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Using the iterative property of the Kalman Filter technique an esti-
mate of the track parameter resolution for the case of the GLAST
design (straight line tracks and periodic hits measurements) has been
computed at the vertex position.

1 Introduction

The GLAST experiment [1] will locate the high energy gamma ray sources in the Universe
via the reconstruction of the gamma directions that arrive at Earth. This direction
is measured via the conversion of the gamma in thin lead planes and the subsequent
reconstruction of the electron/positron pair with a precise tracker, and the measurement
of the energy with a calorimeter. The converter, needed to produce the interactions,
introduces however, an unavoidable error due to the multiple Coulomb scattering (MS) in
the trajectory of the particles. It is crucial to understand how does the multiple scattering
a�ect the reconstruction of the particle trajectories.
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The presence of non-negligible multiple scattering complicates the �tting procedure
and the pattern recognition problem. The covariance matrix becomes non-diagonal in
order to take into account the error correlation between di�erent planes; thus it becomes
larger and requires more computing time to invert it. The Kalman Filter (KF) technique
aliviates both problems in a simple and nice way. This method was introduced by Kalman
[2], and was �rst applied to High Energy Physics in the eightys by Fr�uhwirth [3] and Billoir
(who re-invented it [4]) and it has become a common technique in present experiments.
The convenience of the Kalman Filter to the track �tting problem when multiple scattering
errors are involved, comes from its iterative property. KF considers only one measurement
each time, introducing it independently into the �t. This property allows to handle in a
nice way the decision of adding or removing a given measurement to the track, therefore
aiding the track �nding. It also permits the introduction of random errors (as it is the case
of the multiple scattering) in a natural way. Now, one has to consider only the multiple
scattering error produced between two measurement planes. This simpli�es greatly the
problem of the MS error.

The KF also allows us to compute the precision or resolution on the track parameters
at the vertex position, since it provides the parameters and the covariance matrices of the
track at each measurement location, most importantly, at the �rst plane. Extrapolating
this covariance matrix to the interaction vertex, one obtains the resolution of the track
parameters. With this technique one can quantify the multiple scattering e�ect, and the
relation with the other detector parameters. For example, on can address the following
question: \when does a given multiple scattering error make useless the inclusion of a
new measurement into the �t?". In other words, \how many planes are relevant in the �t
for a given multiple scattering error?".

For the case of GLAST, the track model is a straight line and the measurements are a
set of periodic hit positions. The distance between planes, the resolution and the amount
of MS per plane, are constant. This makes the application of the KF simple and straight
forward. In this note the calculation of the track parameter resolution at the vertex is
computed for this case. Despite its simplicity, the results can be apply to real experiment,
like GLAST in Astro Physics or NOMAD-STAR [6] in High Energy Physics. It turns out
that a dimensionless parameterization is possible that uses only two parameters: the
number of planes N in the tracker, and the ratio between the multiple scattering error
and the nominal resolution slope fms = �0

�n
, (where �0 is the multiple scattering error

in the slope introduced between two planes and �n = �
d
is the nominal resolution - � is

the spatial hit resolution and d is the distance between two measurement planes-). The
parameter resolution is then presented as a dimensionless factor (called the improving
factor) fi with respect the nominal resolution, for example, the track slope resolution
is given by: �� = f�(N; fms) � �n. This dimensionless parameterization addresses the
problem in a general way.

This calculation makes several approximations, such as the assumption of a Gaussian
distribution of the MS (ignoring the important non-Gaussian tails) or neglecting the e�ects
of the recoil of the nucleus. There are other instrumental problems not considered here,
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like the pattern recognition, ine�ciencies, and dead areas, or the energy matching between
the track and the calorimeter. However, this calculation should provide a quantitative
estimation of how the MS a�ects the precision of the detector.

This note is organized as follows: in the second section a quick review of the Kalman
Filter is presented (for an introduction the reader can follow historic references by Fr�uhwirth
[3] or the report by B. Jones [5]). The calculation of the parameter resolution for a straight
line and periodic measurements is given in section three. And the application to GLAST
is disccused in the last section.

2 Brief summary of the Kalman Filter

2.1 Some general considerations about the Kalman Filter

The KF is an iterative process. When it incorporates a new measurement the track
parameters are recomputed. This property is very useful when dealing with random
errors (such as the MS) introduced between every pair of measurements.

