Controlling **False Discovery Rate** and **Trials Factors in Searches** Jim Linnemann **MSU** Milagro meeting University of Maryland March 28, 2003

Thanks to:

- Slides from web:
 - T. Nichol UMich; C. Genovese CMU
 - Y. Benjamini Tel Aviv, S. Scheid, MPI
- Email advice and pointers to literature
 - C. Miller CMU

Astrophysics

Statistics

- B. Efron Stanford, J. Rice Berkeley,
 - Y. Benjamani Tel Aviv
- Google

Outline

- What is significant enough to report?
 Multiple Comparison Problem (trials)
- A Multiple Comparison Solution: False Discovery Rate (FDR)

BH 1995

- Search for non-background events
- Need only the background probability distribution
- Control fraction of false positives reported
 - Automatically select how hard to cut, based on that
- FDR Plausibility and Properties
- FDR Example
- References
- Probably no time for: GRB comments Extensions and details

Significance

Define "wrong" as reporting false positive:
Apparent signal caused by background

- Set α a level of potential wrongness
 - $-2 \sigma = .05$ $3 \sigma = .003$ etc.
 - Probability of going wrong on one test
 - Or, error rate per test
 - Statisticians say: "z value" instead of $z \sigma$'s

What if you do <u>m tests</u>?

- Search m places
- Must be able to define "interesting" – e.g. "not background"
- Examples from HEP and Astrophysics
 - Look at m histograms, or bins, for a bump
 - Look for events in m decay channels
 - Test standard model with m measurements (not just R_b or g-2)
 - Look at m phase space regions for a Sleuth search (Knuteson)
 - Fit data to m models: What's a bad fit?
 - Reject bad tracks from m candidates from a fitting routine
 - Look for sources among m image pixels
 - Look for "bursts" of signals during m time periods
 - Which of m fit coefficients are nonzero?
 - Which (variables, correlations) are worth including in the model?
 - Which of m systematic effect tests are significant?
 Rather than testing each independently

Must do something about m!

- <u>m is "trials factor"</u> only NE Jour Med demands!
- Don't want to just report m times as many signals
 - P(at least one wrong) = $1 (1 \alpha)^{m} \sim m\alpha$
- Use α/m as significance test "Bonferroni correction"
 - This is the main method of control
- Keeps to α the probability of reporting 1 or more wrong on whole ensemble of m tests
- Good: control publishing rubbish
- Bad: lower sensitivity (must have more obvious signal)
 - For some purposes, have we given up too much?

Bonferroni Who?

- "Good Heavens! For more than forty years I have been speaking prose without knowing it."
 Monsiour Jourdon in
 - -Monsieur Jourdan in
 - "Le Bourgeoise Gentilhomme" by Moliere

I believe that translates to Jordan Goodman?

"Multiple Comparisons"

- Must Control False Positives

 How to measure multiple false positives?
- Chance of *any* false positives in whole set
 - Jargon: Familywise Error Rate (FWER)
 - Whole set of tests considered together
 - Control by Bonferroni, Bonferroni-Holm, or Random Field Method

See backup slides for more

- False Discovery Rate (FDR)
 - Fraction of errors in signal candidates
 - Proportion of false positives *among* rejected tests
 - "False Discovery Fraction" might have been clearer?

		Decision, based on test statistic:			
	Null Retained]	<u>Reject Null =</u>	Total
	((can't reject)	A	ccept Alternative	
Null (H _o) True	U		V	false positive	m _o
background			Type I Error $\alpha = \varepsilon_b$		
			B	false discovery	
Alternative True	T ii	nefficiency	S	true positive	m ₁
signal	Туре	E II Error $\beta = 1 - \varepsilon_{\rm S}$		true detection	
	m-I	R	R	reported signal	m
				=S+B	
				rejections	

FDR = V/R = B/(S+B) if R > 0 θ if R=0

Goals of FDR

- Tighter than α (single-test)
- Looser than α/m (Bonferroni trials factor)
- Improve sensitivity ("power"; signal efficiency)
- Still control something useful:
 - fraction of false results that you report

b/(s+b) after your cut = 1 - purity

- rather than $1-\alpha = rejection(b)$; or efficiency(s)
- for 1 cut, you only get to pick 1 variable, anyway
- Last, but not least, a catchy TLA

Smithsonian

THE FOR MEMORIAL Like many revered monuments, it's heat to endure a hazing (p. 96)

Where did this come from? Others who have lots of tests!

