

Goal

What Can HEP and Astrophysics Practice Teach Each Other
Astrophysics:
aims at simple formulae (very fast)
calculates Sigmas directly
hope it's a good formula
HEP:
calculates probabilities by MC (general; slow) translates into Sigmas for communication loses track of analytic structure

Report at PHYSTAT2003 (Sept)

Executive (Jordanian) Summary

- For high and moderate Non, Noff, Li Ma Eq 17 fine
- Anything works for Crab, but not for short GRB's
- Li Ma Eq 9 not too bad
- Bad formula typically overestimates significance
- Probably should use Binomial Test for small N
- Optimal Frequentist, and Plausible Bayesian, Technique
- want some MC confirmation
- numerically, more work than Li Ma Eq 9
- Interesting relations exist among methods
- Bayes with Gamma (not Gaussian) = Binomial
- And same as Alexandreas et. al. (possibly within a constant factor)...
- Li MaEq 9 = Binomial for large N
- Fraser-Reid Approximation Promising but not done

Significance

- Z value: ~ $\operatorname{Normal}(0,1)$
(Milagro; Li Ma)
- The art is to pick a good variable for this

More Generally:

- P(more extreme "signal" | background)
- Assume Null Hypothesis: background only
- Translate probability p into Z value by

$$
Z=\Phi^{-1}(p) ; \quad \Phi=\int_{-\infty}^{Z} e^{-t^{2} / 2} d t
$$

$$
Z \approx \sqrt{u-\operatorname{Ln} u} \approx \sqrt{-\operatorname{Ln} p}, \quad u=-2 \operatorname{Ln}(p \sqrt{2 \pi})
$$

Prospective vs. Observed Significance

- This discussion: Observed Significance
- Post-hoc: (after data)
- Prospective Observability (before data) involves more :
- definition of Z, as for post-hoc; but also:
- Choice of Zmin $\quad=\max \mathrm{P}$ (observed|background)
- Very Similar to post-hoc: Zmin to make observation claim
- Consideration of probability of meeting criterion
- Simplest calculation:
- Non $=\mu_{\text {on }}+\alpha \mu_{\text {off }} ; \operatorname{Noff}=\mu_{\text {off }} \quad$ (ignores fluctuations)
- Significance for Expected Conditions
- Optimistic: crudely, $1 / 2$ time less signal; or $1 / 2$ time more background!
- Better: Source Strength for 50% probability of observation? 90% ?
- More related to Lazar's "upper bound" criterion
- Similar discussions in HEP literature

Backgrounds in Astro and HEP

- Astrophysics: on-source vs. off-source
- side observation with $\alpha=$ Ton/Toff (sensitivity ratio)
$-\mathrm{b}=\alpha$ Noff; $\mathrm{db}=\alpha \sqrt{ }$ Noff
$-\alpha=(\mathrm{db})^{2} / \mathrm{b} \quad$ (deduced from above)
- HEP: estimate background in defined signal region
- Sometimes a sideband measurement, like Astrophysics
- Often a MC estimate; rescaled to signal sensitivity
- More often a sum of terms of both types
$-\mathrm{b} \pm \mathrm{db} \quad \mathrm{db}$: uncertainties in quadrature
$-\boldsymbol{\alpha}=(\mathbf{d b})^{\mathbf{2}} / \mathbf{b} \quad$ I'll use as a definition of effective α Can apply astrophysics formulae

Li and Ma Equations
 $$
\mathrm{Z}=\mathrm{S} / \sigma(\mathrm{S})
$$
 $$
\mathrm{S}=\text { Non }-\mathrm{b} \quad \mathrm{~b}=\alpha \text { Noff }
$$

N is observation; $\quad \mathrm{b}$ is background estimate
Eq 5: $\operatorname{Var}(S)=\operatorname{Var}(\operatorname{Non})+\operatorname{Var}(\mathrm{b})=\operatorname{Non}+\alpha^{2}$ Noff
Ignores key null hyp constraint: $\mu_{\text {on }}=\alpha \mu_{\text {off }}$ (anti-signal bias!)
Eq 9: $\operatorname{Var}(S)=\alpha($ Non + Noff $)$
Obeys constraint; uses Non and Noff to estimate $\mu_{\text {off }}$
Eq 17: Log Likelihood Ratio (Wilks’ Theorem)

$$
\begin{gathered}
Z=\sqrt{2} \sqrt{x \bullet \operatorname{Ln}\left[\left(\frac{1+\alpha}{\alpha}\right)\left(\frac{x}{x+y}\right)\right]+y \bullet \operatorname{Ln}\left[(1+\alpha)\left(\frac{y}{x+y}\right)\right]} \\
\mathrm{x}=\text { Noff; } \mathrm{y}=\operatorname{Noff}
\end{gathered}
$$

