
Controlling 
False Discovery Rate 

and 
Trials Factors in Searches

Jim Linnemann
MSU

Milagro meeting
University of  Maryland

March 28, 2003



Thanks to:

• Slides from web: 
– T. Nichol UMich; C. Genovese CMU
– Y. Benjamini Tel Aviv, S. Scheid, MPI

• Email advice and pointers to literature
– C. Miller CMU Astrophysics
– B. Efron Stanford, J. Rice Berkeley ,

Y. Benjamani Tel Aviv Statistics
– Google



Outline
• What is significant enough to report?

– Multiple Comparison Problem (trials)
• A Multiple Comparison Solution:

False Discovery Rate (FDR)   BH 1995
– Search for non-background events
– Need only the background probability distribution
– Control fraction of false positives reported

• Automatically select how hard to cut, based on that

• FDR Plausibility and Properties
• FDR Example
• References
• Probably no time for:

GRB comments
Extensions and details



Significance
• Define “wrong” as reporting false positive:

– Apparent signal caused by background

• Set α a level of potential wrongness
– 2 σ =.05 3 σ = .003 etc.

• Probability of going wrong on one test
• Or, error rate per test
• Statisticians say: “z value”  instead of   z σ’s



What if you do m tests?
• Search m places
• Must be able to define “interesting”

– e.g. “not background”
• Examples from HEP and Astrophysics

• Look at m histograms, or bins, for a bump
• Look for events in m decay channels
• Test standard model with m measurements (not just Rb or g-2)
• Look at m phase space regions for a Sleuth search (Knuteson)

• Fit data to m models: What’s a bad fit?
• Reject bad tracks from m candidates from a fitting routine
• Look for sources among m image pixels
• Look for “bursts” of signals during m time periods
• Which of m fit coefficients are nonzero?

– Which (variables, correlations) are worth including in the model?
– Which of m systematic effect tests are significant?

Rather than testing each independently



Must do something about m!
– m is “trials factor” only NE Jour Med demands!
– Don’t want to just report m times as many signals

• P(at least one wrong) = 1 – (1- α)m ~  mα

– Use α/m as significance test “Bonferroni correction”
• This is the main method of control

– Keeps to α the probability of reporting 1 or more 
wrong on whole ensemble of m tests

– Good: control publishing rubbish
– Bad: lower sensitivity (must have more obvious signal)

• For some purposes, have we given up too much?



Bonferroni Who?

• "Good Heavens! For more than forty years 
I have been speaking prose without 
knowing it."
-Monsieur Jourdan in 

"Le Bourgeoise Gentilhomme" by Moliere

I believe that translates to Jordan Goodman?



“Multiple Comparisons”
• Must Control False Positives

– How to measure multiple false positives?

• Chance of any false positives in whole set
• Jargon: Familywise Error Rate (FWER)

– Whole set of tests considered together
– Control by Bonferroni, Bonferroni-Holm, or Random Field Method

See backup slides for more

• False Discovery Rate (FDR)
– Fraction of errors in signal candidates 

• Proportion of false positives among rejected tests
• “False Discovery Fraction” might have been clearer?



mR reported signal

= S+B
rejections

m-R

m1S true positive

true detection
T  inefficiency

Type II Error  β = 1- εs

Alternative True   
signal

moV false positive
Type I Error  α = εb

B false discovery

UNull (Ho) True
background

TotalRejectReject Null ==
AcceptAccept Alternative

Null Retained
(can’t reject)

Decision, based on test statistic:

FDR =    V/R = B/(S+B)    if R > 0

0  if R=0



Goals of FDR
• Tighter than α (single-test)
• Looser than α/m (Bonferroni trials factor )
• Improve sensitivity (“power”; signal efficiency)
• Still control something useful: 

– fraction of false results that you report
b/(s+b) after your cut = 1 - purity

• rather than 1-α = rejection(b); or efficiency(s)
• for 1 cut, you only get to pick 1 variable, anyway 

• Last, but not least, a catchy TLA





Where did this come from?
Others who have lots of tests!