- Screening of chemicals, drugs
- Genetic mapping
- Functional MRI (voxels on during speech processing)
- Data mining (cookies by milk? direct mail)
- Radio telescope images (at last some astronomy!)
- Common factors:
 - One false positive does not invalidate overall conclusion
 - Usually expect some real effects
 - Can follow up by other means
 - Trigger next phase with mostly real stuff

Motivating Example #2: Source Detection

- Interferometric radio telescope observations processed into digital image of the sky in radio frequencies.
- Signal at each pixel is a mixture of source and background signals.

FDR in High Throughput Screening

An interpretation of FDR:

GRB alerts from Milagro?

What is a p-value? (*Needed for what's next*)

Observed significance of a measurement Familiar example: $P(\ge \chi^2 | v)$ (should be flat)

- Here, probability that event produced by background ("null hypothesis")
 - Measured in probability
 - Same as "sigmas"—different units, that's all

P value properties: If all events are background

Distribution of p values = dn/dp should be flat and have a linearly rising cumulative distribution

 $N(x) = \int_0^x dp (dn/dp) = x$ N(p in [a, b]) = (b-a) So expect N(p \le p_{(r)})/m = r/m for r-smallest p-value

Flat also means linear in log-log: if y = *ln* p *ln*[dn/dy] vs. y is a straight line, with a predicted slope

Note: A histogram is a binned sorting of the p-values

Benjamini & Hochberg JRSS-B (1995) 57:289-300

- Select desired limit *q* on Expectation(FDR)
 α is not specified: the method selects it
- Sort the p-values, $p_{(1)} \le p_{(2)} \le \dots \le p_{(m)}$
- Let *r* be largest *i* such that

$p_{(i)} \leq q(i/m)/c(m)$

For now, take c(m)=1

- Reject all null hypotheses corresponding to
 p₍₁₎, ..., p_(r).
 i.e. <u>Accept as signal</u>
- *Proof this works is not obvious!*

Plausibility argument

for easily separable signal of Miller et al.

- $p_{(r)} \le q r/m$ (definition of cutoff)
- $< p_{(r)} > = q < R > /m$

(definition of cutoff)
(<r> = <R> : def of # rejects)

- Now assume background uniform

 AND Say all signal p values << p(background) ≈ 0
- $< p_{(r)} > = < R_{background} > /m$
- Solving, q = <Rbackground>/<R> *Full proof makes no assumptions on signal Other than it's distinguishable (p's nearer 0)*

Benjamini & Hochberg: Varying Signal Extent (MC) p = z = (none pass)

Signal Intensity 3.0 Signal Extent 3.0 Noise Smoothness 3.0

Benjamini & Hochberg: Varying Signal Extent p = 0.000252 z = 3.48 (3.5 σ cut chosen by FDR)

Signal Intensity 3.0 Signal Extent 5.0 Noise Smoothness 3.0

Benjamini & Hochberg: Varying Signal Extent p = 0.007157 z = 2.45 (2.5 σ : stronger signal)

Signal Intensity 3.0 Signal Extent 16.5 Noise Smoothness 3.0

Benjamini & Hochberg: Properties

- Adaptive
 - Larger the signal, the lower the threshold
 - Larger the signal, the more false positives
 - False positives constant as fraction of rejected tests
 - Not a problem with imaging's sparse signals
- Smoothness OK
 - Smoothing introduces positive correlations
 - Can still use c(m) = 1

