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This memo contains the procedure used in the analysis of the cosmic-ray
anisotropy. The various data cuts used and the estimation of errors are dis-
cussed. Also, the methods of forward-backward asymmetry and harmonic fitting
are explained.

1 Organization of Event Data

The cosmic-ray events are binned in 2-D histograms according to their ar-
rival direction from −10◦ to 80◦ in declination and −50◦ to +50◦ in hour
angle(see Fig. 1 for an example). These limits are imposed due to the fact
that only events with a zenith angle ≤ 50◦ are accepted. This zenith angle cut
is used to limit contamination from muons. The events are collected over 30
”minute” periods, where ”minute” is defined in the following three time frames:
sidereal (366.25 days/year), universal (365.25 days/year), anti-sidereal (364.25
days/year). These events are placed into histograms with 5◦× 5◦ bins giving us
48 half hour histograms per day (in one of the three time frames). This averag-
ing scheme is used with the forward-backward asymmetry method (Sec. 3.1) in
order to remove the effects of trigger rate variations due to changing atmospheric
and detector conditions with time scales on the order of 30 minutes.

The time frames mentioned above correspond to different views of the sky.
Universal time(UT) shows the sky in sun fixed coordinates(i.e. at Milagro lon-
gitude noon is at 195◦). Sidereal time(ST) is the usual equatorial coordinate
system of r.a. and dec. Anti-sidereal time(AST) corresponds to no physical
viewpoint. As such it should have no signal present but is included for symme-
try and as a check on systematics(more on this later). A ST day is 3 minutes
and 56.56 seconds longer than a UT day. An AST day is shorter than a UT day
by the same amount.

In order to minimize contamination of the signal between the three time
frames we analyze the data in sets of an integral number of years. Take for
example a fixed signal in sidereal time, this signal’s position in UT shifts by
about 4 minutes per day returning to the original postion after exactly one
year. When the analysis is done the mean value is subtracted out and therefore
this fixed ST signal will average to zero in the UT map. The same holds true
for AST except in AST a fixed sidereal signal will transit twice in one year.
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Figure 1: Sample of a histogram showing the number of events as a function of
dec. vs. hour angle for a single 30 minute period.

2 Data Cuts

In addition to the aformentioned zenith angle cut we make the following cuts
on the individual events:nFit≥ 20 and nTop≥ 90. Before the data is analyzed
we also look through the data for trouble spots which will be excluded from
the analysis. Beyond the obvious times where there were repairs we look for
large deviations in the zenith(theta) and phi angle distributions. The way this
is accomplished by using a program which reads through the data creating his-
tograms of the theta and phi distributions containing a fixed number of events.
The number of events is fixed to avoid picking out periods of dead time and cor-
responds to a ∼ 30 minute interval given our average trigger rate of ∼ 1700Hz.
These intervals are collected over a period consisting of about three days. The
individual phi and theta distributions are then compared to the three day aver-
age by computing the chi square difference between them after normalization.
If the chi square is larger than 23 for the Theta dist. or larger than 5 for the
Phi dist. the failing histo. is sent to a file along with the time interval it corre-
sponds to. These cutoffs were chosen because it gives a reasonably low number
of false failures without missing the problem spots. This procedure is repeated
for the entire data set. The output intervals can then be inspected by hand and
compared to the shift log etc. Many times these intervals will have associated
log entries involving hardware failures, weather etc. If the interval appears to
be legitimately corrupted it is excluded. Cuts made in this fashion correspond
to ∼ 5% of the total number of events collected.
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Figure 2: Diagram showing the definition of α used in the calculation of the
forward-backward asymmetry for a single dec. band and a given 30 minute
histogram. α is in the direction of hour angle.

3 Reconstruction Method

3.1 Forward-Backward Asymmetry

The forward-backward asymmetry method(FB) as mentioned previously is used
to remove problems rising from short term variations in trigger rates due to
effects which cannot be accurately modelled (weather, detector etc.). On time
scales of around 30 minutes the observatory conditions are assumed to be stable
and thus FB allows us to analyze each of these periods independently effectively
removing variations occurring between these periods. To limit the effects of
random variations during these periods many days are averaged together.

Since Milagro scans the sky with the motion of the Earth, we have no infor-
mation about the modulation in the declination direction. For this reason each
dec. band is treated as an independent observation and is analyzed separately.
We make the assumption that the large scale anisotropy in any given dec. band
can be modelled by a fourier series and that it is a small modulation of a nearly
isotropic signal. Three harmonics are used in this analysis (See Sec. 3.2) which
allows us to see large scale effects having a width in r. a. of greater than ∼ 40◦.

Using this model, the equation for the (normalized) rate is:

R(θ) = 1 +
3∑

n=1

γn cos n(θ − φn) (1)

γn � 1

The first step in finding the fourier coefficients is calculating the FB asym-
metry for each half hour histogram as a function of α (see Figure 2).
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Figure 3: Sample histogram to be fit of the forward-backward asymmetry as a
function of α and hour angle for a single dec. band. The mean is set to zero.

