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1 Introduction

In our daily search paper we calculate 90% CL upper limits to the flux from
a given source. We adopt the so called ‘Bayesian’ approach, as discussed in
Helene 1983, Kraft 1991, and Protheroe 1984. While Helene and Protheroe
discuss the case when the backgound is not known with absolute certainty,
in neither paper is the solution given explicitly.

In the case of an uncertain background there is a double integral to
be solved, one over all source hypotheses and the second over all possible
background scenarios. This integral can be solved exactly, resulling in a
double sum over the number of observed events.

I begin with a short aside on the supposed difference hetween the clas-
sical and Bayesian approaches. In fact if one begins with the same as-
sumptions, one arrives at the same answer, so there is no ambiguity in the
calculation of an upper limit. I then give the correct equation for calcu-
lating an upper limit (restricting ourselves to the ‘physical’ region) in the
presence of an uncertain background. And end with a proposal lor what
should be included in the daily paper.

2 Classical vs. Bayesian

There has been much arguement over whether one should use the so called
‘classical’ or ‘Bayesian’ approach when calculating an upper limit. In the



Bayesian approach one uses Bayes theorem to convert a conditional proba-
bility of a given source model being true dependent upon a given observa-
tion, to a conditional probability of a given observation dependent upon a
source model. One can parameterize the possible source models by a func-
tion g(s,B). For a given source strength s and background B, g is taken
to be a Poisson distribution. However s is a random variable and one must
choose a distribution for s. It is at this point that the classicists part from
the Bayesians. The classical claim is that since one knows nothing about
the source, one can not input a distribution for s. However, one can insert
a distribution that corresponds to total ignorance, namely P(s) = N, a (lat
distribution. The distribution chosen for s is commonly referred to as a
prior function.

To restrict s to the physical region, one merely chooses P(s) = 0 if
s < 0, equivalent to the statement that there are only sources of cosmic
rays, no sinks. Zech 1989 shows that under this choice of prior the Bayesian
and classical approaches yield the same answer. In fact this is just what
Bayes theorem tells us. The confusion arises because when one naively
generalizes the ‘classical’ definition of an upper limit to the case of non-
zero background, one makes use of a totally unbiased prior: P(s) = N for
all s, even s < 0.

With this choice, S is now unrestricted, if on a given observation Nops <
B, no problem - just take § negative. But then S + B can also be negaltive,
and the Poisson probability formula must be modified for negative values
of y1. This modification is never performed by the classicists. So they have
implicitly restricted themselves to the physical region (chosen a prior) and
not properly normalized the probabilities over the allowed range. The often
seen classical formula for upper linits is wrong.

Both formalisms begin with:
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With no a priori restrictions on B or S. If one restricts S > 0, then B
must uecessarily be restricted to B < Noys,. But equation 1 is not normal-
ized within this restricted range of backgrounds. The correct normalization
is just:
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The Bayesian’s integrate over source models § , while the classicists sum
over observations. Zech shows that the two are mathematically identical,
when one properly normalizes equation 1 as shown above. As Steve says,
”If you ask the same question you get the same answer”, ”But only if you
do the calculation correctly”, Gus.

While the a priori choice of a prior which is zero for negative values of
the flux seems like a ‘safe’ assumption, James 1991, argues that to combine
different experiments in an unbiased manner one should report upper limits
without excluding the ‘unphysical’ region, i.e. even report ncgative flux
limits. Given our obscrvations, 1 possible source and 2 definite sinks,
perhaps we should not take our choice of prior lightly (it’s a joke!).

3 Calculating an Upper Limit

We assume that the source flux is greater than or equal to zero, and that
all such values are equally probable. Then the source probability density
function g(s, B) is given by:
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Where B, is our estimate of the true background, B is the true back-
ground, and a is the number of bins used to estimate the background (one
over the normal Ti Ma n). P(B, R.) is just the Poisson probability of ob-
taining a background estimate of By given that the true background is B.
In the case of a perfectly determined background P(B, By) = §( B — By).

Then our CL upper limit on the flux (one-sided) is given by the value
of Sy,n which satisfies the following equation:
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We are finding the value of source flux S such that a fraction (1.-CL)
of the source probability density function lies above S , conditioned upon
the number of events we observed, and the expected background (and our
uncertainty in its determination). This is our CL upper limit on the source
flux.