Benjamini & Hochberg c(m) factor

- c(m) = 1
 - Positive Regression Dependency on Subsets
 - Technical condition, special cases include
 - Independent data
 - Multivariate Normal with all positive correlations
 - Result by Benjamini & Yekutieli, Annals of Statistics, in press.
- $c(m) = \sum_{i=1,...m} 1/i \approx \log(m) + 0.5772$
 - Arbitrary covariance structure
 - But this is more conservative—tighter cuts

FDR as Hypothesis Test Quasi distribution-free

- Assumes specific null (flat p-values)
 - in this, like most null hypothesis testing
 - but works for any specific null distribution, not just Gaussian; χ^2
 - distribution-free for alternative hypothesis
 - Distribution-free estimate, control of s/b! A nice surprise
 - Fundamentally Frequentist:
 - Goodness of Fit test to well-specified null hypothesis
 - No crisp alternative to null needed: anti-Bayesian in feeling
 Strength: search for ill-specified "something new" if different enough to give small p-values
- No one claims it's optimal
 - With a specific alternative, could do sharper test
 - Better s/b for same α or vice versa

Comments on FDR

- To use method, you must *not so new!*
 - know trials factor
 - Be able to calculate small p values correctly
 - Have p values of all m tests in hand (retrospective)
 - Or, to use online, a good-enough sample of same mix of s+b
- Lowest p value $p_{(1)}$ always gets tested with q/m (i=1)
 - If no signal, q FDR \rightarrow Bonferroni in $\alpha/m = q/m$ - FWER = q for FDR α for Bonferroni when no real signal
- Uses distribution of p's
 - Even if $p_{(1)}$ fails
 - FDR sees other $p_{(i)}$ distorting the pure-null shape
 - FRD raises the threshold and accepts $p_{(1)} \dots p_{(r)}$

Minding your p's and q's a Frequentist Method with Bayesian Flavor

- $p = \alpha = Prob(reject null | null is true)$ per test; or all m
- q = Prob(null is true | reject null)
 - Intuition: q is "Bayesian posterior p-value"
 - Calculable, given prior signal fraction, signal distribution
- Or: prob any wrong vs. fraction of list wrong
- For any multiple test, can quote both $-q = \langle FDR \rangle$ $p = \alpha$ which FDR selects
 - Or pick α ; run FDR backwards: find q giving that α
 - Similar to quoting both efficiency and rejection

FDR: Conclusions

- False Discovery Rate: a new false positive metric
 Control fraction of false positives in multiple measurements
 - Selects significance cut based on data
- Benjamini & Hochberg FDR Method
 - Straightforward application to imaging, fMRI, gene searches
 - Interesting technique searching for "new" signals
 - Most natural when expect some signal
 - But correct control of false positives even if no signal exists
 - Can report FDR along with significance, no matter how cuts set
 (significance), and FDR estimate of <s/(s+b)>
 - Just one way of controlling FDR
 - New methods under development e.g. C. Genovese or J. Storey

Further Developments

- The statistical literature is under active development:
 - understand in terms of mixtures (signal + background)
 - and Bayesian models of these
 - get better sensitivity by correction for mixture
 - more important for larger signal strength fractions
 - Can estimating FDR in an existing data set,
 - or FDR with given cuts
 - calculate confidence bands on FDR

FDR Talks on Web

Users:

- T. Nichol U Mich <u>www.sph.umich.edu/~nichols/FDR/ENAR2002.ppt</u> Emphasis on Benjamini's viewpoint; Functional MRI
- S. Scheid, MPI <u>http://cmb.molgen.mpg.de/compdiag/docs/storeypp4.pdf</u> Emphasis on Storey's viewpoint

Statiticians:

- C. Genovese CMU

http://www.stat.ufl.edu/symposium/2002/icc/web_records/genovese_ufltalk.pdf

- Y. Benjamini Tel Aviv www.math.tau.ac.il/~ybenja/Temple.ppt

Random Field Theory (another approach to smoothed data)

