY planes

Each tray:

- Size 32×32 cm²
- 3.5% X_0 Pb (converter)
- XY Single Sided Silicon Planes
- 10 X₀ CsI calorimeter
- DAQ board

GLAST tower: physics capabilities

GLAST Tower: technology requirements

U. California, Santa Cruz

Tracker Requirements, Why Silicon?

Mature and reliable technology				
No consumables (gas)				
Self triggering				
Relatively low voltage	100 Vols			
Good resolution - two track separation	50-100 μm			

Electronic Requirements:

Peaking time

Capacitance Load

Trigger Rate (1%dead)

Low power Readout channels Occupancy 200 μ W/channel 1.3 Million 5×10^{-5} 1 μ s 38 pF 10 kHz Vertex98, Santorini

GLAST collaboration

Ames Research Center, Boston University, Columbia University. XXXIV Ecole Polytechnique-France, Goddard Space Flight Center, Instituto Nazionale di Fisica Nucleare Trieste-Italy, International Center for Theoretical Physics Trieste-Italy, Kanagawa University-Japan, Lockheed-Martin Research Laboratory, Max Planck Institut für Extraterrestrische Physik-Germany, A DoE and NASA Naval Research Laboratory, Collaboration !! SACLAY-France. Sonoma State University, Stanford University: HEPL & SLAC, University of California Santa Cruz, University of Chicago, 10 Astronomy + 10 HEP institutions University of Rome-Italy, ~90 collaborators University of Tokyo-Japan, University of Washington

U. California, Santa Cruz

GLAST Status Report

Current Status:

- 97 Test-Beam data, Occupancy and resolution studies, NIM paper in preparation.
- Testing and debugging the Front-End and Controller chips.
- Assembly of the first tray in progress.

The University of California, Santa Cruz on GLAST

SCIPP, UCSC

U. California, Santa Cruz

Hardware: (Silicon + Electronics)

UCSC leading the Silicon Tracker Development:

- Silicon detector testing (UCSC/Japan).
- *Electronic design and Testing:*
 - Chips: GTFE64 (32,16) Front End- GTRC Controller.
 - Hybrids and cables.
- Mechanical design and assembly (SLAC, HITECH Inc.).
- Tray assembly, bonding and testing (SLAC).

Software: C++

- GLASTSim (GSFC, U. Washington).
- Tracking Reconstruction.
- MC analysis (i.e. background reduction).

GLAST Tray: components and mechanical issues

Tower: 17 trays

Detectors: Single Sided Silicon Strip sensors

Single Sided Silicon Detectors

<u>Hamamatsu Photonics</u>	300 ordered/250 delivered
N-bulk, P-strip	
AC coupled	
Size	$6.4 \times 6.4 \text{ cm}^2$
Detector thickness	385 µm
Strip pitch	195 µm
Polysilicon Resister	64 MO
Depletion voltages	90 V
Leakage current	0.5 nA/strip
Fraction bad channels	2×10^{-4}

Interested on the 6 inches wafers detectors 8 ~ 10.7 cm² U. California, Santa Cruz

Equipment

Automatic Probe Station

Automatic bonder

Ladder of 5 detectors

Equipment: NRI grant from NSF

U. California, Santa Cruz

Hybrids, connectors and other pieces

• Kapton detector-interconnect flex circuit (32 cm)

Bias for the detector 5x5 grid

around the closeout edge.

U. California, Santa Cruz

• Hybrid Printed Circuit Board (32 cm)

25 GTFE64 Front-End Chips, 64 channels/chip

1600 gold traces: wire bonding

Detector-Trace

Trace - Electronic

Readout architecture

- 25 Front End chips GTFE64, 64 channels/chip.
- 2 controller chips (redundancy Right/Left)
- Low Voltage Differential Signals (0.2-0.4 V swing)
- Data shifted out at 20 MHz

Fast-Or From	nt End \rightarrow Controller \rightarrow Tower
Trigger	$T \to C \to F$
Read Event	$T \to C \to F$
Data	$F \rightarrow C$
Token	$C \rightarrow T$

Vertex98, Santorini

U. California, Santa Cruz

GTFE64 GLAST Tracker Front End chip

GTFE64 - Front End chip:

- 64 channels (Hewlett-Packard 0.8 µm CMOS process) chip.
- ASIC: Analog +Digital.
- Provides: Channel hit Shaper-output signal crosses the threshold.

Zero suppression - No data shifted out if there is not hit.

Trigger (Fast-OR) - When any unmarked shaper-output signal crosses the threshold.

• Designed at UCSC. U. California, Santa Cruz

Analog Part:

- Preamplifier folded cascode AC coupled to the Shaper *The input transistor operates at 2 V to save power.*
- Shaper Amplifier cascode amplifier

The decay shape is linear with the collected charge.

• Comparator - Slow diff. amplifier to stabilize output baseline

The threshold is set by a DAC.