• Screening of chemicals, drugs
• Genetic mapping
• Functional MRI (voxels on during speech processing)
• Data mining (cookies by milk? direct mail)
• Radio telescope images (at last some astronomy!)

• Common factors:
– One false positive does not invalidate overall conclusion
– Usually expect some real effects
– Can follow up by other means 

• Trigger next phase with mostly real stuff





FDR in High Throughput 
Screening

An interpretation of FDR:

expense wasted chasing “red herrings” 

cost of all follow-up studiesExp( )≤q

GRB alerts from Milagro?



What is a p-value?
(Needed for what’s next)

Observed significance of a measurement
Familiar example: P( ≥ χ2 | ν)     (should be flat)

• Here, probability that event produced by 
background (“null hypothesis”)

• Measured in probability
• Same as “sigmas”—different units, that’s all



P value properties:
If all events are background

Distribution of p values = dn/dp should be flat
and have a linearly rising cumulative distribution

N(x) = ∫0
x dp (dn/dp) = x

N(p in [a, b]) = (b-a) 
So expect N(p ≤ p(r))/m = r/m  for r-smallest p-value    

Flat also means linear in log-log:  if y = ln p
ln[ dn/dy] vs. y is a straight line, with a predicted slope



From GRB 
paper, fig 1

Signal, 
statistics, or 
systematics?

“Best” of 9 plots

Note: A histogram is a binned sorting of the p-values



Benjamini & Hochberg

• Select desired limit q on Expectation(FDR)   
α is not specified: the method selects it

• Sort the p-values, p(1) ≤ p(2) ≤ ... ≤ p(m)
• Let r be largest i such that

For now, take c(m)=1

• Reject all null hypotheses 
corresponding to
p(1), ... , p(r).
– i.e. Accept as signalAccept as signal

• Proof this works is not obvious!

p(i)

i/m

q(i/m)/c(m)
p-

va
lu

e

0 1

0
1

q ~ .15

JRSS-B (1995) 57:289-300

p(i) ≤ q(i/m)/c(m)



Take all pi ≤ last one below



Plausibility argument
for easily separable signal of Miller et al.

• p(r) ≤ q r/m (definition of cutoff)
• < p(r) > = q <R>/m   ( <r> = <R>  : def of # rejects)    

• Now assume background uniform
– AND Say all signal p values << p(background) ≈ 0

• < p(r) > = <Rbackground>/m

• Solving,   q  =  <Rbackground> / <R>
Full proof makes no assumptions on signal

Other than it’s distinguishable (p’s nearer 0)



Benjamini & Hochberg:
Varying Signal Extent   (MC)

p = z =          (none pass)

Flat

Signal Intensity 3.0 Signal Extent 3.0 Noise Smoothness 3.0
3



Benjamini & Hochberg:
Varying Signal Extent

p = 0.000252 z = 3.48 (3.5 σ cut chosen by FDR)

Signal Intensity 3.0 Signal Extent 5.0 Noise Smoothness 3.0
4



Benjamini & Hochberg:
Varying Signal Extent

p = 0.007157 z = 2.45 (2.5 σ: stronger signal)

Signal Intensity 3.0 Signal Extent 16.5 Noise Smoothness 3.0
6



Benjamini & Hochberg: 
Properties

• Adaptive
– Larger the signal, the lower the threshold
– Larger the signal, the more false positives

• False positives constant as fraction of rejected tests
• Not a problem with imaging’s sparse signals

• Smoothness OK
– Smoothing introduces positive correlations
– Can still use c(m) = 1



Benjamini & Hochberg 
c(m) factor

• c(m) = 1
– Positive Regression Dependency on Subsets

• Technical condition, special cases include
– Independent data
– Multivariate Normal with all positive correlations

• Result by Benjamini & Yekutieli, Annals of Statistics, in press.