- W. Penny, UCLondon,

http://www.fil.ion.ucl.ac.uk/~wpenny/talks/infer-japan.ppt

- Matthew Brett, Cambridge

http://www.mrc-cbu.cam.ac.uk/Imaging/randomfields.html

Some other web pages

- http://medir.ohsu.edu/~geneview/education/Multiple test corrections.pdf Brief summary of the main methods
- www.unt.edu/benchmarks/archives/2002/april02/rss.htm Gentle introduction to FDR

<u>www.sph.umich.edu/~nichols/FDR/</u> FDR resources and references—imaging

http://www.math.tau.ac.il/~roee/index.htm FDR resource page by discoverer

Some FDR Papers on Web

Astrophysics

Miller et. al. ApJ 122: 3492-3505 Dec 2001 arxiv.org/abs/astro-ph/0107034 FDR explained very clearly; heuristic proof for well-separated signal Hopkins et. Al. ApJ 123: 1086-1094 Dec 2002 arxiv.org/abs/astro-ph/0110570 2d pixel images; compare FDR to other methods taos.asiaa.sinica.edu.tw/document/chyng taos paper.pdf FDR comet search (by occultations) will set tiny FDR limit $10^{-12} \sim 1/year$ **Statistics** Benjamini et al: http://www.math.tau.ac.il/~ybenja/depApr27.pdf (invented FDR) clarifies c(m) for different dependences of data Benjamani, Hochberg: *JRovalStatSoc-B* (1995) 57:289-300 paper not on the web defined FDR, and Bonferroni-Holm procedure http://www-stat.stanford.edu/~donoho/Reports/2000/AUSCFDR.pdf Benjamani et al study small signal fraction (sparsity), relate to minimax loss http://www.stat.cmu.edu/www/cmu-stats/tr/tr762/tr762.pdf Genovese, Wasserman conf limits for FDR; study for large m; another view of FDR as data-estimated method on mixtures http://stat-www.berkeley.edu/~storey/ Storey view in terms of mixtures, Bayes; sharpen with data; some intuition for proof http://www-stat.stanford.edu/~tibs/research.html Efron, Storey, Tibshirani show Empirical Bayes equivalent to BH FDR

Some details

- <FDR> = q m₀/m (q × fraction of background)
 Not just q
- Subtlety in definitions:

Storey's pFDR = P(Null true reject null); $FDR = pFDR \times P(R > 0)$

- More plausibility: can view BH differently: Use of departure of observed p's from flat: Implicitly estimates from data mo/m in a mixture of b(=null) + s
- Improvements (especially for large signals):
 - estimate mo more directly
 - estimate other parameters of mixture
 - optimum (min MSE) tuning parameters
 - For estimating where to put cut

GRB Paper Comments

- It's not 10¹² trials: instead chose $\alpha/m = 10^{-12}$
 - Chosen by what criterion? "below $\frac{1}{2}$ of data"
 - What efficiency considerations included?
 maybe 10⁹ with q=.001?
- Do we understand our p distribution?
 Should predict effect of loosening cuts!
- Looks like limits independent of data?

Note: A histogram is a binned sorting of the p-values

Extensions and Details

- FDR Variants
- FDR and c(m): when is c(m)=1?
- Extensions to Bonferroni
 - Bonferroni-Holm
 - Random Field Theory
- More FDR motivational examples
 And relation to testing theory

Genovese

Recurring Notation

- $m, M_0, N_{1|0}$ a $H^m = (H_1, \ldots, H_m)$ $P^m = (P_1, \ldots, P_m)$ $P_{()}^{m} = (P_{(1)}, \ldots, P_{(m)})$ IIF, fG = (1-a)U + aF \widehat{G}
- # of tests, true nulls, false discoveries Mixture weight on alternative Unobserved true classifications Observed p-values Sorted p-values (define $P_{(0)} \equiv 0$) CDF of Uniform(0, 1) Alternative CDF and density Marginal CDF of P_i (mixture model) Estimate of G (e.g., empirical CDF of P^m)

Exact Confidence Thresholds (cont'd)

 \mathcal{U} yields a confidence envelope for FDR(t) sample paths.

