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Tracking simulations

Tracking Reconstruction

Tracker Reconstruction:

Using the:
Silicon Hits

Energy measured in the Calorimeter

Pattern Recongnition

Should reconstruct that trajectory of the charged
particlestraversing the detector.

Should estimate:

Position and direction of the particles.

Silicon Clusters

Calorimeter Information

Covariance matrices v
Energy (f)) Gamma
. Additional Tracks
and should provide: Direction
Quality Criteria of the reconstructed tracks. Position
, CovarianceMatri
Extrapolation to subdetectors ovariancentatx
Energy
Quality Critera

y
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Tracking Reconstruction Scheme

The Physicsinputs:

 Different range of Multiple Scattering

Main parameter: Pattern Re¢cognition

pitch/distance

Different ranges of Energy (1GeV) _
| mplementations:

 Fitting electrons -
o Pattern Recognition
The emission of bremsstralung photons o
Based on Gamma |dentification
5% of electron energy by plane o _
o _ Fitting - Kalman Filter
Theinitial part of the electromagnetic cascade!
_ Treatment of MS by plane
» Reconstructing the gamma _ _ N
o _ _ Natural link with Pattern Recognition
The definition of the gamma using electron/positron tracks o -
Energy estimation - track addition

Unknown track energies _ _
Based in Kalman Filter

U. Cdlifornia, Santa Cruz GLAST, UCSC, June 99
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Driver of the Tracking Reconstruction

Recon - steersthe Tracking Reconstruction
° Cr%t%theslicon Cluga.s .............................................

» Search for agamma interaction

Uses the 3D pair as Pattern Recognition
Loop all Si clusters as possible vertex
Searchesfor X-Y candidates

Searches for compatible X-Y candidatesi n
3Dimension Tracks Ihformation

» Search for extratracks (up to 5!) _
Usesthe 3D track Pattern Recognition y

« Computes additional Analysisvariables ~  ___ _ _ _____________] e

U. Cdlifornia, Santa Cruz GLAS #» June 99



Tracking ssimulations

Pattern Recognition

Pattern Recognition - Toolkit of Tracking Classes it i Gy s ot o i
e o
A family of related classes that can construct: \i ;,:\3( _ﬂ,_,\ﬁ
A Track A Pair Event """?QRZ// e
Sl e
A 3D track A 3D Pair Event | (/' |
Theidea: the Pattern Recognition should recognize the gamma signature: = g Q H
two tracks split from a common vertex or an initial segment. N | = / = i
The Pattern Recognition main elements: ] |
» UsesaRay (Vector + Direction) as an input seed -

Information from the Calorimeter and neighbor hits

A gamma conversion onto electron/positron

» The search isbased in plane by plane basic
step() function : depends on the Track Objects (Track or Pair)

» The search is controlled by an unique parameter
m_sigmaCut : maximum distance in standard deviations at which Vertex

They can bere-
use as an initia
seed

=

Direction

ahit islocated away from a prediction point

 All Tracking Classes provide acommon output data _ _
Covariance Matrix
GFdata : > i, UCSC, June 99
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Tracking ssimulations
The Pair Fit

Pattern Recognition - Pair Fit

A “pair” tracksis created when:
A second segment can be constructed in the vicinity of N-first hits of the “best” track.
« Step() function propagates both tracks into the same plane

« Thetracks do a competition for hits: e e e e e —
» selfish or generous criteria?: (selfish of coursel) : i \\ l‘:[ E
The 3D Pair Fit E(,fﬁr#’“ﬁﬁ
* 3D “loose” connection : = 'f ;:A*fwf‘ﬁff_“rﬂ_ﬁ
* A check is perform to guaranty that X-Y S clustersof a ﬁf : : = E;!;
connected track are in the same tower . H
* The 3D pair are ambiguous (4 X-Y combinations) unless: “ ‘ -~ n
« Topological identification (hard) == .I =
* Onetrack crosses to a neighbor tower ] :: I II : E ”
* One track stops 1 :

* Energy criteria (soft)
. . I The 3D pair Fit reconstruction of t
» Connection of the “best” tracksin both projection &= par H TEconSTHETon of agamma even

* Versatility: (The 3D identification (combinatory or topology) is afree parameter)

U. Cdlifornia, Santa Cruz GLAST, UCSC, June 99
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Tracking Reconstruction Classes Organization

n Recognition

Pattern Recognition: Theinheritance diagram

— inheritance Defines the Commpn Output

____p hasto Interface with TrackerRecon
'itting
The Fitting Procedure
The Track Fit Virtua function that defines

the construction of the family
classes, ie step().