The KF is based on the linear square estimator. For every plane, it minimizes the
residuals with respect to their errors: [~m � ~f(~p)]TW[~m � ~f(~p)], where ~m is the mea-
surements at the plane, ~p is the track parameters, f(~p) is the track model and W is
the positive weight matrix, that takes into account errors in the plane. Through W the
KF handles the random errors. The two components of W are: the detector resolution
weight matrixG, and second, the extrapolation errors, that include, the MS matrix Q. If
the errors are Gaussian the least square estimator gives the optimal parameters. In this
case, the �2 per degree of freedom, as it is well known, validates the initial hypothesis
and the understanding of the errors. For the KF, there is a second quantity that can be
used to test the �t, this is the pull of the parameters, de�ned as the residual between
the measurements and the �nal �tted parameters, divided by the errors, these normalize
residuals should be Gaussianly distributed with a standard deviation equal to the unity.

The KF assumes that the system is linear, that is, that the track model between two
measurement planes is linear in the parameters (in general the approximation to the �rst
term (linear) of a the Taylor series is valid). If the system is linear and the error are
Gaussian the Filter is e�cient, in other words, no other non-linear estimator could do
better.

2.2 Implementation of the Kalman Filter

The KF is divided in two steps, called the �lter and the smoother. In the �lter process
the measurements further along the track are introduced in the �t and the parameters are
computed at the new (added) plane; in the smoother, the correction of the parameters are
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transported backwards from the last plane to the initial one, and the �nal parameters are
obtained. It is important to distinguish clearly the three terms, called projected, �tted,
and smoothed.

The �lter starts from the �rst plane with a reasonable guess of the parameters ~p0
and a large covariance matrix that reects our ignorance of the initial parameters C0. It
incorporates measurement by measurement, computing the parameters (called �tted) at
every new plane. From the �tted parameters ~pk and covariances Ck at a given plane k, one
computes �rst, the projected parameters ~pk;proj at the next plane (k + 1), using a linear

extrapolation, via the transport matrix F (�rst term in a Taylor series Fij =
@pk+1;projec;j

@pk;i
).

The random errors (i.e. multiple scattering) are introduced into the projected covariance
matrix, adding the random error covariance matrix (Q) to the extrapolated covariance
matrix (FTCkF). The projected objects are:

~pk+1;proj = Fk~pk
Ck+1;proj = FkCkF

T
k +Qk

(1)

In the next plane (k + 1), one has two quantities: the projected objects and the mea-
surements (note that the conversion of the measurement to the parameters is via a linear
matrixH, in this sense, the residual are denoted with ~m�H~p). Both \measure" the same
objects, so the �tted parameter vector and covariance matrix are obtained by weighting
the projected ones and the measurements at the new plane. The �lter quantities are:

~pk+1 = Ck+1 [C
�1
k+1;proj~pk+1;proj +HT

kGk+1 ~m ]
Ck+1 = [C�1k+1;proj +HTGH]�1

(2)

At this point, the information further along the track does not inuence the preceding
measurements, that is planes k

0

where k
0

< k do not receive information for the measure-
ment at the kth plane. The smoother is going to propagate this information, and correct
the previous planes with the measurements of the posterior planes. The job is done by a
backward transport matrix Ak. This is the normal back transport matrix FT weighted
with the (previous) covariance Ck at the plane k and the (posterior) projected covariance
Ck+1;proj at the plane k + 1 (note that this one includes the \random" errors ). This
weight acts as expected, reducing the correction when the \random" errors are large. The
smoother or �nal parameters ~pk;smooth and covariances Ck;smooth, are computed transport-
ing back the corrections between smoothed and projected objects. The back-transportation
matrix is:

Ak = CkF
T
kC

�1
k+1;proj (3)

The smoother parameter vector and covariance matrix are:

~pk;smooth = ~pk +Ak(~pk+1;smooth � ~pk+1;proj)
Ck;smooth = Ck +Ak(Ck+1;smooth �Ck+1;proj)AT

k

(4)

At this stage the Filter provides the �nal smoothed parameters and covariances.
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3 Track parameter errors for a straight line

In this section, we apply the Kalman Filter to the case where the trajectory is a straight
line, and the tracker device measures a discrete set of periodic hit positions. In addition,
we compute the covariance matrix at the interaction vertex.