FB(θ, α) =
R(θ + α)−R(θ − α)
R(θ + α) + R(θ − α)

(2)

where θ = mean time in degrees of the half hour histogram and α ranges
from 2.5◦ to 47.5◦ in 5◦ steps. These values of FB are binned in a 2-D histogram
of α vs. θ which then has the mean value subtracted out (See Fig. 3).

3.2 Reconstruction

The fourier coefficients are obtained from these histograms by fitting to the
following function function obtained by substituting (1) in (2), applying the
appropriate trigonometric identities and using the fact that γn � 1.

FB(θ, α) ≈
3∑

n=1

−γn sin(nα) sin(n(θ − φn)) (3)

The coefficients thus obtained are used to reconstruct the anisotropy as a
fractional difference from isotropic in a given dec. band as follows:

A(θ) =
3∑

n=1

γn cos(n(θ − φn)) (4)
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Figure 4: Reconstructed dec. profiles for the first year of data. The red curves
are the ”even” numbered events the blue ”odd”. The width of the curves are
the statistical error.

The statistical errors are obtained by the usual propagation method. As-
suming the error during event collection obeys a poisson distribution, for a bin
with N events the error is

√
N . From the fit we obtain the errors on the fit

parameters from which the error in the reconstructed signal is calculated using:

σ2
signal(θ) =

3∑
n=1

[
σ2

γn

(
∂A(θ)
∂γn

)2

+ σ2
φn

(
∂A(θ)
∂φn

)2
]

(5)

A check on the stability and validity of the statistical errors of this method
was performed by creating two sets of data corresponding to the same period
of time. The way this was done was by alternating the set into which a event
is placed. For example the first event is put in the ”odd” set, the second event
is put in the ”even” set etc. Figure 4 shows the result of the analysis for the
”even” and ”odd” sets superimposed for twelve different declination bands. As
can be seen the profiles match very well within the statistical errors.

3.3 Number of Harmonics

The optimal number of fourier harmonics was determined by examining the chi
square per degree of freedom for the 2-D fits as a function of declination. These
results are plotted in Fig. 5. As can be seen the three harmonic fit gives a chi
square/ndf of ∼ 1 with no significant improvement for four harmonics. To avoid
over fitting three was deemed sufficient.
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Figure 5: χ2 vs. dec. for different number of fit harmonics.

3.4 Systematic Errors

The systematic errors are estimated by examining the ATS time plots for an
integral number of years. For an integral number of years a static signal in one
time frame will not affect the others. The reason for this is explained in section
1. Monte carlos shows that if there is a time varying signal in one frame it
will induce a signal in the adjacent frames since it doesn’t average out over the
course of the year. The induced signal is attenuated greatly for slowly varying
signals. Furthermore, MCs show that if the signal varies in universal time it
will affect both anti-sidereal and sidereal time with equal magnitude but not
necessarily the same phase. Given that anti-sidereal time corresponds to no
physical frame of reference we expect to see no signal here. If a signal does
appear here the cause is assumed to be temporal variations in the universal
time signal. We can rule out the sidereal time variation as the origin of the
AST signal because the sidereal signal, although not constant, only varies on
the order of a factor of two over the entire 6 yr. data set and therefore cannot
induce the AST variations at the level we do see. Since we know this same
(ATS) signal will be superimposed on the sidereal signal but with unknown
phase, we use the r.m.s. of these fluctuations to estimate the systematic errors
of the sidereal anisotropy.

One check of this procedure we can do is to look at magnitude of the errors
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for a number of set sizes. Since the systematics are expected to vary randomly
in time the error should go like σ/

√
N with N being the size of the data sample.

The six and one year systematic errors can be estimated from the AST plots.
For a two month period (our usual smallest averaging period) we have to use a
different approach. Fig. 6 shows a sample of single day slices corresponding to
the dec. band at our zenith.
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Figure 6: Anisotropy analysis for dec. ∼ 36◦ for a 9 consecutive day sample.
The width of the lines correspond to the statistical errors. The scale is ±1%.

As can be seen there is a great deal of variation on this time scale which
completely washes out the sidereal signal. Also on a day to day basis the
difference between ST, UT and AST is non-existant in this analysis since they
differ by � 1◦ in hour angle. Assuming these variations are largely due to
systematics we can try to estimate the sys. error for a two month period by
taking 60 single day plots and averaging them together after randomizing their
phases. In doing this any signal present should be washed out and only the
variations should remain. Taking the r.m.s. of this variation will be interpreted
as the sys. error. Figure 7 shows a plot of the estimated systematic error inverse
squared for two months, one year and six years for our data. As can be seen
the errors obey the linearity one expects from from standard error analysis.
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Figure 7: Plot of σ−2
sys vs. number of two month periods. The 12 and 72 month

errors were obtained using the AST estimation procedure. The 2 month error
was found by averaging the daily variations. The dotted line is a linear fit.
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