\_

gnition

/
=

tting

Interface with the Fitting procedure

Plane by Plane Base
U.X\ / , June 99
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Example of areconstructed gamma

i Event 274/274: D-AGlastD ata\preProduction\all_gamma. irf:132

File Dizplay Prnt Sowrcelz] Recon EwentlLoop Trgger Help

Y
e e
__,.ail--' —da—
WiEw i, FrontE-T]
\ N
B £

2-d view
Wiz 3, Plan [#-2]

2

Wiz &, General

Example of a 3D Pair Fit

1 Event 274/274: D:\GlastD ata\preProduction\all_gamma.irf:132

Wiew 1, Front<-v]

2-d view
Wiew 3, Plan [<2]

U. Cdlifornia, Santa Cruz

The projection and 3D view of areconstructed gamma event
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Tracking Fitting procedure: The Kalman Filter

Fitting: Kalman Filter
satrack follower agorithm.
ItisaFilter
Each measurement is incorporated each time

¢ |t solvesthe problem of incorporate “random” noise
between two measurements (ie Multiple scattering)

o It isbased on minimum residual estimators
It isan optimal method with gaussian errors

It is equivaent to the L SQ method in absence of
“random” noise

U. Cdifornia, Santa Cruz
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An example of areconstructed cosmic event

Reconstruction of cosmic Background - protons

i Event 411/411: D:A\GlastD ata\preProduction\backgndmix1.iufk:129
File Display Prnt Source(z] Recon EwentLoop Trngger Help
z

I [=] B3

Wiew 3, Plan [<-2)

i Event 411/7411: D:\GlastD ata\preProduction\backgndmix1_irf:129
File Digplay Print Source(z] Fecon EwventLoop Trigger Help
z

]
BT ]|

[_[O] %]

=

i Event 411/411: D:\GlastD ata\preProduction‘backgndmix1._irf-129 M=

File Display FPrint Source(s] Recon EventLoop Trigger Help
z

T

Recorded hits on the Silicon detector.

U. Cdifornia, Santa Cruz
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Tracking efficiencies

Tracking Efficiency: Vertex Efficiency:
* 95% for angles ? < 45 deg e ~80% for angles ? < 80 deg
» 80% for angles ? < 80 deg » Almost invariant with energy and incident angle.

» amost flat with energy

Vertex Reconstruction Efficiency

Tracker Efficiency Reconstruction for gammas
00 -
L2
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Angular distributions

Angular distributions for gamma 30 degreesincident anglein X direction
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PSF and Effective area

Effective Area [cm?2]

2D pair reconstruction results - current repository

Effective Areavs. Gamma Energy
Raw Data- Gamma Space 68%

2Dpair
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Figure of Merit vs. Gamma Energy
Selected Data -Gamma Space 68%
2Dpair -- Clean Version 1
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Status and Future plans

Status of the Tracking Reconstruction :

 The tracker reconstruction works for AO purposes.

» The Pair-Fit reconstruction should be tuned up, understood and it potential
explored.

 The actual reconstruction works a strong framework for further improvements
and additions.

But, thereis still alot of work to do:

PS- Studies based on topological criteria.

Sudies of low energy gamma (PS- and the addition of the electron/positron tracks).
Under standing the Pair-Fit efficiency and causes of tracking failures.

Estimation of the energy using the tracker information.

Tracks extrapolation to other subdetectors.

Background rejection based on topological criteria

U. Cdlifornia, Santa Cruz GLAST, UCSC, June 99
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The tracking reconstruction and the background regection

The Background reg ection variables: (surplus_hit_ratio, csi_err_nrm, etc)
» They contain arelevant part of the legacy of Bill Atwood’ s great work.
* For historical reasons they were calculated (most of them) in TrackerRecon
» They combine tracker/ACD/Calorimeter information and they are used for background rejection.
» They have been broken with the new-reconstruction but nobody has paid attention to them.

* Andthe AOisamost there.

Proposal:
* Letsnot panic! (yet)

* There are only some decens of lines of code that we should be able to understand and corrected it (it would maybe
require the collaboration of people working in reconstruction and background rejection).

Status:
* After Bill’sfix last Thursday (two lines of code), they almost ook OK .

» The main variable broken is csi_corrected _energy.

For thefuture (not for the AO):

* The GlastSim output is aNtuple that is not convenient for analysis that relies on fundamental reconstruction
parameters.