3.1 The relevant parameters

The tracker device has several identical modules, one after the other, composed by a
passive material plane (converter) -where the interactions take place-, followed by a mea-
suring plane (for example silicon planes). We assume that the tracker only measures the
hit positions at every plane. The spatial resolution, the distance between planes, and the
thickness of the converter are constant. That simpli�es that application of the Kalman
Filter. The \random" error is the multiple scattering introduced by the material. We
consider that the converter is just in front of the measuring plane to reduce the MS error
in the propagation between the two surfaces.

There are two kinds of parameters. The tracker properties can be described by:

1. � the spatial resolution of the measurement planes,

2. d the distance between two measurement planes (they are equally spaced),

3. N the number of planes,

4. x0 = z=X0 the fraction of radiation length of the passive material (where z is the
thickness of the material and X0 is the radiation length).

And the particle parameters by:

1. E the particle energy.

2. � the incident angle.

� and d represent the granularity of the device, the precision of a single module, (we
will call � and �n = �

d
the nominal resolutions); they are chosen to meet the physics

goals of the experiment. The tracker precision depends on the number of planes N ,
but this dependence it strongly reduced by the presence of the multiple scattering. The
number of planes is a delicate issue. It depends on the thickness of the converter per
module and the total radiation length needed for the experiment. The MS error (�0 =
k
� p

p
x0 (1 + 0:038 lnx0)) a�ects the track slope and depends on the x0 and the energy

E of the particle, (here k = 0:015 GeV, � is the Lorenz factor, and p is the particle
momentum). �0 imposes a limit in the tracker resolution. Each experiment has di�erent
requirements, and the value of �0, and therefore x0, has a maximum tolerable value to
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achieve the physics goal. This maximum must be calculated with the complete tracker,
and will also depend on the rest of the parameters: the granularity and the number of
planes N . The thickness of the converter z can vary from a thin foil to the total gap
when the material is uniformed distributed between the two measurement planes. In this
section we examine the two extreme cases z = 0 and z = d, experiments like GLAST
want the track slope resolution to be kept as small as possible, then a small converted
thickness is desirable, but experiments like NOMAD-STAR where the main interest is the
extrapolation of the track to the vertex, a reasonable distance between the interaction and
the �rst measurement is needed to separate the tracks, and therefore the second option
is preferred.

3.2 Elements of the Kalman Filter for the straight line case

Let specify the ingredients of the Kalman Filter (the vectors and matrices) for our par-
ticular case. The track parameters are:

~p =

 
x

tan �

!
k

(5)

Where x is the coordinate position and tan � is the projected track slope at plane k (
we consider �rst the case of perpendicular tracks that allows to use the approximation of
tan � ' �, and we will discuss later the dependence with the incident angle).

The extrapolation matrix F is linear:

F =

 
1 d
0 1

!
(6)

The measurement planes provides the hit positions, so the the weight matrix G and
the measurement matrix H are also linear:

G =

 
1=�2 0
0 0

!
H =

 
1 0
0 0

!
(7)

The multiple scattering covariance matrix Q is

Q =

 
�20z

2=3 �20z=2
�20z=2 �20

!
(8)

and can be derived from:

Qij =
Z s

0

@pi
@�0

@pj
@�0

@�2
0

@s
ds (9)

Which gives the propagation of multiple scattering angle error to the track parameters
integrated along the particle path. Here @~p

@�0
is the variation of the track parameters with
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respect the multiple scattering angle,
@�2

0

@s
is the error introduced per unit length, and s

is the particle trajectory. In the case of the straight line track, where z is the forward
direction, the above simpli�es to:

@x
@�0

= z @ tan �
@�0

= z
cos2 �

; @ tan�
@�0

= 1

cos2 �
;

@�2
0

@s
= ( k

�p
)2 1

X0
; ds = dz

cos �
(10)

Where k = 0:015 GeV, � is the Lorenz factor and p is the momentum of the particle,
@�2

0

@s
is

just a constant. For perpendicular tracks tan � ' � we recuperate the matrix above, and
for other incident angle, the dependence of the multiple scattering covariance elements
are proportional to 1= cos5 � (we will come back later to this point).

