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Abstract

In this memo I (re-)derive Andy’s weighting formula for binned
data and find that with weighting, a Q ≈ 1.5 improvement is possi-
ble compared to estimating the flux with the simple summed excess,
given a Crab-like spectrum. This improvement in significance is more
important than the estimated Q = 1.1 from using a likelihood analy-
sis on the sky map (or using psf weighting) reported in Alexandreas
et. al NIM A328 (1993). The significance gain is larger still for a
harder spectrum. The derivation rests on two key elements: first,
you are using each individual bin to independently estimate the flux,
and second, the background fluctuations dominate the uncertainty of
the photon excess. However, this improvement in significance is not
without cost: if the excess vs. bin is not accurately reproduced when
the weights are calculated, systematic errors in the flux determination
result. A harder-than-assumed spectrum overestimates the flux. This
systematic error can be checked for either by comparing the weighted
estimate of the excess with the directly calculated excess, or a chi-
squared fit of the bin excesses. If you are using bin weighting only for
the significance calculation, not for the flux determination, the prob-
lem is much less, as sub-optimal weights merely reduce the significance
achievable.

1 Weighted Flux Estimate from Binned Data

In Andy’s memo of June 2005, “A Weighting Analysis of Crab Data”, he used
weights of the form 〈s〉/〈b〉 for combining different bins of data, where 〈s〉 is
the expected signal and 〈b〉 is the expected background in the bin (of X2, A4,

1



Energy, or whatnot). At first I found this very surprising, as the background
had already been subtracted, so why should I be allowed to apply expected
signal to background all over again as a weight?

Alas, Andy didn’t derive the formula. Here I do. The answer turns
out to rest on two key elements: first, you are using each individual bin
to estimate a flux, and second, the background fluctuations dominate the
uncertainty of the photon excess. It is not, however, some likelihood-ratio of
the photon excess being more likely to be a photon than a background event
by the given factor, because the background has already been subtracted.
Thanks to Andy for catching an algebra error I made in an earlier draft which
prevented me from reproducing his formulae. I’m guessing that someone has
shown the theoretical justification for these formulae before (unless Andy
just has ridiculously good intuition), but if references exist, I’m not aware of
them. Let me know if you do have a published reference.

Call si = Ni − b̂i the photon excess measured in a bin. The expected
value of the bin content is proportional to an incident overall flux by

〈si〉 = ei〈Φ〉. (1)

The whole weighting scheme depends on our wishing to estimate an overall
flux linearly related to each bin content. Summing across bins, the flux is
proportional to the total excess:

〈S〉 = Σi〈si〉 = 〈Φ〉Σiei = 〈Φ〉E. (2)

We could choose E = 1 and define the photon excess as the “flux”, or define
E as the total effective area (and ei the spectral-weighted effective area for
the bin) to arrive at the more usual flux. As we will see later, either choice
produces the same weights.

The most straightforward measure of the flux is just the total photon
excess, S = Σisi, that is, weighting each bin equally. But this does not give
the lowest variance estimate, as we will see.

Suppose instead I want to measure flux by a different linear combination
of measurements from each bin. The intuition is that some bins have better
fractional uncertainty, and should be weighted more heavily to give the best
estimate. My flux estimate from bin i is just

φi = si/ei, (3)

where ei is the efficiency factor to convert counts into flux. For these esti-
mates to make sense, they all have to be estimating the same thing, so from
(1) linearity implies:

〈Φ〉 = 〈φ〉 and thus ei = 〈si〉/〈Φ〉 (4)
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Now combine the independent bin estimates of the flux:

Φ = Σi(wi φi)/ Σi(wi) (5)

A Maximum Likelihood estimator (with minimum variance), weights each
estimate by the inverse of its (expected) variance. If the background fluctu-
ations dominate, then

σ(φi) =
1

ei

√
〈bi〉, leading to (6)

wi = e2
i /〈bi〉 (7)

When I substitute that back into the expression for the flux estimate Φ I find
one of the ei cancel so

Φ = Σi
ei

〈bi〉
si / Σi wi (8)

Substituting into this equation the expression (4) for ei, the numerator is

proportional to 〈si〉
〈bi〉 . Defining

vi = 〈si〉/〈bi〉, (9)

I arrive at the weight Andy used in his memo, a constant (independent of i)
times 〈s〉/〈b〉:

Φ = 〈Φ〉Σi vi si/ Σi vi〈si〉 = k Σi vi si (10)

k =
〈Φ〉

Σi vi 〈si〉
. (11)

Obviously from (10), a multiplicative constant1 applied to the weights vi

doesn’t affect the flux estimate. Andy defined the weights in the first bin to
1.0 by choosing new weights

ui = vi/v1. (12)

Note, however, that the vi are not an i-independent multiple of the wi. This
causes the denominator of (10) and (11) to differ from a simple sum of the
vi.