* In order to be able to perform an effective background rejection analysis, as well as other studies: (1.e. efficiencies)
we need a reconstruction output similar to most HEP experiments (1.e. list of track and its extrapolation to ACD and

calorimeter)
GLAST, UCSC, June 99
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Pair Fit reconstruction use: Background rejection

i Event 1/1: D:\GlastD ata‘preProduction\SelType_0603_backgndmix.irt:2 [E[=]
- - - - . File Display Print Source(s) Recon Ewentloop Trigger Help
Background Rejection using the Pair Signature (Atwood) =
The data should be classified using topological criteria - ===
A clean Pair Fit signature will not be easily mimic by cosmic ' / =
background | =
. . View |, Franpey) 201484 View 2, Sille [ZY]
all_gamma 56% are Pair Fit Z i
- - - - '7
backgroundmix 2% are Pair Fit (1/2cosmics, 1/2 abedo) =5 r‘
: o484 |y
Fraction of Glast-Fit 3DPairs in Gamma events Cosmic event entering jl
from the bottom, a >
00 second track W3 Pn k2
reconstructed. But It isa
-U.E_— =§§‘é§§?§ mip in the calorimeter b g o Gevest) Resmn EowlEmp RS RER
g 04 ‘ ‘ -
T =3 :
£ | a “ : ‘ -25%54\\-
os __ \." Front- ’ Wiew 2, Side [Z-]
1ok o Lol
-2 -1 4] 1 2 ‘ — t
logt0(Energy (GeV)) <4 piir/Onetrack An albedo gamma _ﬁ [ '
reconstructed ratio for entering from the bottom | P
gamma events and converting into a ==—==
Pair. -
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The importance of being a Vertex detector

1 Event 982/10000: default{gammal0.1 GeV]#982)

File Dizplay Print Source(s] Recon EwentLoop Trigger Help

The PSF depends on the event topology

 Classification depending on the number of
hitsin theinitial Vertex,

Atwood'sfirst_hit_count variable

» How important is determinate the initial
vertex and the cracks.

An example with 100 MeV, normal incident
gammas

Avthur Conan Dol

» The impact in the aspect ratio of GLAST

View 2, Side 2]
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First Hit Count - Topologies

| Fi'rst Hit Cognt (Atv_vood’ S) Number of
Hits (X+Y) inthe first Conversion
i Layer
first_hit count  topologies
— ) 0 Incorrect tower association
1 conversionin 2nd S plane
T 2-2.5 pure conversion
| | | ion above Po plane
|
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First Hit Count - Topologies

X Slope 100 MeV, normal incident angle, for the different topologies

100 MeV, normal incident
fist hit count classication
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Vertex Determination Studies

X slope distributions for the well reconstructed and EI'TONEOUS vertexes First Hit Count and Active DiSstance for well reconstructed and erroneous vertexes
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Vertex Determination Studies

Active Distance and distance to the tower boundary for the well reconstructed and MC position of the erroneous vertexes after the cut on first hit count
erroneous vertexes after the cut on first hit count

After cut on fst_hit_count
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Vertex determination studies

First hit count Cut efficiency as afunction of energy and First hit count Cut enhancement as a function of energy and
incident angle incident angle
PSF Cleaning cuts Efficiency Vertex Efficiency after
10 ¢ PSF cleaning cuts 12 -
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GLAST acceptance

thin §G Trackss and

ehin B& - Trackar EEFiclancy Calgeiset REficigney

05 05

The aspect ratio (high/width) of GLAST

The main design parameter of the tracker is

uuuuuu
q |

the ratio pitch/gap between planes Thin converters

aos(lhetal
coslhetat

The smaller the pitch, the lower the distance between gaps.

That enhances the FoV and the acceptance of the Detector
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Conclusions

The Pair Fit/Kalman Filter reconstruction

» worksin acceptable level for the AOy it isvery efficient.

It serves as a solid framework for further devel opments.

It a good approximation to our tracking reconstruction problem.

It needs to be tune up, understood, and its potential explored.

There are problems with analysis variables that need to be understood immediately.
GLAST isa Vertex detector

» The PSF (specially at low energies) depends on the event topol ogy.

» In order to be able to separate and identify the different gamma conversion
topologies, GLAST needs a precise determination of the interaction vertex

e Orinother words, GLAST should be afine granularity (fine pitch) tracking
detector.

 GLAST should accurate determinate the conversion vertex.

U. Cdlifornia, Santa Cruz GLAST, UCSC, June 99



Tracking ssimulations

Angular distributions

Angular distributions for normal incident angles
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