Li and Ma Variant

- Apply null by using only Noff to estimate $\operatorname{Var}(\mathrm{Non})$ and $\operatorname{Var}(\mathrm{b})$
- Obviously, bad if $\alpha>1$
- Eq 5c: $\operatorname{Var}(S)=\alpha(1+\alpha)$ Noff
- Get Eq 9 if use both (Max Likelihood)

Other Frequentist Methods

Ignoring uncertainty in b:

- $\mathrm{S} / \sqrt{ } \mathrm{b}$ Li Ma 10a
- Poisson(\geq Non $\mid b)$
- Feldman \& Cousins?
(often much better) confidence limits!
- For significance, just Poisson $(\geq k \mid b)$, I believe

Using Uncertainty in b :

- $b+d b$ instead of b in above (I've seen it!)
- Near-Constant Variance (Zhang and Ramsden)

$$
Z_{V S}=\frac{2}{\sqrt{1+\alpha}}\left(\sqrt{x+\frac{3}{8}}-\sqrt{y+\frac{3}{8}}\right)
$$

- Fraser Reid
- Binomial Test

Fraser and Reid

- Interesting approximate method (last 15 yr)
- Significance from likelihood curve
- Combine Z(Likelihood Ratio), Z(t/б)
- correct each other to $\mathrm{O}\left(\mathrm{n}^{-1.5}\right)$
- One version: improved Z value
- Redo algebra for each new kind of problem
- I'm still working to apply it to Non, Noff fully
- Fast \& simple numerically to apply formula

Binomial Test

For Ratio of Poisson Means (Compare means for on, off measurements)

- UMPU (Uniformly Most Powerful Unbiased)
- If best test, probably it's using the best variable
- Holds $\mathrm{k}=$ Non+Noff fixed (nuisance parameter)
- Test is $\operatorname{PrBinomial}(\geq \mathrm{Non} \mid \mathrm{p}, \mathrm{k}), \mathrm{p}=\alpha /(1+\alpha)$
- Not in common use; probably should be Known in HEP and Astrophysics: not as optimal, nor standard procedure
- Zhang and Ramsden claim too conservative for Z small? Even if true, we want $Z>4$

Experimental Astronomy 1 (1990) 145-163; I have pdf

- Closed form in term of special functions, or sums
- Applying for large N requires some delicacy; slower than Eq 17!
- Gaussian Limit of Binomial Test is Li Ma Eq 9!

Bayesian Methods

- Allow for correlations among background contributions (MC integration)
- Extension to efficiency, upper limits natural
- In common use in HEP
- Cousins \& Highland "smeared likelihood" efficiency
- Predictive Posterior (after background measurement)
- Natural avenue for connection with p-values

But: typical Bayes analysis isn't significance, but odds ratio

- Truncated Gaussian often used to represent db
- A flat prior for background, gives gamma for db
- P value calc using gamma: (same(?) as Alexandreas)
- same as Frequentist Binomial Test

Comparing the Methods

- Some test cases from literature
- Range of Non, Noff values
- Different α values
- Color Code Accuracy
- Assume Frequentist Binomial as Gold Standard
- May change after I've run Monte Carlo