• c(m) = Σi=1,...m 1/i ≈ log(m)+0.5772
– Arbitrary covariance structure

• But this is more conservative—tighter cuts



FDR as Hypothesis Test
Quasi distribution-free

• Assumes specific null (flat p-values) 
in this, like most null hypothesis testing
but works for any specific null distribution, not just Gaussian; χ2

– distribution-free for alternative hypothesis
• Distribution-free estimate, control of s/b! A nice surprise

– Fundamentally Frequentist: 
• Goodness of Fit test to well-specified null hypothesis
• No crisp alternative to null needed: anti-Bayesian in feeling
Strength:  search for ill-specified “something new”

if different enough to give small p-values
• No one claims it’s optimal

– With a specific alternative, could do sharper test
• Better s/b for same α or vice versa



Comments on FDR
• To use method, you must not so new!

– know trials factor
– Be able to calculate small p values correctly
– Have p values of all m tests in hand (retrospective)

• Or, to use online, a good-enough sample of same mix of s+b

• Lowest p value p(1) always gets tested with q/m  (i=1)
• If no signal , q FDR → Bonferroni in α/m = q/m

– FWER =    q for FDR α for Bonferroni when no real signal

• Uses distribution of p’s
– Even if p(1) fails
– FDR sees other p(i) distorting the pure-null shape 
– FRD raises the threshold and accepts p(1) … p(r)



Minding your p’s and q’s
a Frequentist Method with Bayesian Flavor

• p = α = Prob(reject null | null is true)   per test; or all m
• q = Prob(null is true | reject null)

– Intuition: q is  “Bayesian posterior p-value”
• Calculable, given prior signal fraction, signal distribution

• Or: prob any wrong  vs.  fraction of list wrong

• For any multiple test, can quote both 
– q = <FDR> p = α which FDR selects
– Or pick α; run FDR backwards: find q giving that α
– Similar to quoting both efficiency and rejection



FDR: Conclusions
• False Discovery Rate: a new false positive metric

– Control fraction of false positives in multiple measurements
– Selects significance cut based on data

• Benjamini & Hochberg FDR Method
– Straightforward application to imaging, fMRI, gene searches

– Interesting technique searching for “new” signals
• Most natural when expect some signal
• But correct control of false positives even if no signal exists
• Can report FDR along with significance, no matter how cuts set

– <b> (significance) , and FDR estimate of <s/(s+b)> 

– Just one way of controlling FDR
• New methods under development e.g. C. Genovese or J. Storey



Further Developments

• The statistical literature is under active development:
– understand in terms of mixtures (signal + background) 

• and Bayesian models of these

– get better sensitivity by correction for mixture
• more important for larger signal strength fractions

– Can estimating FDR in an existing data set, 
• or FDR with given cuts

– calculate confidence bands on FDR



FDR Talks on Web
Users:
– T. Nichol U Mich www.sph.umich.edu/~nichols/FDR/ENAR2002.ppt

Emphasis on Benjamini’s viewpoint;  Functional MRI
– S. Scheid, MPI     http://cmb.molgen.mpg.de/compdiag/docs/storeypp4.pdf

Emphasis on Storey’s viewpoint

Statiticians:
– C. Genovese CMU
http://www.stat.ufl.edu/symposium/2002/icc/web_records/genovese_ufltalk.pdf
– Y. Benjamini Tel Aviv www.math.tau.ac.il/~ybenja/Temple.ppt

Random Field Theory (another approach to smoothed data)
– W. Penny, UCLondon,

http://www.fil.ion.ucl.ac.uk/~wpenny/talks/infer-japan.ppt
- Matthew Brett, Cambridge

http://www.mrc-cbu.cam.ac.uk/Imaging/randomfields.html

http://www.sph.umich.edu/~nichols/FDR/ENAR2002.ppt
http://www.sph.umich.edu/~nichols/FDR/ENAR2002.ppt
http://cmb.molgen.mpg.de/compdiag/docs/storeypp4.pdf
http://www.stat.ufl.edu/symposium/2002/icc/web_records/genovese_ufltalk.pdf
http://www.math.tau.ac.il/~ybenja/Temple.ppt
http://www.fil.ion.ucl.ac.uk/~wpenny/talks/infer-japan.ppt
http://www.mrc-cbu.cam.ac.uk/Imaging/randomfields.html


