Galactic Plane Analysis

- Update of exclusion method
- Update of cuts used in making maps
- Results from JD 1745-2775 (Same as P.N.)
- Next things.

Exclusion of ROI in direct integration

- With some suggestions from Gus, I've made some extensions to direct integration to exclude a ROI from the background calculation
- How it works:
 - Define a ROI.
 - Label the 0.1 x 0.1 degree bins that are in the ROI, here I'm using +/- 5 degrees in galactic lattitude, all longitude.
 - Fill 8 hour maps
 - All events passing cuts go into signal map, and nSider rate array, but only events outside ROI are put in bkg eff map.
 - At end of integration time, normalize map
 - Map is normalized by number of entries in signal map.

Method, cont...

- Correct the background efficiency map (ha,dec)
 - For each ha,dec location, consider all sidereal time, RA combinations that give that ha value (ir=is-ih) and count the total number entries that contribute to your background (g_all[ih][id]) and the number that would have come from the ROI g_onsrc[ih][id]
 - Each of these "contributions" is weighted by number of events in that sidereal time bin (nSider[is]).
 - Correction factor to eff map:
 - cor_fact = g_all[ih][id]/(g_all[ih][id]=g_onsrc[ih][id])
- Calculate the bkg, for all ih, is combinations:
 - bkg[ir][id] += nSider[is]*eff[ih][id]*cor_fact[ih][id]
 - Discovered is, ih, id loop ordering important!

Data set, cuts and corrections used.

- Used REC data from the same time period as Peter is using. JD: 1745-2775
- Cuts and corrections applied:
 - Flag bad maps are removed
 - When background exclusion fails, flag map
 - Use Andy's rescale of calibrations for 2002
 - More uniform rate of events passing X2 cut
 - Trigger bit cut.
 - Use only Trigger 1 and 2 events, more uniform trigger setting throughout data set.
 - REC data reader fixes included.
 - Require 6 hours integration on each map.

Tabulation of results IG +/- 5 deg

	No Exclusion	With Old Excl	Corrected Exclusion
14 month, NYU sample			
On	112534035	108172561	99337287
Off	112514125.6	108152705.6	99320435
Excess	19909.4	19855.4	16851.6
Frac Ex	1.77E-004	1.84E-004	1.69E-004
Sigma	1.87	1.91	1.7
Exposure time	385.0 days	363.5 days	332.2 days
JD 1745-2775 Sample (of Peter		
On			260501696
Off			260457014
Excess			44681.5
Frac Ex			1.72E-004
Sigma			2.77
Exposure time			755.6 days
			OG +/- 5 degrees
On			279911468
Off			279977139
Excess			-65671.7
Frac Ex			-2.35E-004
Sigma			-3.92
Exposure time			755.6 days

IG Lattitude profile

2003/11/17 12.23

IG Floor?

2003/11/17 12.18

New method shows a "floor shift", just like Peter's, but unlike my previous results.

OG

2003/11/17 12.33

Remarks

- At this point, I have not been as careful as Peter in selecting bad runs, carefully checking for bad data.
 - I've been working on a "bad run" utility taking data from run summaries, databases, people's bad run lists
 - Will make available to "Miranda".
- For such a small signal, this can be a large effect
 - Peter will talk more about this.

Next things

- Finish bad run selection, re-run on data
 - Including most recent data.
- A better method for taking into account anisotropy of background needed.
- How does these compare to Peter's results?
 - Exact comparisons are tougher, but overall agreement would be good.