3.3 The asymptotic limits

The tracker precision can be computed in a simple way, without using the Kalman Filter,
in the case when the multiple scattering is large with respect the nominal resolution
(i.e. �0 >> �n), and in the opposite situation, when it is negligible (�0 << �n). These
correspond to low and high energy particles respectively.

If the MS dominates no �tting method can improve the results over that one obtained
using only the two �rst points. In this limit, the MS ruins the tracker precision. Take for
example the track slope resolution at the interaction vertex (that is at the middle of the
converter) using only two planes:

�2� = 2 (
�

d
)2 +

1

3
�2
0
(
z

d
)2 +

1

2
�2
0

(11)

the �rst term is the slope error calculated with the two hits, the second term is the
dispersion of the second hit due to the multiple scattering, the third term is extrapolation
error at the vertex position. If the multiple scattering dominates, one obtains:

�� =

s
1

3
(
z

d
)2 +

1

2
�0 (12)

It shows clearly that the foil con�guration (null thickness converter z = 0) provides better
resolution than the con�guration in which the material is uniformly distributed along the

planes gap (z = d). The resolution is limited to
q
1=2 �0 in the best case.

If the MS is negligible ( the particle is energetic enough), the KF should (and if fact
does) reach the least square �t of a straight line. The expected covariance matrix at the
�rst plane is then:

C0 =

0
@

P
i2

D
�2 �

P
i

D
�2

d

�
P

i

D
�2

d
N
D

(�
d
)2

1
A (13)

where N is the number of planes, and D = N
PN�1

i=0 i2 � (
PN�1

i=0 i)2. The covariance
elements depend on the nominal resolutions � or �n =

�
d
, and dimensionless factors that
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Figure 1: Improving factors (a) fx (position) and (b) f� (slope) in the case of no multiple
scattering.

quantify the improvement of the nominal resolution as a function of the number of planes,

we call these the improving factors; for the track slope, e.g. f� =
q

N
D
. Figure 1 shows the

improving factors as a function of the number of planes used in the �t.

3.4 Intermediate region

The KF provides a simple way to compute the track parameter resolution, in the interme-
diate region where the multiple scattering and the nominal resolution compete (�0 � �n).
The covariance matrix at the vertex position can be computed following the KF steps:

1. The initial covariance matrix at the �rst measurement plane should reect our
ignorance of the track slope, for that purpose, a large number M is introduced
at C0:

C0 =

 
�2 0
0 M

!
(14)

8



2. Apply the \�lter" until we reach the last plane, using the equation to compute the
projected and �tted covariance matrices:

Ck;proj = Fk�1Ck�1F
T
k�1 +Qk�1

Ck = [C�1k;proj +HTGH]�1
(15)

3. Return to the �rst plane with the \smoother" procedure, and compute the smoothed
covariance matrices, in particular, at the �rst plane.

Ak = CkF
T
kC

�1
k+1;proj

Ck;smooth = Ck +Ak(Ck+1;smooth �Ck+1;proj)AT
k

(16)

4. Extrapolate the covariance matrix to the interaction point, which is located, in
average, at the middle of a converter plane, and add the covariance matrix of the
multiple scattering produced in that length.

Now, the covariance matrix at the vertexCvertex contains the track parameter resolutions.

This calculation can be done in a general way, using a dimensionless parameterization.
That follows from expression (13) where the elements of the covariance matrix can be
factorized in two terms: the physical factors (the nominal resolutions, � and �n = �=d),
and the dimensionless improving factors fx; fx�; f�, that are functions of the number of
planes and the multiple scattering.

Ck =

 
f2x �

2 fx�
�2

d

fx�
�2

d
f2� (�

d
)2

!
(17)

It can be demonstrated that the covariance matrix computed with two measurement
planes has already the same factorization properties of (13); and that if given a plane
with a covariance matrix factorized in this way, the covariance matrix at the next plane,
will also have the same factorization property. In order to do that, the MS matrix has to
be parameterized with two dimensionless factors, fms =

�0
�n

and fz =
z
d
. The factor fms

represents the contribution of the multiple scattering error compared with the nominal
resolution, (this is the important parameter that carries the MS error e�ect -note that
fms =

d �0
�
, where d �0 can be consider also as \the error in the position" due to the MS-);

fz is a geometrical factor, that gives the ratio of the converter to the total gap and it
allows all the cases from thin foils to uniform distributed material along the gap. We
apply the steps described above to the dimensionless case, the relevant matrices simplify
to:

F =

 
1 1
0 1

!
G =

 
1 0
0 0

!
Q =

 
1=3f2msf

2
z 1=2f2msfz

1=2f2msfz f2ms

!
(18)

The computed covariance matrix at the vertex position Cvertex contains the improving
factor with respect to the nominal resolutions. This parameterization allows to make a
general computation, and the �nal parameter resolution depends (through an improving
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Figure 2: Improving factors for (a) fx position and (b) f� track slope for the case of
uniform distributed material (fz = 1); and (c) fx position and (d) f� track slope for the
case of a thin foil converted (fz = 0).
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factor) on two parameters: the total number of planes N , and the ratio of the multiple
scattering with respect the nominal resolution (fms =

�0
�n
).

Figure 2 shows the improving factors at the vertex position for the position and slope
as a function of the number of planes N , which varies from 2 to 10, and the MS factor
fms, which varies from 0 to 4. The cases considered are: the thin foil converter and the
uniformly distributed material along the gap. These functions show how the MS tends to
dominate quickly the resolution. If we consider for example the slope improving factor for
the thin foil case (see also �gure 3), already at fms = 0:3 the number of relevant planes
is 6 and the resolution can not be improved better than a factor f� ' 0:3. At fms = 1
only three planes gives the total information, and approximately at fms = 2 only two
start to be relevant, and from there, it enters the asymptotic region. On the other side,
only at fms < 0:1 the e�ects of large number of planes are relevant, and at fms = 0 the
improving factor reaches the limit or no MS. The �gure 3 shows the improving factor for
the track slope in the case of thin material, for the case of 3, 6 and 17 planes; this is the
function relevant for GLAST; if the nominal resolution is in the order of �n � 0:10, the
track slope resolution depending on the energy could vary form 30 to 0:010. The table 5
list the values of f� for di�erent planes and MS factor. The �gure 4 shows the improving
factor for the track position at the vertex, in the case of uniform distributed material, for
3, 6 and 17 planes, this is the function relevant for NOMAD-STAR, in this case if the
resolution is � = 10 �m, the improving factor - for six planes tracker- varies from 8 � 25
�m.

3.4.1 Dependence with the track incident angle

The track parameters degraded with increasing angles away from the normal incidence.
The MS error has already been computed, and it increases proportional to 1= cos5=2 �. In
some detectors the hit precision depends also on the incident angle of the particle, if the
resolution can be expressed with a given function �(�), like, �(�) = �(�) �, the above
calculations are still valid, in one substitutes:

�! � �; �n ! � �n; �0! 1

cos5=2 �
�0; fms ! 1

� cos5=2 �
fms (19)

We can separate the two x and y projections that are almost independent, the scaling
factor is now:

�0;x! 1

cos2 �x cos1=2 �
�0; fms ! 1

� cos2 �x cos1=2 �
fms (20)

for the x projection, where � is the spatial angle. The x projected angle (�x) can be
expressed as a function of the director cosines: tan �x = tan � cos', a similar expression
is obtained for the y-projection.
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Figure 3: Slope Improving Factor (f�) at the vertex position for the case of thin foil
converter, the curves are shown for trackers with 3, 6 and 17 planes.

4 Application to GLAST

The discussion of the previous section can be applied straight forward to the GLAST
experiment; in fact, we started the calculation trying to understand how the MS error
e�ects GLAST.

The GLAST gamma-ray telescope will investigate high energy cosmic photons and
will explore high energy gamma sources in the Universe, especially AGN, Active Galactic
Nuclei, with a estimated discovery probability 102 better than the previous experiment,
EGRET [7]. GLAST is planned to be launched by NASA at 2005 and will orbit the Earth
at 600 Km. One of the advantages of GLAST respect EGRET, is the precision which can
locate the gamma sources with, that is, the precision of its tracker.

The basic GLAST design is made of 25 identical towers, located in a grid of 5 � 5.
Each tower has a tracker and a calorimeter. The tracker is made of 16 modules, each one
containing a converted plane of Pb with 3.5 % radiation length and two silicon detector
planes with strips running in perpendicular directions and with 200 �m readout-pitch.
The silicon planes and the support structure contribute with x0 = 0:013 to the total
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Figure 4: Position Improving Factor (fx) at the vertex position for the case of uniform
distributed material, the curves are shown for trackers with 3, 6 and 17 planes.

material. The trays are separated 3.2 cm. The photons convert, in 40% of the cases, at
the passive material, in the other 60% they interact in the calorimeter. Their direction is
reconstructed by tracking the resulting electron and positron. The tracker design matches
the general scheme described above and the trajectories are straight lines.