Multiple Testing Procedures

- A multiple testing procedure T is a map [0,1]^m → [0,1], where the null hypotheses are rejected in all those tests for which P_i ≤ T(P^m). Often call T a threshold.
- Examples:

 $\begin{array}{lll} \mbox{Uncorrected testing} & T_{\rm U}(P^m) = \alpha \\ \mbox{Bonferroni} & T_{\rm B}(P^m) = \alpha/m \\ \mbox{Fixed threshold at } t & T_t(P^m) = t \\ \mbox{First } r & T_{(r)}(P^m) = P_{(r)} \\ \mbox{Benjamini-Hochberg} & T_{\rm BH}(P^m) = P_{(R_{\rm BH})} \mbox{ or } \sup\{t:\widehat{G}(t) = t/\alpha\} \\ \mbox{Oracle} & T_{\rm O}(P^m) = \sup\{t:G(t) = (1-a)t/\alpha\} \\ \mbox{Plug In} & T_{\rm PI}(P^m) = \sup\{t:\widehat{G}(t) = (1-\widehat{a})t/\alpha\} \\ \mbox{Regression Classifier} & T_{\rm Reg}(P^m) = \sup\{t:\widehat{\mathsf{P}}\{H_1=1|P_1=t\}>1/2\} \end{array}$

Bayes Oracle: what you could do if you <u>knew</u> signal fraction and signal distribution

I believe Frequentist would call this Neyman-Pearson test

BH as a Plug-in Procedure

• Let \widehat{G} be the empirical cdf of P^m under the mixture model. Ignoring ties, $\widehat{G}(P_{(i)}) = i/m$, so BH equivalent to $T_{i}(D^m) = cremer \left\{t; \ \widehat{G}(t) = \frac{t}{2}\right\}$

$$T_{\rm BH}(P^m) = \arg\max\left\{t: \ \widehat{G}(t) = \frac{\iota}{\alpha}\right\}.$$

We can think of this as a plug-in procedure for estimating

$$u^*(a, F) = \arg \max \left\{ t: \ G(t) = \frac{t}{\alpha} \right\}$$
$$= \arg \max \left\{ t: \ F(t) = \beta t \right\},$$

where $\beta = (1 - \alpha + \alpha a)/\alpha a$.

FDR and the BH Procedure

• Define the *realized* False Discovery Rate (FDR) by

$$\mathsf{FDR} = \begin{cases} \frac{N_{1|0}}{R} & \text{if } R > 0, \\ 0, & \text{if } R = 0. \end{cases}$$

 Benjamini & Hochberg (1995) define a sequential p-value procedure that controls *expected* FDR.

Specifically, the BH procedure guarantees

$$\mathsf{E}(\mathsf{FDR}) \le \frac{M_0}{m} \alpha \le \alpha$$

for a pre-specified $0 < \alpha < 1$.

(The first inequality is an equality in the continuous case.)

Storey:

• Benjamini and Hochberg:
$$FDR = \mathsf{E} \left| \frac{V}{R} | R > 0 \right| \cdot \mathsf{Prob}(R > 0)$$

"the rate that false discoveries occur"

• Storey:
$$pFDR = \mathsf{E}\left[\frac{V}{R} | R > 0\right]$$

"the rate that discoveries are false"

Benjamini (email) argues his definition more appropriate when it's not clear there are any real discoveries to be made

$$\mathbf{V} = N_{I|0}$$

Articles

Storey, J.D. (2001a): The positive False Discovery Rate: A Bayesian Interpretation and the q-value, submitted