By a suitable change of variables and repeated use of the following
integral (obtained by repeated integration by parts):
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One obtains:
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Using an efficient root finding algorithm from Numerical Recipes (ZBRENT)
I solve for S. The computation time needed goes like N2, (because of
the double sum over Nou,). To obtain an accuracy of .01% in the confi-
dence level requires roughly seven evaluations of the above equation. For
Nob, = 10 the routine takes about 1 CPU second, for Nyp, = 100 about 30
CPU seconds.

In Figure 1 T show how a flux limit ehanges with decreasing hackgronnd
uncertainty. For 24 difterent values of Nobs (7-30), I take the case of Nops =
By and plot the fractional limit versus a. One can see that while there is a
significant change from @ =1to a = 10, there is little change beyond that.
In the current daily analysis we have a = 10.



4 The Daily Paper

There is still the question of what we wish to report in the paper. One
possibility is give the results for a ‘typical’ day. T interpret this to mean that
we find two days, one from each running period, with complete coverage (no
down time except for run changes) and give the upper limits as calculated
from the number of observed events and the number of expected background
events. The other approach is to give ‘typical’ flux limits. Where a typical
flux limit would be calculated using Nop, = By, i.e. no excess. While the
former was the original suggestion, the latter better represents our average
limits. T would like to suggest that we report both numbers.

1 The number of observed events Nog,.
2 The number of expected events B,.

3 The 90% CL upper limit to the fraction of cosmic rays FOR THIS
DAY.

4 The 90% CL upper limit if there had been NO excess.

5 The absolute flux limit (7""em~2sec™!) from 3 or 4 above.

On the following pages are four tables (two for each day) of the results
for two days, Febuary 1 1989 and April 1 1992. Since 1 will be leaving the
country for three weeks any comments about the calculation of our upper
limits, or what information should be included in the tables should be sent
to Cy.
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Table 1: 90% confidence level upper limits on the fractional excess in a 2.0°
bin for Febuary 1 1989

| Source | N Observed (_N. Lxpected { Llﬂ'r ([ LI \pu |I 90% CL ,

Cyg X-3 | 28 | 248 | 0.500 0374
Her X-1 | 31 21.3 0.861 0.423
Crab 2 20.4 0.505 0.430
2CG095-+ 04 17 19.6 0.366 0.432
Geminga 17 16.4 0.532 0.486
| 2CGOT78- ; 01 || 10 951 0.183 0.391
20G0Th400 | o3 230 0.415 0.415
2(‘( Oh 5400 |23 | 246 0.354 0.382
zcclmm T R TN 0.464 0.564
[ 2CG120404 | 8 | o7 0.563 0.634
PSR1953+20 | 19 23.5 0.292 0.394
| PSR1937-+21 16 20.4 0.311 0.430
| PSR1920+10 | 10 11.5 0.528 0.589
PSR0950108 | 4 | los 0.319 0.621
PSRO0355 54 15 22.3 0.242 0.412
| PSRI19: ,1_1;?_“ 24| 25.9 0.338 0.363
| PSR1957 + 20 19 '19.8 0.423 0.123
4U01] 5+ ﬁ -y 124 0.416 0.570
401907109 | 8 | 84 0.715 0.715
46(71:4?4 32 | 24 18.4 0.741 0.456
| 4U0316+41 19 18.8 0.473 0435
| 400352430 | 25 23.7 0.449 0.386
| 400614409 A 10.3 0.364 0.642
| 4U1837+04 | & 8.1 0.760 0.760
| 4U1001+4 03 6 6.5 0.822 0.822
wmm 15 | 10 13.2 0.414 0.561
401054 +31 18 25.2 0.235 0.388
TAUTO564 35 | 27 24.6 0.475 0.382




Table 2: 90% confidence level upper limits on the fractional excess in a 2.0°

bin for Febuary 1 1989

L Source ” N Observed , N ,.[")xpocted ] 90% CL , Typical .(_)()%_(T'E—l

4U2142 138 18 23.3 0.276 0.402
4U2321+58 | 18 12.2 1.04 0.588
4U12574+28 | 24 25.3 0.357 0.384
4U16514+39 | 26 24.0 0.469 0.405
[ 4U1957 440 | 33 24.9 0.688 0.371
[ 4U2358121 | 17 12.8 0.877 0.537
| GK Per | 26 21.1 0.634 0.432
UGem | 20 19.9 0.454 0.418