The GLAST precision, compared with other kinds of telescopes, is rudimentary. Its
precision has to be in the order of 30 and 0:40 for gammas between 0.1 and 1 GeV respec-
tively. The best precision is preferred, but that forces the reduction in the thickness of
the material and this compromises the number of gammas to be recorded (i.e. it degrades
the E�ective Area). The GLAST parameters have been optimized using a Monte Carlo
simulation [8] . The best option chosen has 16 measuring planes, a nominal resolution of
�n = 0:130 and a total converter thickness x0 = 0:035 + 0:013.

The relevant quantity for GLAST is the Point Spread Function, that is, the resolution
in the initial gamma direction. In order two compute the PSF we have made the simple
(crude) assumptions: 1) The gamma energy is shared between the electron and positron
with equal probability, that gives on average an energetic track with 75 % of the gamma
energy, and the other one with 25 %; and 2) The gamma direction resolution can be
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0.1 GeV 1 GeV 10 GeV 100 GeV
GLAST simulation 30 0.40 0.070

PSF 2.440 0.270 0.0480 0.0120

Table 1: Comparation of the PSF obtained with the GLAST simulation [9] and with the
PSF method, for normal incident angles.

derived from the combination of the two tracks directions: ~p ' ~pe� + ~pe+ , where p is the
momentum; and therefore the resolution in the slope, at least for normal incident gammas,
could be approximated by: �2�; ' (Ee

E
)2�2�;e + (

Ee+

E
)2�2�;e+ , where E is the energy. Figure

5 shows the PSF for the GLAST parameters, using these assumptions and the calculation
of the previous section. The PSF is shown for di�erent gamma incident angles. We
have made the hypothesis that � is constant, because the hit resolution can not be worse
that the strip resolution where the particle enters in. We have chosen the azimuthal
angle ' = 450 which gives the best PSF for a given incident angle �. Note that the
angular resolution (the PSF in degrees) and the slope resolution are related via a factor
1= cos2 �, that is, for high energy particles the slope resolution reaches a plateau that
depends on the number of planes N=16, but the same angular resolution in degrees (PSF)
improves with the angle. In the intermediate region the angular resolution compesates
the extra error in multiple scattering introduced by the incident angle!. And for low
energy particles, the increasing of the multiple scattering dominates (approximately with
a factor 1= cos1=2 �). Only for angles greater that 400 the azimuthal angle ' starts to have
some inuence. This asymptotic limits agree with the na��ve calculation done without
the KF. Table 4 compares the results obtained with this method and the values obtained
with the GLAST simulation [9]. The values are close, but consistently better than the
simulated one. Especially in the intermediate region, where the multiple scattering and
the nominal resolution compete. In this region we expected the largest improvement,
because the present GLAST reconstruction does not use the Kalman Filter technique.
The comparison shows that the computed \PSF" could be used as a �rst approximation
to the PSF function.

If fact, we expected that this computation will be optimistic, because we did not
take several considerations into account. Regarding the �t procedure, the Kalman Filter
gives optimal parameter when the system is linear and the errors are Gaussian. The �rst
condition is ful�ll by GLAST, but not the second one. First, the multiple scattering error
has important non-Gaussian tails; and second, the measurements (made by microstrip
silicon detector with digital readout) only provide discrete hits (the strip positions) and
the probability that the particle has passed within in the half of the pitch around the
hit strip is uniform (neither of the resolutions are Gaussian). The discreteness of the
measurement and its at distribution probability should be studied with more detail to
be included properly into the KF. The energy loss of the electrons has not been consider
but could be implemented.
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Figure 5: PSF for di�erent indicent angles, upper line � = 700, lower line � = 00, the
separation between two consecutive lines is �� = 100. The spatial resolution has been
consider constant. The azimuthal angle ' is 450.