Storey, J.D. (2001b): A Direct Approach to False Discovery Rates, submitted

Storey, J.D., Tibshirani, R. (2001): Estimating False Discovery Rates Under Dependence, with Applications to DNA Microarrays, submitted

http://www-stat.stanford.edu/~jstorey/

Yet more details

- FDR controlled at q <mo/m>
- more precisely,
 - $<(V/m_0)/(R/m)> \le q$
 - For continuous variables, you get =q
 - For discrete statistics, only < q
- $\langle p(i) \rangle = i/(m+1)$ (not i/m, the naïve value)
- Random remark by Miller et. al.
 - Posterior Bayes Intervals cover (Frequentist) to order 1/n
 - But correspondence breaks down in Hypothesis Testing

Benjamini:

Genovese and Wasserman emphasize the sample quantity V/RStorey emphasizes $E(V/R \mid R > 0)$

But both keep the term FDR for their versions

Benjamini & Hochberg c(m) factor

- c(m) = 1
 - Positive Regression Dependency on Subsets
 - Technical condition, special cases include
 - Independent data
 - Multivariate Normal with all positive correlations
 - Result by Benjamini & Yekutieli, Annals of Statistics, in press.
- $c(m) = \sum_{i=1,...m} 1/i \approx \log(m) + 0.5772$
 - Arbitrary covariance structure
 - But this is more conservative—tighter cuts

FDR Example: Plot of FDR Inequality $p_{(i)} \le q (i/m)/c(m)$

fMRI Multiple Comparisons Problem

- 4-Dimensional Data
 - 1,000 multivariate observations, each with 100,000 elements
 - 100,000 time series, each with 1,000 observations
- Massively Univariate Approach
 - 100,000 hypothesis tests per image
- Massive MCP!

FDR: Example

		-		ð.,	
	/				
	1000	-		\sim	
/ -	- 12/15	-		No. of Lot of Lo	Υ.
				8.0	1
	No. of	10		(Seators)	1
	肥子	Sec. 1			
1.5		315			
		14			
1.0				-	
		all.		-	1
		No. I	jan -		1
	61	S.L.	10		
	10	. "那	S.		
	1000			1	
			-		
		and the second			

 $FDR \le 0.05$ Indep/PRDS $t_0 = 3.8119$ FDR ≤ 0.05 Arbitrary Cov. $t_0 = 5.0747$

 $FWER \le 0.05$ Bonferroni $t_0 = 5.485$

Positive dependency (conditions for c(m) = 1)

- Positive Regression Dependency on the Subset of true null hypotheses:
- If the test statistics are $X = (X_1, X_2, ..., X_m)$:
 - For any increasing set D, and H_{0i} true
 - Prob(X in D | X_i =s) is increasing in s
- Important Examples
 - Multivariate Normal with positive correlation
 - Absolute Studentized independent normal
 - (Studentized PRDS distribution, for q<.5)

More about dependency

• If the test statistics are :

- All Pairwise Comparisons: $x_i - x_j$ *i*,*j*=1,2,...*k*

$$FDR \le \frac{m_0}{m} q$$

even though correlations between pairs of comparisons are both + and -

Based on many simulation studies:
Williams, Jones, & Tukey ('94,'99); YB, Hochberg, & Kling ('94+) Kesselman, Cribbie, &Holland ('99).
And limited theoretical evidence Yekutieli ('99+)
so the theoretical problem is still open...

Bonferroni-Holm Sequential Variant of Bonferroni Small change if m is large Like Bonferroni, controls total error to α across all m tests ٠ Threshold at $\alpha/(m+1-i)$ starting at $p_{(1)}$ but stop at the first failure loosens cut mildly as more pass re-do Bonferroni, remove each rejected p: $m \rightarrow m-1$ identical to α/m if none pass $\alpha/(m+1-i) \approx (\alpha/m) \{1+(i-1)/m\} \ll \alpha(i/m) = FDR(\alpha)$

There are other variants: see for example

statwww.epfl.ch/davison/teaching/Microarrays/lec/week10.ppt

Random Field Method

- For images with heavy correlation among pixels
 - Sampled finer than resolution