1If you combine data samples which should have particular relative weights, you don’t
have that freedom for each sample separately.
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2 Effects of Mis-weighting on Flux Estimate

This weighting clearly presumes you have a good handle on the spectrum so
that the 〈si〉 are appropriate. If not, you will mis-weight the results. The
optimized weighted estimate was designed so that each bin estimate had the
same mean, the estimated flux: 〈φi〉 = 〈Φ〉. For clarity, define [ ] as averages
with respect to the true spectrum, in contrast to 〈 〉 averages with respect to
the spectrum assumed when defining the weights. Suppose the true spectrum
gives for the photon excess [si] = λi〈si〉 The individual estimates will then
not average the same flux:

[φi] = λi〈Φ〉 and [Φ] = 〈Φ〉λw where, by (5) (13)

λw = Σiwiλi/Σiwi (14)

We can compare the flux estimate for the actual spectrum with its target
value for the actual spectrum. In analogy with (2) we desire [S] = [Φ]E. But

[S] = Σi[si] = Σiλi〈si〉 while (15)

[Φ]E = λw〈Φ〉E = λwΣi〈si〉 (16)

Taking the ratio, we find it is not guaranteed to be one, since

[S]

[Φ]E
= λs/λw (17)

where λs = Σi λi〈si〉/Σi〈si〉 (18)

In other words, the flux estimate is wrong unless λ weighted by the weights
wi and by 〈si〉 is the same. In the case that the shape of the spectrum used to
estimate the weights was correct, but the normalization was wrong, λi = λ,
and there is no error in estimating the final flux because λs = λw = λ. But
if the shape was wrong, there will be a systematic error in estimating the
final flux unless wi ∝ 〈si〉 where the constant is independent of i, and this is
inconsistent with (3), (4) and (7).

You would also bias the significance by mis-weighting, because the vari-
ance would be larger than the minimum you could achieve with the correct
weighting.

How large might the λi be? If the shape is a power law, the power is
badly wrong by, say by .5 units, and the bins are in energy ranging from 1
to 25 TeV, the λi might be vary by a factor of 5 (assuming here the bins are
roughly in log E).
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3 Irrelevance of a Constant in a Weight and

the Effective Number of Events

For the interested student, consider calculating any quantity as a weighted
average (for example 〈r2〉, or a variance):

〈fw〉 = Σi wifi /Σi wi (19)

Now consider new weights vi = λ wi. Rewrite 〈f〉 in terms of the new weights:

〈fw〉 = Σi λ vifi /Σiλ vi (20)

On cancelling the common factor λ from top and bottom, we recognize that
we get exactly the same average for either weight:

〈fw〉 = Σi vifi /Σi vi = 〈fv〉 (21)

As another example, consider the effective number of events:

Neff = (Σi wi)
2/Σi w2

i (22)

Notice that a common factor λ also cancels out in this expression.
One other comment about this formula: it warns you that a large dynamic

range of weights decreases your effective statistical power. If some weights
are much larger than others, only those events matter much in the sums; that
will show up as a small number of effective events, and as a large fractional
variance in the quantities you wish to calculate. However, we will see that we
have chosen this emphasis, as many bins contain events with large variance,
and they should indeed be given low weight: in the case of Φ, we are better
off with a smaller effective number of events.

4 Calculation of Variance

The variance of a weighted sum of independent variables X = Σi aixi can be
written as

〈V ar(X)〉 = Σi a2
i 〈V ar(xi)〉 (23)

For the simplest estimate of S = Σisi, the expected variance is V ar(S) =
Σi 〈bi〉 = B and the expected significance is ZS = 〈S〉/

√
B.

For the weighted sum (with E = 1), from (10) the expected value is
kΣvi〈si〉 and the expected variance is k2Σv2

i 〈bi〉, so the expected significance

is ZΦ = Σ vi〈si〉/
√

Σiv2
i 〈bi〉.

