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1 Introduction

This note describes a method to calculate the trigger rate from Monte Carlo results and
data on primary fluxes.

To increase the efficiency of the Monte Carlo calculation, primary particles are thrown
with a non-uniform radial distribution. To compensate for this, distributions of Monte
Carlo quantities are all weighted by the core radius. The way this is included in the
trigger rate calculation is described here.

2 Rate Calculation with no MC radial weighting

Consider a detector of area A 1, with perfect detection efficiency, sitting in an isotropic
flux (with no upward momenta). Let θ be the zenith zenith angle, and E the primary
energy. For this detector (at the top of the atmosphere), the event rate is

dN

dt
=

∫ ∫ ∫
d4N

dEdΩdAdt
cos θ dA dΩ dE

The first term in the integral is the differential primary flux. Primary particles strike the
area A uniformly. The factor cos θ accounts for the fact that the area is effectively smaller
for larger zenith angles. The Monte Carlo calculation includes this factor in generating
primary particles.

Using
dΩ = −2πd(cos θ)

the first equation becomes

dN

dt
= −2π

∫ ∫ ∫ d4N

dEdΩdAdt
cos θ dA d cos θ dE

The number of incident particles per unit time is then the number incident on area of the
circle with the maximum throw radius,Rthrow. That is, in the unweighted Monte Carlo

dNthrow

dt
= 2π(πR2

throw)I(> Emin)(1 − cos θmax
2)/2

Here Eminand θmax are the minimum energy and maximum angle of primary particles.
The number of triggers at detector level, per unit time is

dNtrig

dt
= −2π

∫ ∫ ∫
d4N

dEdΩdAdt
cos θ ε(E, θ, r) dA d cos θ dE

1For the Milagro detector, this area is the area of a circle with radius equal to the maximum Monte

Carlo throw radius, Rthrow
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where ε is an efficiency which depends on E, θ, radius r, and the various cuts.
But ε does not have to be determined. Instead, note that

dNtrig

dt
==

dNthrow

dt

Ntrig

Nthrow

≡
dNthrow

dt
η (1)

where

η =
Ntrig

Nthrow

(2)

This can be determined from the Monte Carlo results.

3 Calculation with weighting in Monte Carlo

3.1 Radial Weighting

The equation above holds for a Monte Carlo simulation in which the cores are thrown
uniformly on the array. To increase the efficiency of the of the simulation, the core radii
are thrown with a non-uniform distribution:

dn

dr
= b

in which b is a constant, and 0 < r < Rthrow. The Monte Carlo data distributions are
corrected by weighting every event in any histogram by its core radius r.

With these procedures it is necessary to find the correct way to write Equations 1 and
2.

3.2 Case with no r-weighting, again

Here
dNthrow

dr
= ar

and, by integration,
Nthrow = aR2

throw/2

dNtrig

dr
=

dNthrow

dt
β(r) = arβ(r)

Here β(r) is an efficiency with only r-dependence. The number of triggers is then

Ntrig = a
∫

rβ(r)dr

and the overall efficiency η is

η =
Ntrig

Nthrow

=
2

∫
rβ(r)dr

R2
throw

(3)

Note that the factors a have cancelled.
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3.3 Case with r-weighting

With r-weighting the same quantities as in the previous subsection are calculated:

dnthrow

dr
= b

Nthrow = bRthrow

and

dNwtd
trig

dr
=

dNthrow

dt
rβ(r) = brβ(r)

Integrating,

Nwtd
trig = b

∫
rβ(r)dr

So the efficency is
Nwtd

trig

Nthrow

=

∫
rβ(r)dr

Rthrow

In order to have η the same in the weighted and unweighted cases, it is necessary to
weight the number generated by a factor Rthrow/2. Then

η =
Nwtd

trig

Nthrow

2

Rthrow

=
2

∫
rβ(r)dr

R2
throw

which is the same as Equation 3
For the current MC runs, θmax = 70◦, so the trigger rate is

dNtrig

dt
= π(πR2

throw)I(> Emin)(1.766)(
NMC,trig,wtd

NMC,throwRthrow

)

3.4 Correction when MC index 6= true index

The MC helium data is currently generated with spectral index 2.75. Fits to the BessTeV
data give an index of 2.65. So a correction must be made to find the number of triggers
which would have been found if the spectral index had been 2.65.

Suppose the MC events were generated with index γ1. Then the energy distribution
of the generated events is

dN1

dE
= b1E

−γ1

and the total number of events is

N1 = b1E
−(γ1−1)
min /(γ1 − 1)

Now suppose the same number of events were generated with index γ2. Then because
the number of events is the same in each run,

b1E
−(γ1−1)
min /(γ1 − 1) = b2E

−(γ2−1)
min /(γ2 − 1)
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So,

b2/b1 =
(γ2 − 1)

(γ1 − 1)
Eγ2−γ1

min

Now suppose the energy distribution of triggers with the wrong γ (γ1) is

dNtrig,1

dE
=

dNthrow,1

dE
α(E)

where α(E) is an efficiency which does not depend on γ, then

dNtrig,2

dE
=

dNthrow,2

dE
α(E)

or
dNtrig,2

dE
=

dNthrow,2

dE

dNtrig,1

dE
/
dNthrow,1

dE

=
dNtrig,1

dE

b2E
−γ2

b1E−γ1

=
dNtrig,1

dE

(γ2 − 1)

(γ1 − 1)
(

E

Emin

)−γ2+γ1

So every triggered event with energy E should be multiplied by a weight factor

w =
(γ2 − 1)

(γ1 − 1)
(

E

Emin

)γ1−γ2

A plot of the weight factor vs. energy, for γ1 = 2.75 and γ2 = 2.65 is shown in Figure
1

Figure 1: Weight factor for γ1 = 2.75, γ2 = 2.6, and Emin = 30 GeV
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4 Current Results

The Milinda code was run on some of the latest Geant4 MC (Version 1.2) events. The
number of r-weighted triggered events was found. To better simulate the running experi-
ment, 37 tubes were made “dead”. The number of generated events was determined with
Vlasios’ database. The trigger for this study is the VME trigger.

4.1 Fluxes

For a differential flux
d4N

dE dA dΩ dt
= BE−γ

the corresponding integral flux is

I(> Emin) = BE
−(γ−1)
min /(γ − 1)

For this calculation, Bproton = 15481., γproton = 2.75 Bhelium = 6369, γhelium = 2.65

4.2 Proton trigger rates

For Geant 4, VME trigger rate = 1511 /sec.

4.3 Helium trigger rates

For Geant 4, VME trigger rate = 517 /sec

4.4 Total

So the total VME predicted trigger rate is 2028/s. Helium triggers are about 26% of the
total. These rates should still be regarded as preliminary.
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