

GLAST collaboration meeting GSFC Sep 9-12 1998

Application of the Kalman Filter in GLAST

Bill Atwood, Jose A. Hernando, Robert Johnson

University of California, Santa Cruz

U. California, Santa Cruz

Application of the Kalman Filter in GLAST GLAST Tracking tasks

Parameter Estimation from the tracker:

Gamma direction

Energy

Process:

Selection of the best reconstruction

Track Pattern Recognition

Track Fitting

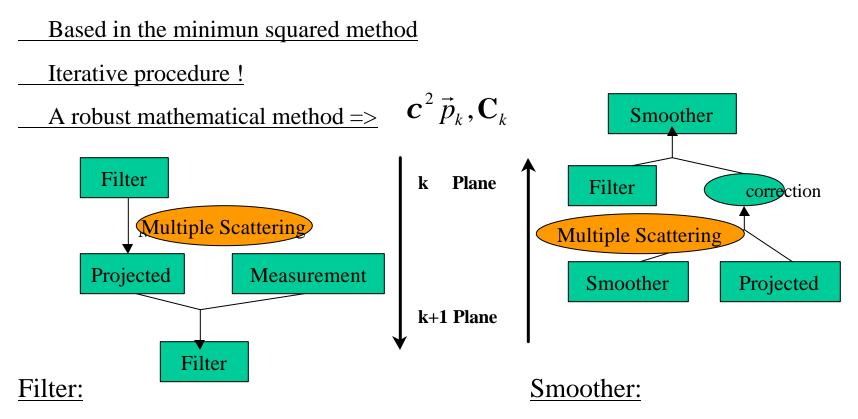
U. California, Santa Cruz

LSQ Fit VS Kalman Filter

LSQ: A Track estimator

Cov Matrix with non-diagonal errors

Pattern - Cone around a guess ray


U. California, Santa Cruz

Kalman: A track Follower, a iterative method Consider Error plane by plane Helps Pattern Recognition

Application of the Kalman Filter in GLAST <u>The Kalman Filter Steps</u>

Kalman Filter:

Extrapolate to the next plane Weight estates hand measured hit Correct previous hit with the posterior information GLAST, GSFC, sep 98

Kalman Filter in GLAST

Application of the Kalman Filter in GLAST:

- Theoretical calculation of the track parameters resolution.
- Proper treatement of the Fitting process.
- Simple Handling of the Pattern Recognition.
- Simple extrapolation to other subdetectors.

Kalman Filter Technique

<u>1.- History:</u> Kalman (61), Billoir (84), Fruhwirth (87)

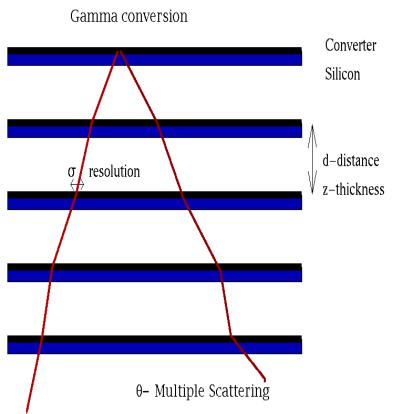
2.- Based in the minimum squared method

Minimizes the residuals

<u>3.- Iterative procedure</u> addition plane by plane

a.- simplifies the inclusion of the MS

b.- helps the patter recognition

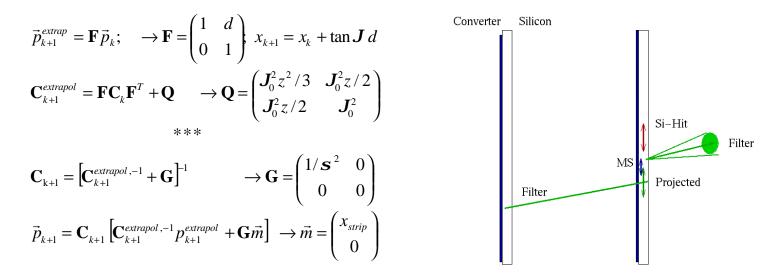

4.- A robust mathematical method

Track parameter resolution => estimation of the PSF

U. California, Santa Cruz

Application of the Kalman Filter in GLAST GLAST tracking parameters

- 1.- Track Model: Straight line
- 2.- Periodic system
 - d distance between planes
 - s spatial resolution
 - z/X0 converter thickness
- <u>3.- Random error = Multiple Scattering</u> $J_0 \cong \frac{0.015 GeV}{p} \sqrt{z/X_0}$ rms MS angle E Energy
 - ? Incident angle



Application of the Kalman Filter in GLAST <u>Kalman Filter for a Straight line</u>

The track parameters and covariance matrices

$$\vec{p}_{k} = \begin{pmatrix} x_{k} \\ b = \tan J \end{pmatrix} \qquad \mathbf{C}_{k} = \begin{pmatrix} f_{x}^{2} \mathbf{S}^{2} & f_{xb} \frac{\mathbf{S}^{2}}{d} \\ f_{xb} \frac{\mathbf{S}^{2}}{d} & f_{b}^{2} \left(\frac{\mathbf{S}}{d} \right)^{2} \end{pmatrix}$$

The Filter step

U. California, Santa Cruz

Dimensionless general case

The periodicity of the system allows to consider a general dimensionless case

The covariance matrix

$$C_{k} = \begin{pmatrix} f_{x}^{2} \mathbf{s}^{2} & f_{xb} \frac{\mathbf{s}^{2}}{d} \\ f_{xb} \frac{\mathbf{s}^{2}}{d} & f_{b}^{2} \left(\frac{\mathbf{s}}{d} \right)^{2} \end{pmatrix} \rightarrow C_{k} = \begin{pmatrix} f_{x}^{2} & f_{xb} \\ f_{xb} & f_{b}^{2} \end{pmatrix} \qquad The improving factors \qquad f_{x}; f_{b} \\ The nominal resolutions \qquad \mathbf{s}; \mathbf{J}_{n} = \frac{\mathbf{s}}{d}$$