The individual bin significance 〈zi〉 = 〈si〉/
√
〈bi〉 is of course independent

of whether the bin is thought of as a member of a sum in an excess, or
weighted by 1/ei to form a φ estimate.
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5 Results for Crab Spectrum Data

I built a spreadsheet based on the formulas above to investigate the impli-
cations. I used Andy’s Crab “data”: real background estimates, and MC
signal estimates, to understand the expected behavior. This means I calcu-
lated expected performance, not actual performance with a specific data set.
I scaled the background estimate to match the MC signal until I got a rea-
sonable significance estimate: 3.00 for the last X2 bin alone, and 4.32 for the
whole sample (Andy’s bins 1-7). Applying Andy’s weights to the sample then
gives a Q factor of 1.49, or an expected significance for the whole sample of
6.43 sigmas when using the weighted flux estimate instead of just the excess
itself. This enhancement of significance is certainly worthwhile, whatever the
significance for the simple sum, because the fractional statistical error on the
flux is just σ(Φ̂)/Φ̂ = 1/Z where Z is the significance of the measurement.

With Andy’s data, the straight excess of the highest bins (hardest cuts)
was not actually strictly increasing in significance as the worse (lower X2)
bins were added: the best significance for the excess came from the top 3
bins, which gave Z = 4.47, a bit better than the Z = 4.32 from including
all bins (Q = 1.03, nothing to write home about). On the contrary, adding
each lower bin improved the significance with the weighting scheme, though
a rough estimate based on the Crab paper shows that adding the bin below
the first bin would be expected to have lowered the significance for the simple
excess and possibly the weighting scheme as well. To check the program, I
also put in λ = 2, just estimating the wrong flux with the correct spectrum.
As expected, the results were identical to the having the correct spectrum
and normalization, and in particular the flux is estimated correctly.

6 Results for Harder or Softer Spectra

I then investigated the effects of having mis-specified the spectrum while
choosing the weights. I defined lambda factors by hand to roughly simulate
having a spectrum power in error by ±.1,±.5 units, by imagining that the X2
bins were really energy bins between 1 and 25 TeV, so that λ (or 1/λ) ranged
from 1 to 5 for the ±.5 error, and 1 to 1.5 for the ±.1 error in spectral index.
Rather than doing an exact calculation (the bins aren’t really energy), I just
cooked up some plausibly spaced λ values in the range above. The results
are shown in Table 1.

In all cases but a spectrum much softer than assumed, the significance
for the weighted estimate is better than the significance for the un-weighted
summed excess. A real spectrum softer than the assumed spectrum is of
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δ(α) Q [S]/[Φ̂]
0 (nominal) 1.49 1.00

.1 softer 1.30 1.15
.1 harder 1.72 0.87
.5 softer .93 1.60
.5 harder 2.67 0.56

Table 1: Expected significance improvement and flux bias for spectra differ-
ent than that assumed when choosing weights.

course more difficult to detect with a bin variable correlated with energy;
further, the actual excess (flux) is larger than the excess estimated by the
weighted method for a soft spectrum, and the significance gain is less than
that available were weights to have been calculated with the soft spectrum. If
the real spectrum is harder than the spectrum used in the weight assignment,
the significance improvement is larger than would have been attained with
correct weights for the nominal spectrum, though somewhat less than the
Q = 2.99 if the correct harder spectrum had been used to calculate weights.
The hard spectrum is easier to detect, but results in an overestimate of
the excess (flux) when the weights come from a softer spectrum. The flux
systematic errors are about 15% for a spectral index off by .1, and around
50% for spectral index error of .5 units.

To summarize, the achievable Q factor (gain from emphasizing bins with
harder cuts) depends on the spectral index of the actual spectrum, and is
best when the correct spectrum is used for determining the weights. The
significance is usually better for a weighted estimate than for the simple
excess unless the true spectrum is much softer than that used in the weight
calculation.

To minimize the systematic dependence of the estimated flux on the as-
sumed spectrum, there seem to be two steps. The first is diagnosis, most
simply by comparing the computed excess with its weighted estimate and see-
ing whether they are statistically compatible; or more elaborately by fitting
the binned distribution of excesses to the predicted spectrum and checking
the chi-squared for their agreement. Second, if the agreement appears to be
unsatisfactory, a spectral determination should be pursued, either by adjust-
ing the assumed spectrum until better agreement is found, or by measuring
the spectrum by other means and using that as the input to the weighting
analysis.
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