U. California, Santa Cruz

• ENC 280+28×Cp (Occupancy and

Noise Measurements:

- external capacitor calibration)
- Cp=38 pF \rightarrow 1350 ENC \rightarrow 1/4 fC
- Gain 115 mV/fC

Threshold ~ 150 mV \rightarrow ~ 5/4 fC

RMS Threshold 10 mV

• $mip \sim 5.3 \text{ fC} \rightarrow \sim 5 \sigma$ Vertex98, Santorini

GTFE64- Digital part

Digital Part:

- Decoding of serial commands (ie Read Event)
- Calibration:

Calibration mask

Internal Calibration DAC

Calibration command

• Trigger:

Fast Or = Or of all the comparators

Trigger mask

Threshold DAC

- Time Over Threshold a Input Charge
- Readout

8 buffer FIFO's

readout mask

• Flow direction for redundancy (Right/Left) U. California, Santa Cruz

• The digital part works perfectly .

• There is some *pick-up* feeding back to the preAmp when *the clock is switched on/off* or any command is sent to the decoder. => Isolate the digital ground from the substrate. Vertex98, Santorini

GTRC GLAST Tracker Readout Controller chip

<u>GTRC controller chip:</u>

• Talks with the Tower Board

Receives commands, clocks, and token. Sends Trigger and Data.

Data = chip ID + strip number

• Talks with the 25 chips in the tray:

Sets the masks : Calibration, Trigger, Readout.

Sets the Calibration DAC, and the threshold DAC

Sets the direction Right/Left

Receives the Fast-Or

Sends the Trigger.

Sends commands (ie *Read Event*)

Receives the Data.

Store the data (2 readout buffer's)

U. California, Santa Cruz

Performance:

Two Readout buffers

- The chip works perfectly.
- Only one bug:

The UCSC mascot (a banana slug) connected to the power line to the substrate, making it a nice ~ 50Ω resistor; it was not a power low slug!

The Oct'97 SLAC Beam Test

Oct 97 SLAC Test Beam:

- Oct 98 at SLAC
- Electron and photon beams 50 MeV-30 GeV
- 12 planes of detectors (6x and 6y)
- + CsI calorimeter
- + anti-coincidence system.
- Only one 5 detector module.
- Different Pb thickness.

One 5 detector module:

- GTFE32 (previous Front-End version)
- Detectors: punch-though bias 500 µm thickness.

Oct'97 SLAC Test Beam results

Inefficiency:

Extrapolation of the track to the 5 detector module

Satisfies the requirements!

At 1-1.5 fC threshold the

Noise Occupancy:

occupancy is $< 5 \times 10^{-5}$

occ_good_chan.eps Creator: HIGZ Version 1 00000

Drie EDS nicture will no

Space angle photon reconstruction:

Excellent agreement between Data and MC.

Validation of the MC simulation

U. California, Santa Cruz

Power consumption results

		Analog 2 V Analog 5 V Digital 3	V Total Power
	Input transistor bias	1.4 mA	2.80 mW
GTFE64 chip:	Amplifiers and bias circuit	1.43 mA	7.15 mW
	Quiescence state	0.423	mA 1.27 mW
	Readout sequence at 12.5 KHz (100 clock cycles)	0.160	mA 0.48 mW
		Digital 3 V Total Power	
GTRC chip:	Quiescence	4.6 mA 15.80 mW	
	Readout 6 chips at 20 MHz cl	ock 3.3 mA 9.90 mW	
Power per channel:	GTFE64 GTR	C Total Power/chan	nel
	193 μW 30 μV	V 213 µ	μW

The initial goal was to have $< 300 \,\mu$ W/channel

GLAST simulation, Tracking Reconstruction

UCSC software involved:

GLASTSim:

• Detector design optimization: MC - Reconstructed Event Present Baseline performance $2 \to e + e - 100 MeV$ Studies with 40x40 cm2 towers (Silicon 6'' wafers) $(1:10^{-5} \text{ needed!})$ • Analysis: Background Rejection 2×10^{6} generated Track Projections into Veto System Cosmic rays 50000 Events Generated 24000 Triggers 10⁻³rejection 12600 Tracked Events ACD (veto) Events / 0.5 cm Calorimeter 18 S/N 37 Events > 30 cm Tracking shape 15 S/N Overflow: 13 2 events survived! 20 40 100 60 Track - Veto Distance (cm) • C++ code •Tracking Reconstruction: • Based in GIZMO (Atwood and Burnett) Kalman Filter implementation.

• Mature code

U. California, Santa Cruz

Event basis pattern recognition.

Conclusions

• GLAST(2004) will provide abundant high quality data for research and

discoveries in high energy astrophysics.

• Much progress has been made on an integrated instrument design using robust, well understood technology from HEP.

- Design concept has been validated by MC simulation
- Oct'97 SLAC test-beam validated the tracker electronics and the technologies as well as the MC.
- NASA ATD funding began this year for construction of a full prototype tower.

- All electronics prototypes in hand.
- First completely functional tray in Dec'98
- First Tower and Test beam at SLAC, Dec'99.
- NASA is preparing for the mission.
 - Currently in the budget planning.