
Introduction to FPGAs
Getting Started with Xilinx

•Everything is represented in two
discrete values: “0” and “1”

•We use low and high voltages to
represent these values

•Use binary arithmetic and boolean
math

Digital Design

• Converting decimal to binary:

11 / 2 = 5 remainder 1

5 / 2 = 2 remainder 1
2 / 2 = 1 remainder 0
1 / 2 = 0 remainder 1

•Read it from bottom to top: 1011

Binary Numbers

•Converting from binary to decimal

•Every digit represents a power of two

•Note that we start with 20

Binary Numbers

(1 x 23) + (0 x 22) + (1 x 21) + (1 x 20) = 11

• Field Programmable Gate Array

• Hardware that can be customized

• Can be programmed to do just about
anything you want them to do.

What is an FPGA?

•HDL (Hardware Descriptive Language)

•Allows one to create designs using a
text language

•One “lays out” the design

Verilog

•Clocks define the time element of a
design
•Clocks alternate between high and low in
a square wave

Clocks

Time

•We are only concerned with clock edges
usually
•Edges are simply where a transition
takes place

Clock Edges

Time

•We will create a design that counts up
on every clock edge
•Will store the value in a piece of
hardware called a “register” (think
memory)
•We will use an 8-bit number,
representing 28 = 256 different values

A Simple Counter

•“Black box” – should have inputs and
outputs

•Focus on “what” not “how”

A Simple Counter

Counter

clock counter_value

module counter(clock, counter_value);

input clock;
output [3:0] counter_value;
reg [3:0] counter;
assign counter_value = counter;

always @(posedge clock)
begin

counter = counter + 1;
end

endmodule

The Code

module counter(clock, counter_value);

input clock;
output [3:0] counter_value;
…

endmodule

The Code
•“module” declaration specified what
the inputs and outputs are

reg [3:0] counter;

The Code
•“reg” keyword makes a register. We use
the bracket notation to specify how big
the number is
•Since we’re using 4 bits, we can
represent 24 numbers, or 16 total
numbers

•0000, 0001, 0010, 0011, 0100, etc.

always @(posedge clock)
begin

counter = counter + 1;
end

The Code
•“always” specifies that we want to do
something whenever a change occurs
•In our case, anytime the clock goes from
low to high, increment the counter

Visualizing The Code

•Concurrency – Everything happens at
once

•Verilog code turns into real hardware

Visualizing The Code
module counter(clock,
 counter_value);

 input clock;
 output [3:0] counter_value;

endmodule

clock

counter
value

Visualizing The Code
module counter(clock,
 counter_value);

 input clock;
 output [3:0] counter_value;

 reg [3:0] counter;

endmodule

clock

counter
value

c
o
u
n
t
e
r

Visualizing The Code
module counter(clock,
 counter_value);

 input clock;
 output [3:0] counter_value;

 reg [3:0] counter;
 assign counter_value = counter;

endmodule

clock

counter
value

c
o
u
n
t
e
r

Visualizing The Code
module counter(clock,
 counter_value);

 input clock;
 output [3:0] counter_value;

 reg [3:0] counter;
 assign counter_value = counter;

 always @(posedge clock)
 begin
 counter
 end

endmodule counter
value

c
o
u
n
t
e
r

clock

Visualizing The Code
module counter(clock,
 counter_value);

 input clock;
 output [3:0] counter_value;

 reg [3:0] counter;
 assign counter_value = counter;

 always @(posedge clock)
 begin
 counter =
 end

endmodule

clock

counter
value

c
o
u
n
t
e
r

Visualizing The Code
module counter(clock,
 counter_value);

 input clock;
 output [3:0] counter_value;

 reg [3:0] counter;
 assign counter_value = counter;

 always @(posedge clock)
 begin
 counter = counter +
 end

endmodule

clock

counter
value

c
o
u
n
t
e
r

Adder

Visualizing The Code
module counter(clock,
 counter_value);

 input clock;
 output [3:0] counter_value;

 reg [3:0] counter;
 assign counter_value = counter;

 always @(posedge clock)
 begin
 counter = counter + 1;
 end

endmodule

clock

counter
value

c
o
u
n
t
e
r

Adder
1

Tools Of The Trade
•Xilinx Software – ISE (Integrated Software
Environment)
•Allows us to create designs
•Does all the grunt work of turning our
code into physical hardware
•We program the chip through ISE

Hands On
•Next session will be a walkthrough of
the hardware

•We’ll get to program an actual
counter