Some other web pages
• http://medir.ohsu.edu/~geneview/education/Multiple test corrections.pdf

Brief summary of the main methods

• www.unt.edu/benchmarks/archives/2002/april02/rss.htm
Gentle introduction to FDR

www.sph.umich.edu/~nichols/FDR/
FDR resources and references—imaging

http://www.math.tau.ac.il/~roee/index.htm
FDR resource page by discoverer 

http://medir.ohsu.edu/~geneview/education/Multiple test corrections.pdf
http://medir.ohsu.edu/~geneview/education/Multiple test corrections.pdf
http://www.unt.edu/benchmarks/archives/2002/april02/rss.htm
http://www.sph.umich.edu/~nichols/FDR/
http://www.math.tau.ac.il/~roee/index.htm


Some FDR Papers on Web
Astrophysics
arxiv.org/abs/astro-ph/0107034 Miller et. al. ApJ 122: 3492-3505 Dec 2001

FDR explained very clearly; heuristic proof for well-separated signal

arxiv.org/abs/astro-ph/0110570 Hopkins et. Al. ApJ 123: 1086-1094 Dec 2002
2d pixel images;  compare FDR to other methods

taos.asiaa.sinica.edu.tw/document/chyng_taos_paper.pdf FDR comet  search (by occultations)
will set tiny FDR limit 10-12 ~ 1/year

Statistics
http://www.math.tau.ac.il/~ybenja/depApr27.pdf Benjamini et al:  (invented FDR)

clarifies c(m) for different dependences of data
Benjamani, Hochberg:  JRoyalStatSoc-B (1995) 57:289-300  paper not on the web 

defined FDR, and Bonferroni-Holm procedure
http://www-stat.stanford.edu/~donoho/Reports/2000/AUSCFDR.pdf Benjamani et al

study small signal fraction (sparsity), relate to minimax loss
http://www.stat.cmu.edu/www/cmu-stats/tr/tr762/tr762.pdf Genovese, Wasserman  

conf limits for FDR; study for large m; another view of FDR as data-estimated method on mixtures
http://stat-www.berkeley.edu/~storey/ Storey   

view in terms of mixtures, Bayes; sharpen with data; some intuition for proof
http://www-stat.stanford.edu/~tibs/research.html Efron, Storey, Tibshirani    

show Empirical Bayes equivalent to BH FDR

http://www.math.tau.ac.il/~ybenja/depApr27.pdf
http://www-stat.stanford.edu/~donoho/Reports/2000/AUSCFDR.pdf
http://www.stat.cmu.edu/www/cmu-stats/tr/tr762/tr762.pdf
http://stat-www.berkeley.edu/~storey/
http://www-stat.stanford.edu/~tibs/research.html


Some details
• <FDR> = q mo/m (q × fraction of background)

– Not just q
• Subtlety in definitions:

Storey’s pFDR = P(Null true|reject null); FDR = pFDR × P(R > 0)

• More plausibility: can view BH differently: 
Use of departure of observed p’s from flat:
Implicitly estimates from data mo/m in a mixture of  b(=null) + s

• Improvements (especially for large signals):
– estimate mo more directly
– estimate other parameters of mixture
– optimum (min MSE) tuning parameters

• For estimating where to put cut



GRB Paper Comments

• It’s not 1012 trials:   instead chose α/m = 10-12

– Chosen by what criterion? “below ½ of data”
– What efficiency considerations included?
– maybe 109 with q=.001?

• Do we understand our p distribution?
– Should predict effect of loosening cuts!

