FPGA LN

Introduction to FPGASs

Getting Started with Xilinx

Digital Design

- Everything is represented in two
discrete values: “0” and “1”

-We use low and high voltages to
represent these values

- Use binary arithmetic and boolean
math

FPGA e

Binary Numbers

- Converting decimal to binary:

11 /2 =5remainder 1

5 /2 =2 remainder 1
2 /2 =1remainder 0

1 /2 =0 remainder 1

-Read it from bottom to top: 1011

FPGA e

Binary Numbers

- Converting from binary to decimal
- Every digit represents a power of two

- Note that we start with 2°

(ITx2)+O0x2)+ (0 x2H+ (A x29=11

FPGA e

What is an FPGA?

- Field Programmable Gate Array
- Hardware that can be customized

- Can be programmed to do just about
anything you want them to do.

FPGA e

Verilog

-HDL (Hardware Descriptive Language)

- Allows one to create designs using a
text language

-One “lays out” the design

FPGA e

Clocks

*Clocks define the time element of a
design

*Clocks alternate between high and low in
a square wave

Time >

FPGA e

Clock Edges

*We are only concerned with clock edges
usually

*Edges are simply where a transition
takes place

N R A N 2 R 2 B

B L

FPGA e

A Simple Counter

*We will create a design that counts up
on every clock edge

*Will store the value in a piece of
hardware called a “register” (think
memory)

*We will use an 8-bit number,
representing 28 = 256 different values

FPGA e

A Simple Counter

- “Black box” - should have inputs and
outputs

- Focus on “what” not “how”

Counter

p| clock counter_value >

FPGA e

The Code

module counter(clock, counter value);

input clock;

output [3:0] counter value;

reg [3:0] counter;

assign counter value = counter;

always @ (posedge clock)
begin

counter = counter + 1;
end

endmodule

Slclijplp FPGA

SANTA CRUZ INSTITUTE FOR PARTICLE PHYSICS

The Code

-“module” declaration specified what
the inputs and outputs are

module counter(clock, counter value);

input clock;
output [3:0] counter value;

endmodule

FPGA e

The Code

"“reg” keyword makes a register. We use
the bracket notation to specify how big
the number is

*Since we’re using 4 bits, we can
represent 24 numbers, or 16 total
numbers

*0000, 0001, 0010, 0011, 0100, etc.

reg [3:0] counter;

FPGA e

The Code

*“always” specifies that we want to do
something whenever a change occurs

*In our case, anytime the clock goes from
low to high, increment the counter

always (@ (posedge clock)
begin
counter = counter + 1;

FPGA e

Visualizing The Code

- Concurrency - Everything happens at
once

- Verilog code turns into real hardware

FPGA e

Visualizing The Code

module counter(clock, clock
counter value) ;

.

input clock;
output [3:0] counter value;

endmodule counter
value

-—

Slclijplp FPGA

SANTA CRUZ INSTITUTE FOR PARTICLE PHYSICS

Visualizing The Code

module counter(clock, clock
counter value) ;

.

input clock;
output [3:0] counter value;

C
reg [3:0] counter; o
u
n
t
c
r
endmodule counter
value
——

Slclijplp FPGA

SANTA CRUZ INSTITUTE FOR PARTICLE PHYSICS

Visualizing The Code

module counter(clock, clock
counter value) ;

.

input clock;
output [3:0] counter value;

C
reg [3:0] counter; 5
assign counter value = counter;
i u
n
t
C
r
endmodule counter
[value
9

Slclijplp FPGA

SANTA CRUZ INSTITUTE FOR PARTICLE PHYSICS

Visualizing The Code

module counter(clock, clock

counter value) ;

input clock;

output [3:0] counter value;

reg [3:0] counter;

assign counter value = counter;

always @ (posedge clock)
begin

counter

end

endmodule

SANTA CRUZ INSTITUTE FOR PARTICLE PHYSICS

|

= 0O 585 € © O

counter
value

9

FPGA e

Visualizing The Code

module counter(clock, clock
counter value) ;

gl —

input clock;
output [3:0] counter value;
C
reg [3:0] counter; 5
assign counter value = counter;
i u
always Q@ (posedge clock) n
begin — ¢
counter = e
end r
endmodule counter
| value
4,

Slclijplp FPGA

SANTA CRUZ INSTITUTE FOR PARTICLE PHYSICS

Visualizing The Code

module counter(clock, clock
counter value) ;

gl —

input clock;
output [3:0] counter value;

reg [3:0] counter;
assign counter value = counter;

/

always @ (posedge clock)
begin

counter = counter +
end

Adder

= 0 T35S 2 O O ¢/

\

endmodule counter
I value

9

Slclijplp FPGA

SANTA CRUZ INSTITUTE FOR PARTICLE PHYSICS

Visualizing The Code

module counter(clock, clock
counter value) ;

gl —

input clock;
output [3:0] counter value;

reg [3:0] counter;
assign counter value = counter;

/

always @ (posedge clock)
begin

counter = counter + 1;
end

Adder

= 0 T35S 2 O O ¢/

\

endmodule counter
I value

9

Slclijplp FPGA

SANTA CRUZ INSTITUTE FOR PARTICLE PHYSICS

Tools Of The Trade

* Xilinx Software - ISE (Integrated Software
Environment)

* Allows us to create designs

*Does all the grunt work of turning our
code into physical hardware

*We program the chip through ISE

FPGA e

Hands On

- Next session will be a walkthrough of
the hardware

-We'll get to program an actual

counter

FPGA e