W. Penny:

- FWHM > 3 x pixel size (if not, too conservative: could cut harder)
- Modeled as Gaussian correlation (random field)
- **RFT is nearly same as Bonferroni** with m = effective independent pixels (RESELS)
- RFT formula relates m, α , and u (threshold per pixel) $\alpha = m (4 \ln 2) (2\pi)^{-3/2} u \exp(-u^2/2)$ (2-d Gaussian) Example: $\alpha = .05$; 300 x 300 image; FWHM = 30 $m = 300 \times 300 / (30 \times 30) = 100$ Bonferroni gives u=3.3 RFT gives u = 3.8 (harder cut)

Friston et al. (1991) J. Cer. Bl Fl. M.

Correlated data

Independent Voxels

Spatially Correlated Voxels

Multiple comparisons terminology

- Family of hypotheses
 - $H^k \ k \in \Omega = \{1, \dots, K\}$
 - $\overline{H^{\Omega} = H^1 \cap H^2 \dots \cap H^k \cap H^K}$
- Familywise Type I error
 - weak control omnibus test
 - $Pr("reject" H^{\Omega} | H^{\Omega}) \leq \alpha$
 - "anything, anywhere" ?
 - strong control localising test
 - Pr("reject" $H^W \mid H^W$) $\leq \alpha$ $\forall W: W \subseteq \Omega \& H^W$
 - "anything, & where" ?

Null: Activation is zero everywhere

eg. Look at average activation over volume

eg. Look at maxima of statistical field for specific activation sites

Unified Theory: RFT

General form for expected Euler characteristic

• χ^2 , *F*, & *t* fields • restricted search regions

$$\alpha = \sum \mathbf{R}_d(\mathbf{\Omega}) \, \rho_d(\mathbf{u})$$

 R_d (Ω): RESEL count

R $_0($ **Ω** $) = \chi($ **Ω**) Euler characteristic of **Ω**

 $\mathbf{R}_{1}(\mathbf{\Omega}) = \mathbf{resel\ diameter}$

 $\mathbf{R}_2(\mathbf{\Omega}) = \mathbf{resel} \ \mathbf{surface} \ \mathbf{area}$

 $\mathbf{R}_3(\mathbf{\Omega}) = \text{resel volume}$

Worsley et al. (1996), HBM

 $\rho_{d}(\mathbf{u}): d\text{-dimensional EC density} -$ E.g. Gaussian RF: $\rho_{0}(u) = 1 - \Phi(u)$ $\rho_{1}(u) = (4 \ln 2)^{1/2} \exp(-u^{2}/2) / (2\pi)$ $\rho_{2}(u) = (4 \ln 2) \exp(-u^{2}/2) / (2\pi)^{3/2}$ $\rho_{3}(u) = (4 \ln 2)^{3/2} (u^{2} - 1) \exp(-u^{2}/2) / (2\pi)^{2}$ $\rho_{4}(u) = (4 \ln 2)^{2} (u^{3} - 3u) \exp(-u^{2}/2) / (2\pi)^{5/2}$ Benjamini:

Motivating Examples

- High throughput screening

 Of Chemical compounds
 Of gene expression
- Data Mining
 - Mining of Association Rules
 - Model Selection

High throughput screening of Chemical Compounds

- Purpose: at early stages of drug development, screen a large number of potential chemical compounds, in order to find any interaction with a given class of compounds (a "hit")
- The classes may be substructures of libraries of compounds involving up to 10⁵ members.
- Each potential compound interaction with class member is tested once and only once

Microarrays and Multiplicity

- Table 1: First 12 Largest T-Statistics ^{1,2}
- Neglecting multiplicity issues, i.e. working at the individual 0.05 level, would identify, on the average, 6359*0.05=318 differentially expressed genes, even if really no such gene exists.
- Addressing multiplicity with Bonferroni at 0.05 identifies 8

T-Statistic	P-Value
	(df=14)
-20.6	7.0*10 ⁻¹²
-12.5	5.6*10 ⁻⁹
-11.9	1.1*10 ⁸
-11.7	1.3*10 ⁸
-11.4	1.8*10 ⁸
-11.3	1.9*10 ⁸
-7.8	1.8*10 ⁶
-7.4	3.6*10 ⁶
5.0	1.8*10 ⁴
-4.5	4.6*10 ⁴
-4.5	4.9*10 ⁴
-4.4	6.5*10 ⁴

. The t-statistics were ranked according to their absolute values.