• Looks like limits independent of data?



From GRB 
paper, fig 1

Signal, 
statistics, or 
systematics?

Note: A histogram is a binned sorting of the p-values



Extensions and Details

• FDR Variants 
• FDR and c(m): when is c(m)=1?
• Extensions to Bonferroni

– Bonferroni-Holm
– Random Field Theory 

• More FDR motivational examples
– And relation to testing theory



Genovese



FDR = B/(S+B)  after cuts
False discoveries 
(false positives)

inefficiency

Background =
null hypothesis

“can’t reject” null

b
signal

Reported signal 
candidates  
(rejected nulls)

Detected signals

(true positives)

Reject null = accept alternative





Bayes Oracle: what you could do if you knew

signal fraction and signal distribution 

I believe Frequentist would call this Neyman-Pearson test







Storey:

Benjamini (email) argues his definition more appropriate 
when it’s not clear there are any real discoveries to be made

V = N1|0





Yet more details
• FDR controlled at  q <mo/m>    
• more precisely, 

<(V/mo)/(R/m)>  ≤ q
• For continuous variables, you get =q
• For discrete statistics, only < q

• <p(i)> = i/(m+1)     (not i/m, the naïve value)

• Random remark   by Miller et. al.
– Posterior Bayes Intervals cover (Frequentist) to order 1/n
– But correspondence breaks down in Hypothesis Testing



Benjamini:

Genovese and Wasserman emphasize the 
sample quantity     V/R 

Storey emphasizes E(V/R | R>0) 

But both keep the term FDR for their versions



Benjamini & Hochberg 
c(m) factor

• c(m) = 1
– Positive Regression Dependency on Subsets

• Technical condition, special cases include
– Independent data
– Multivariate Normal with all positive correlations

• Result by Benjamini & Yekutieli, Annals of Statistics, in press.

• c(m) = Σi=1,...m 1/i ≈ log(m)+0.5772
– Arbitrary covariance structure

• But this is more conservative—tighter cuts



FDR Example:
Plot of FDR Inequality

p(i) ≤ q ( i/m)/c(m)



fMRI Multiple Comparisons 
Problem

• 4-Dimensional Data
– 1,000 multivariate observations,

each with 100,000 elements
– 100,000 time series, each 

with 1,000 observations
• Massively Univariate

Approach
– 100,000 hypothesis

tests per image
• Massive MCP!

1,000

1

2

3

.  .
  .



FDR: Example

FDR ≤ 0.05
Arbitrary Cov.

t0 = 5.0747

FWER ≤ 0.05
Bonferroni
t0 =  5.485

FDR ≤ 0.05
Indep/PRDS
t0 = 3.8119



Positive dependency
(conditions for c(m) = 1)

• Positive Regression Dependency on the Subset 
of true null hypotheses:

• If the test statistics are X=(X1,X2,…,Xm):
– For any increasing set D, and H0i true
– Prob( X in D | Xi=s ) is increasing in s

• Important Examples 

– Multivariate Normal with positive correlation

– Absolute Studentized independent normal

– (Studentized PRDS distribution, for q<.5) 



More about dependency
• If the test statistics are :

– All Pairwise Comparisons:  xi - xj i,j=1,2,…k
FDR ≤

m0

m
q

 even though correlations between pairs of comparisons 
 are both + and -

 Based on many simulation studies:
 Williams, Jones, & Tukey (‘94,’99);  YB, Hochberg, & Kling  (‘94+)
 Kesselman, Cribbie, &Holland (‘99).

 And limited theoretical evidence 
 Yekutieli (‘99+)

 so the theoretical problem is still open...