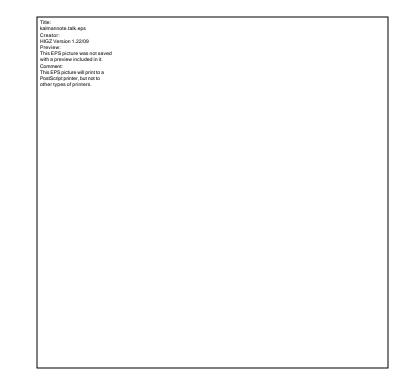
The multiple Scattering covariance matrix

$$Q = \begin{pmatrix} J_0^2 z^2 / 3 & J_0^2 z / 2 \\ J_0^2 z / 2 & J_0^2 \end{pmatrix} \rightarrow Q = \begin{pmatrix} 1/3 f_z^2 f_{ms}^2 & 1/2 f_z f_{ms}^2 \\ 1/2 f_z f_{ms}^2 & f_{ms}^2 \end{pmatrix} \rightarrow Q_{(f_z = 0)} = \begin{pmatrix} 0 & 0 \\ 0 & f_{ms}^2 \end{pmatrix}$$

The thickness factor
$$f_z = \frac{z}{d}$$
The multiple scattering factor $f_{ms} = \frac{J_0}{J_n}$

U. California, Santa Cruz

Application of the Kalman Filter in GLAST The Slope Improving factor at the Vertex Position


The slope improving factor at the Vertex:

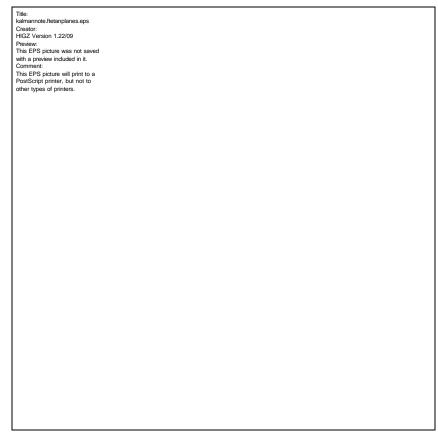
- 1.- For a given N and f_{ms} two variables!
- 2.- Apply the Filter Covariance matrices
- 3.- Apply the Smoother-Covariance matrices
- 4.- Extrapolate to the Vertex the Cov matrix

Dependence with the incident angle

Increasing of the
$$f_{ms}$$

 $f_{ms} \rightarrow \frac{f_{ms}}{\cos^{5/2} J}$

- _____ (the dependence with f can be included)
 - U. California, Santa Cruz


Application of the Kalman Filter in GLAST <u>Number of relevant planes</u>

Conclusions:

1.- The MS tends to dominate the resolution very quickly

2.- The number of relevant planes

$$\mathbf{C}_{k} = \mathbf{C}_{k+1}$$

Application of the Kalman Filter in GLAST An Estimation of the PSF

An estimation of the PSF

$$PSF \cong \sqrt{\left(\frac{E_{+}}{E_{g}}\right)^{2} \boldsymbol{s}_{+}^{2} + \left(\frac{E_{-}}{E_{g}}\right)^{2} \boldsymbol{s}_{-}^{2}}$$
$$E_{+} = 0.75 E_{g}$$

Conclusions:

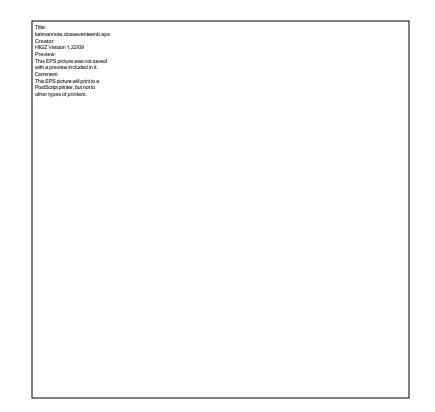
- 1.- The PSF is better than the MC (factor 0.7-08)
- 2.- Little dependence with the angle
- 3.- Asymptotic limits (low and high energies)

4.- In the intermediate region the KF should improve the present algorithm

5.- Understand the differences

Second effects (tails, pattern) or KF

U. California, Santa Cruz


Title: kalmannote.enesixteen.eps Creator: HIG2 Version 1.22/09 Preview: This EPS picture was not saved with a preview included in it. Comment: This EPS picture will print to a PostScript printer, but not to other types of printers.

Application of the Kalman Filter in GLAST <u>An estimation of the PSF</u>

Dependence with z/X0 and s

E = 0.1, 1., 10., 100 GeV

Conclusions

1.- The Kalman Filter allows to compute the Track Parameters resolutions

2.- In a periodic system, the *improving factor* can be computed in a dimensionless general case:

It depends on two parameters : N -planes $f_{ms} = \frac{J_0}{J}$; $J_n = \frac{s}{d}$ the ratio MS/resolution

<u>3.- A PSF can be estimated using this method (Burnett, Jones, Hernando)</u> It is an approximation: physics -> non Gaussian tails, dE/dx detector-> pattern recognition, eff, etc

U. California, Santa Cruz

In a near Future

<u>1.- A KalFit class in the GLAST simulation program</u>

2.- Understand the second order effects

<u>3.- Can the Kalman Filter help the energy resolution?</u>

<u>4.- Application of the Kalman Filter to the Patter Recognition Problem</u>