2. Bonferroni adjusted p-value is $1.6*10^4$.

Mining of association rules in Basket Analysis

 A basket bought at the food store consists of: (Apples, Bread,Coke,Milk,Tissues)
 Data on all baskets is available (through cash registers)
 The goal: Discover association rules of the form Bread&Milk => Coke&Tissue

Also called linkage analysis or item analysis

Model Selection

Paralyzed veterans of America Mailing list of 3.5 M potential donors 200K made their last donation 1-2 years ago Is there something better than mailing all 200K? – If all mailed, net donation is \$10,500 – FDR-like modeling raised to \$14,700

What's in common?

- Size of the problem: large to huge (m small n large ;m=n large; m large n small)
- Question 1: Is there a real effect at a specific gene/site/location/association rule?
- Question 2: If there is an effect, of what size?
- Discoveries are further studied; negative results are usually ignored
- Results should be communicated compactly to a wide audience
- A threshold is being used for question 1.

Model Selection in large problems

- known approaches to model selection
 - Penalize error rate for using k parameters
 - AIC and Cp

$$SSR(k) + \sigma^2 k \cdot 2$$

- .05 in testing "forward selection" or "backward elimination $SSR(k) + \sigma^2 k \cdot \chi^2_{0.05}$

$$SSR(k) + \sigma^2 k \cdot 2 \log m$$

Model Selection and FDR - Practical Theory

The theory is being developed for the minimizer of the following penalized Sum of Squared Residuals:

$$SSR(k) + \sigma^{2} \sum_{i=1}^{k} Z^{2} \frac{iq}{m}$$

$$\approx SSR(k) + \sigma^{2} k \cdot Z^{2} \frac{kq}{m} \approx SSR(k) + \sigma^{2} k \cdot 2\log(m2/kq)$$

 $2\log(m)$

The Linear Step-Up is Essentially "backwards elimination" (and close to "forward selection") with the above penalty function :

1. Linear StepUp Procedure

- If the test statistics are :
 - Independent

$$FDR \le \frac{m_0}{m} q$$

1/1

- independent and continuous YB&Hochberg ('95)

$$FDR = \frac{m_0}{m}q$$

Positive dependent

$$FDR \le \frac{m_0}{m} q$$

– General

YB&Yekutieli ('01)

YB&Yekutieli ('01)

$$FDR \leq \frac{m_0}{m} q (1 + 1/2 + 1/3 + \dots + 1/m)$$
$$\approx \frac{m_0}{m} q \log(m)$$

Adaptive procedures that control FDR

- Recall the m_0/m factor of conservativeness
- Hence: if m_0 is known using linear step-up procedure with $qi/m(m/m_0) = qi/m_0$ controls the FDR at level q exactly.
- The adaptive procedure BY & Hochberg ('00):
 Estimate m₀ from the uniform q-q plot of the p-values
- This is FDR controlling under independence (via simulations)

Testimation - some theory

- In the independent problem
- Consider #(parameters) -> infinity
 - If prop(non-zero coefficients) -> 0,
 - Or If size of sorted coefficients decays fast, (while the others need not be exactly 0).
 - THEN thresholding by FDR testing of the coefficients is adaptively minimax over bodies of sparse signals
 - Where performance measured by any loss 0 : #(errors), sum|error|, sum(error)²,relative to best "oracle" performance.

Abramovich, YB, Donoho, & Johnstone ('00+)