	Top 11	Top 2	Top 3	Crab $12>2.5$	Crab 3 5	Whipple	Hegria	Alexandr	Fake	Zhang 1	Zhang2
Non	9	17	6	2,119,449	167,599	498,426	523	4	200	67	50
Noff	17.83	40.11	1878	23,671,193	1,604,910	493,434	2327	5	10	15	55
alpha	02132	0.0947	00692	0.0091	0.0991	1.000	0.167	0.2	10.0	2.0	0.5
Nb	38	3.6	1.3	2,109,732	166,213	493,434	308.6	1.0	100.0	30.0	27.5
Ne - Non = Nb	52	13.2	4.7	9717	1376	4992	134.4	3.0	100	37	22.5
SigmatiNb)	09	0.6	0.3	433.6	121.7	702.4	6.1	0.45	31.6	7.75	371
Sigmant	0237	0.158	0.231	0.000206	0.000732	0.00142	000207	0.447	0.316	0.258	0.136
Reported a	2700.02	2.00E-06	300E-03								
Reported S	1.9	4.6	2.7	6.4	32	50	5.9			3	3
Li Ma:											
Eq5	1.68	3.17	1.90	6.397	3.22	5.01	5.54	1.46	289	328	282
Eq9	2.17	567	3.59	6.409	3.23	5.01	616	224	218	289	311
Eq 17	1.99	4.57	2.81	6.405	3.23	5.01	593	1.95	236	304	302
Eq 50	2.42	6.47	399	6.410	3.23	5.03	631	274	302	390	350
E4 10a - SGqu日	2.67	6.77	4.12	6.69	3.38	7.11	682	3.00	10.00	6.76	4.29
$\mathrm{E}_{4} 10 \mathrm{Ve}+1 \mathrm{sgma}$	2.40	629	372	669	3.37	7.10	675	2.49	872	6.02	4.09
Poisson	2.14	487	2.34	6.69	3.37	7.09	6.44	206	7.72	5.76	3.80
Puisent 4 Isigma	1.64	4.47	2.46	6.336	3.07	6.09	601	1.56	551	4.24	304
Binomial, Bayes prex	1.82	4.46	2.63	6.4048	3.23	5.01	593	1.66	220	2.89	2.98
Bayes Flat											
Buyes Poiseon num	1.82	4.46						1.66	220		
Buyes Gause num	1.94	455	271	6.4044	3.23	5.02	593	1.88	290	3.44	308
Square Root 3/8	1.98	422	2.66	6.4032	3.23	5.01	536	1.93	239	3.07	300
Fraser-Feid 1	2.14	487	2.84				6.44	207	895	5.76	310
Fraser-Feid 2	1.11	196	1.05		0.98	5.02	2.511	120			
Fraser-Feid 3	2.34	5.02	310				6.48	236			
Fraser-Feid 4											
Monte Carlo											
3 - 4 sigma high	torrect										
5.4 sigma low	nearty corr										
conrect approximation											
poor approximation											
input walue											

What is a Good (Z) Variable?

Standard Method of MC Testing a Variable:

- "self-test": compare Z with distribution of statistic for MC assuming background only
- i.e. convert back from Z to probability
- Good if $\operatorname{PrMC}(\mathbf{Z}>\mathbf{Z o})=\operatorname{PrGauss}(\mathbf{Z}>\mathbf{Z o})$
- Intuition: want fast convergence to Gaussian

Why not just compare with "right answer"?

- Variables all supposed to give same Z, right?

But it's not really well-defined!

What is a Bigger Deviation? Part of Significance Definition!

- Measure Non, Noff = (x,y)
- Which values are worse?
- Farther from line $x=\alpha y$?
- Angle? Perpendicular?
- Larger $\mathrm{s}=\mathrm{x}-\alpha \mathrm{y}$?
- Trying to order 2-dim ∞ set!
- Points on (x,y) plane
- Nuisance parameter bites again
- Statistics give different metrics
contours of equal deviation
- Convergence (to Gaussian)?

Which contour?

- Perhaps for large N?
- Enough peaking so overlapping regions dominate integrals?

Thank you Milagro! Especially Gus and Jordan for making it possible

- I've Learned a Lot (Thanks for explaining!)
- Stimulating Company
- Excellent Surroundings
- Chance to work on some long-deferred things
- Interesting Experiment
- Hope I've contributed something usefull.
- I also hope to find a way to continue...

$$
\begin{gathered}
\text { A Prickly Problem } \\
\text { not to everyone's taste... }
\end{gathered}
$$

- What is Significance?
- Li and Ma Equations
- Frequentist Methods
- Bayesian Methods
- What is Significance, Really?
- To Do

Conclusions

- Bad formula typically overestimates significance
- For the Crab, any formula will do
- Not true for GRB's with smaller Non, Noff
- LR quite good, though maybe Binomial better
- Several interesting relationships among methods
- Fraser Reid remarkably good for $\mathrm{P}(\mathrm{n} \mid \mathrm{b})$
- Haven't deciphered for interesting case (Non,Noff)
- Binomial Test should be used more

To Do

- Finish algebra for comparison of Bayes Gamma and Frequentist Binomial
- Monte Carlo Tests
- Fraser Reid Approximation to full problem
- Simpler numerics, if it works!