- AM Here | 99 23.9 0.352 0.379
| SS Cygni 23 25.2 0.335 0.38%
THZ 43 | 22 25.7 0.298 0.370
DQ Herc 23 24.1 0.372 0.401
(1E2250058 | 292 13.6 1.16 0.530
| SSazz i 6.0 L77 0.929
V404 Cygui 28 24.6 0.510 0.382
Virgo A 7 13.1 0.313 0.569
Andromeda 20 20.4 0.430 0.430
3C279 1 2.0 0.990 23
K1 19 19.1 0.457 0.457

K3 24 26.0 0.335 0.387

K4 11 12.7 0.491 0.545

K5 4 7.4 0.512 0.771

NG 2 6.8 0.772 0462

-7



Table 3: 90% confidence level upper limits on the fractional excess in a 2.0°

bin for April 1 1992

[ Source

” N Observed , N Expected TQO% (Il_rly I’“'li‘f'—_{ij

Cyg X-3 58 68.1 0.1473 02261 |

Her X-1 71 71.8 02133 |  0.2133 |
“Crab 50 53.1 0.2228 0.2588
2CG095+04 54 52.0 0.2909 0.2630
Geminga 38 41.5 0.2444 0.2896
2CG078+01 66 66.6 0.2238 0.2238
- 2CG075+00 80 68.9 0.3594 0.2170
2CG065+00 71 66.3 0.2837 0.2274
2CG135+01 31 33.9 0.2779 0.3150
2CG121+04 22 25.4 0.3064 0.3809
PSR1953+29 67 68.2 0.2153 0.2249
PSR1937+21 42 47.8 0.2036 0.2641
PSR1929+10 23 27.7 0.2698 0.3555
PSR0950+08 17 22.3 0.2811 0.4126
' PSR0355154 41 50.1 0.1701 0.2671
PSR1951+32 70 66.3 T 0.2715 0.2274
PSR1957+20 45 16.6 0.2565 0.2706
4U0115+63 32 3.4 0.3618 0.3389
4U1907+09 26 26.9 0.3562 0.3562

400042432 51 65.5 01251 | 0.2268 j
4U0316+41 70 65.6 0.2819 0.2256
| 400352+ 30 a6 61.8 0.2902 n.2307
[ 4U0614+09 | 24 24.9 0.3711 0.3711
4U1837+04 | 10 17.9 0.5271 0.4433
A001402 || 17 11.9 0.6492 0.1%06
CAULOIS+15 | T 330 0508 0.3320
4U1954+31 | 74 63.8 0.3675 0.2269
| 4U1956435 || 83 687 0.4059 0.2192




Table 4: 90% confidence level upper limits on the fractional excess in a 2.0°
bin for April 1 1992

DH ource N UINHPTN L‘(])P(ted l 90% CL l Typical 0% C ﬂ

[ 4U2142+4 ’\ 6 60.7 0.4651 0.2340
[4U2321458 | 44 43.9 0.2903 0.2748
| 4U1257+28 50 60.1 0.1533 0.2419
| 4U1651439 T 72.2 0.2090 0.2181
[ 4U1957+40 66 69.5 0.1929 0.2198

'aum 58421 44 a5.7 0.2577 0.2719

"GK Per 68 59.4 0.3624 0. Eiiuo

| UdGem || 66 52.6 0.4%63 0.2

\\1 Herc' 58 65.2 0.1689 0. ‘)'mf
[ SS Cygni 74 75.3 0.2037 0.2124
HZ 43 44 59.1 0.1252 0.2441

[ DQ Here || 74 65.1 0.3433 0.2317

1E2259 455 54 16.7 0.4069 0.2688
SS 433 ET) 17.7 1.0463 0.4539

| Va1 C 'ygni 73 65.8 0.3174 0.2232
| Vigo A | 35 32.8 0.3902 0.3226

[ Andromeda | 60 65.5 0.1816 0.2268
30279 4 3.1 1.7138 1.405
[ K1 56 64.8 0.1659 0.2269
K3 7 67.8 0.3374 0.2198

K4 30 33.6 0.2671 0.3225

K5 33 27.2 0.5576 0.3719
K6 || 53 2.0 0.2619" 0.2491




Flux Limits Vs. Number of Bkgd Bins
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