Bonferroni-Holm
Sequential Variant of Bonferroni

Small change if m is large
• Like Bonferroni, controls total error to α across all m tests

Threshold at α/(m+1-i) starting at p(1)
but stop at the first failure
loosens cut mildly as more pass

re-do Bonferroni, remove each rejected p:   m →m-1  
identical to α/m if none pass

α/(m+1-i) ≈ (α/m) {1+(i-1)/m}  <<    α(i/m) = FDR(α)

There are other variants: see for example

statwww.epfl.ch/davison/teaching/Microarrays/lec/week10.ppt

http://statwww.epfl.ch/davison/teaching/Microarrays/lec/week10.ppt


Random Field MethodW. Penny:

• For images with heavy correlation among pixels
– Sampled finer than resolution 

• FWHM > 3 x pixel size (if not, too conservative: could cut harder)
– Modeled as Gaussian correlation (random field)

• RFT is nearly same as Bonferroni 
with m = effective independent pixels (RESELs)

• RFT formula relates m, α, and u (threshold per pixel)
αα = m (4 = m (4 lnln 2) (22) (2ππ) ) --3/23/2 u exp (u exp (--uu22/2)   (2/2)   (2--d Gaussian)d Gaussian)

Example: α = .05;     300 x 300 image;   FWHM = 30

m = 300 x 300 / (30 x 30) = 100

Bonferroni gives u=3.3 RFT gives u = 3.8 (harder cut )

Friston et al. (1991) J. Cer. Bl Fl. M.



Correlated dataCorrelated data
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Multiple comparisons 
terminology

• Family of hypotheses
– Hk k ∈ Ω = {1,…,K}
– HΩ = H1 ∩ H2 … ∩ Hk ∩ HK

• Familywise Type I error
– weak control – omnibus test

• Pr(“reject” HΩ  HΩ) ≤ α
• “anything, anywhere” ?

– strong control – localising test
• Pr(“reject” HW  HW) ≤ α

∀ W: W ⊆ Ω & HW

• “anything, & where” ?

• Family of hypotheses
– Hk k ∈ Ω = {1,…,K}
– HΩ = H1 ∩ H2 … ∩ Hk ∩ HK

• Familywise Type I error
– weak control – omnibus test

• Pr(“reject” HΩ  HΩ) ≤ α
• “anything, anywhere” ?

– strong control – localising test
• Pr(“reject” HW  HW) ≤ α

∀ W: W ⊆ Ω & HW

• “anything, & where” ?

Null: Activation is zero everywhere

eg. Look at average activation over
volume 

eg. Look at maxima of statistical
field for specific activation sites



Unified Theory: RFT
• General form for expected Euler characteristic

• χ2, F, & t fields • restricted search regions

α = Σ Rd (Ω) ρd (u)

Rd (Ω): RESEL count

R0(Ω) = χ(Ω) Euler characteristic of Ω
R1(Ω) = resel diameter
R2(Ω) = resel surface area
R3(Ω) = resel volume

ρd (u): d-dimensional EC density –
E.g. Gaussian RF:

ρ0(u) = 1- Φ(u)

ρ1(u) = (4 ln2)1/2 exp(-u2/2) / (2π)

ρ2(u) = (4 ln2)    exp(-u2/2) / (2π)3/2

ρ3(u) = (4 ln2)3/2 (u2 -1)   exp(-u2/2) / (2π)2

ρ4(u) = (4 ln2)2    (u3 -3u) exp(-u2/2) / (2π)5/2

Au

Ω

Worsley et al. (1996), HBM



Benjamini:

Motivating Examples

• High throughput screening 
– Of Chemical compounds
– Of gene expression

• Data Mining
– Mining of Association Rules
– Model Selection



High throughput screening 
of Chemical Compounds

• Purpose: at early stages of drug development, 
screen a large number of potential chemical 
compounds, in order to find any interaction with a 
given class of compounds (a "hit" )

• The classes may be substructures of libraries of 
compounds involving up to 105 members. 