And especially regarding the physics, the assumptions to compute the PSF are crude,
a proper description should take into account the correct energy sharing between the
electron and the positron and the recoiling of the nucleus. And also, some instrumental
e�ects, like the pattern recognition problem (i.e in a fraction of the cases only one track
will be reconstructed), the detector ine�ciency, the ghost and lost hits, the dead areas,
the matching with the calorimeter, and how the resolution in the energy will a�ect the
KF and the PSF.

Finally to study the dependence with the pitch and the thickness of the converter,
four energy points have been selected: E=0.1, 1, 10, 100 GeV, for a con�guration with 16
planes. Figures 6 and 7 show the PSF as a function of the nominal resolution �n =

pitchp
12d

and the thickness x0 for these energies. The contours correspond to equal resolution
values. For low energy the contours are almost vertical, that is, there is no dependence
with the nominal resolution, and for high energy, the contours are horizontal, that is, there
is no dependence with the thickness, as expected. In the intermediate region, the relation
of the pitch to the thickness is shown in the curves. To obtain the same resolution, one
can decreases the nominal resolution and then one is allowed to increase the thickness,
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or vice-versa. The pitch is more relevant as the energy increases and it dominates the
resolution above 10 GeV. A factor 2 in the pitch worsen the resolution by 2 at high
energies, and little at low energies. For the thickness, the e�ect is the contrary, at low
values, double thickness worsens the resolution by a factor

p
2 and its e�ects are almost

irrelevant at high energies.

5 conclusions

We have calculated, using the Kalman Filter technique, the improving factor for the
position and the slope, in the case of a straight line trajectory in a periodic tracker. This
calculation can be done in a general way and depends on two parameters: the number of
planes and the ratio between the multiple scattering slope error and the nominal slope
resolution.

The application for GLAST is straight forward. With crude assumptions, one can
compute a �rst approximation to the PSF. The PSF allows the study of the dependence
with pitch, radiator thickness and incident angle. The results obtained with the PSF
are close but better that the simulated ones and con�rm that the optimized values for
GLAST are approximately correct.

This method may be applied to di�erent experiments with the same con�guration,
like NOMAD-STAR or future gamma-ray telescopes. Table 5 allows us to compute the
track slope resolution at the vertex position for a given con�guration, in the case of thin
foil converted.
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N a0 a1 a2 a3 b0 b1
2 1.398 0.015 0.192 -0.023 0.798 0.584
3 0.669 0.119 0.351 -0.071 0.417 0.667
4 0.417 0.406 0.278 -0.072 0.418 0.668
5 0.281 0.672 0.118 -0.041 0.415 0.669
6 0.208 0.855 -0.015 -0.011 0.414 0.669
7 0.165 0.977 -0.111 0.011 0.414 0.669
8 0.137 1.062 -0.180 0.027 0.414 0.669
9 0.118 1.124 -0.233 0.039 0.414 0.669
10 0.104 1.173 -0.275 0.049 0.414 0.669
11 0.093 1.212 -0.309 0.058 0.414 0.669
12 0.084 1.245 -0.338 0.065 0.414 0.669
13 0.077 1.273 -0.362 0.072 0.414 0.669
14 0.070 1.297 -0.384 0.077 0.414 0.669
15 0.065 1.317 -0.403 0.081 0.414 0.669
16 0.060 1.335 -0.418 0.085 0.414 0.669
17 0.056 1.351 -0.433 0.089 0.414 0.669
18 0.052 1.364 -0.445 0.092 0.414 0.669
19 0.049 1.377 -0.456 0.094 0.414 0.669

Table 2: Slope improving factor f� at the vertex position for the case of thin foil converter.
The improving factor has been �tted to a 3-degree polinomian between fms = 0: � 2:5,
that is, in this region f� = a0 + a1fms + a2f

2
ms + a3f

3
ms. From fms > 2: the improving

factor has been �tted to a straight line, that is, for this region, f� = b0 + b1fms.
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Figure 6: PSF for four di�erent energy gammas, as a function of the nominal resolution
�n and the thickness of the converter x0. The energy values are (a) 0.1 GeV; (b) 1 GeV;
(c) 10 GeV; (d) 100 GeV.
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Figure 7: Contour plots of the PSF for four di�erent energy gammas, as a function of the
nominal resolution �n and the thickness of the converter x0. The energy values are (a) 0.1
GeV; (b) 1 GeV; (c) 10 GeV; (d) 100 GeV. The value of the lines are the PSF in degrees.
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