• Each potential compound interaction with class 
member is tested once and only once



Microarrays and Multiplicity
Table 1:  First 12 Largest T-Statistics 1,2 

 

T-Statistic P-Value  

(df=14) 
-20.6 7.0*10-12 

-12.5 5.6*10-9 

-11.9 1.1*10-8 

-11.7 1.3*10-8 

-11.4 1.8*10-8 

-11.3 1.9*10-8 

-7.8 1.8*10-6 

-7.4 3.6*10-6 

 5.0 1.8*10-4 

-4.5 4.6*10-4 

-4.5 4.9*10-4 

-4.4 6.5*10-4   

1. The t-statistics were ranked according to their absolute values.

2. Bonferroni adjusted p-value is 1.6*10-4. 

• Neglecting multiplicity issues, 
i.e. working at the individual 
0.05 level, would identify, on 
the average, 6359*0.05=318 
differentially expressed genes, 
even if really no such gene 
exists.

• Addressing multiplicity with 
Bonferroni at 0.05 identifies 8 

 



Mining of association rules in 
Basket Analysis

• A basket bought at the food store consists of:
(Apples, Bread,Coke,Milk,Tissues)

Data on all baskets is available (through cash 
registers)

The goal: Discover association rules of the form
Bread&Milk => Coke&Tissue

Also called linkage analysis or item analysis



Model Selection 

Paralyzed veterans of America
Mailing list of 3.5 M potential donors
200K made their last donation 1-2 years ago
Is there something better than mailing all 200K?

– If all mailed, net donation is $10,500
– FDR-like modeling raised to $14,700



What’s in common?

• Size of the problem: large to huge
(m small n large ;m=n large; m large n small)
• Question 1: Is there a real effect at a specific 

gene/site/location/association rule?
• Question 2: If there is an effect, of what size?
• Discoveries are further studied; negative results 

are usually ignored 
• Results should be communicated compactly to a 

wide audience
• A threshold is being used for question 1.



Model Selection 
in large problems

• known approaches to model selection
– Penalize error rate for using k parameters
– AIC and Cp 

– .05 in testing “forward selection” or “backward 
elimination

– The Universal Threshold of Donoho and Johnstone

SSR (k ) + σ 2k ⋅2

SSR (k ) + σ 2k ⋅ 2

z .05

2

SSR (k ) + σ 2k ⋅2 log m



Model Selection and FDR - Practical Theory

The theory is being developed for the 
minimizer of the following penalized Sum 
of Squared Residuals:
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The Linear StepThe Linear Step--Up is Essentially “backwards Up is Essentially “backwards 
elimination” (and close to “forward selection”) with the elimination” (and close to “forward selection”) with the 
above penalty function :

2log(m)

above penalty function :



1. Linear StepUp Procedure
• If the test statistics are :

– Independent                               YB&Yekutieli (‘01)

– independent and continuous      YB&Hochberg (‘95)

– Positive dependent YB&Yekutieli (‘01)

– General YB&Yekutieli (‘01)

FDR ≤
m0

m
q

FDR =
m0

m
q

FDR ≤
m0

m
q

 

FDR ≤
m0

m
q (1 +1/ 2 +1/ 3+K+1/ m)

≈
m0

m
q log(m)



Adaptive procedures that 
control FDR

• Recall the m0/m factor of conservativeness
• Hence: if m0 is known using linear step-up 

procedure with qi/ m(m/m0) = qi/ m0 controls the 
FDR at level q exactly.

• The adaptive procedure BY & Hochberg (‘00): 
– Estimate m0 from the uniform q-q plot of the p-values

• This is FDR controlling under independence (via 
simulations)



Testimation  - some theory
• In the independent problem
• Consider #( parameters) -> infinity

– If prop( non-zero coefficients) -> 0, 
– Or If size of sorted coefficients decays fast, 

(while the others need not be exactly 0). 
– THEN thresholding by FDR testing of the 

coefficients is adaptively minimax over 
bodies of sparse signals 

– Where performance measured by any loss         
0 < p ≤ 2 : #(errors), sum|error|, sum(error)2, 
relative to best “oracle” performance.

Abramovich, YB, Donoho, & Johnstone (‘00+)
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