Dive Training for Supervisors

Intended Audience:

Supervisors of Milagro Dive Operations

Gus Sinnis

P-23 / LANL

Course Outline

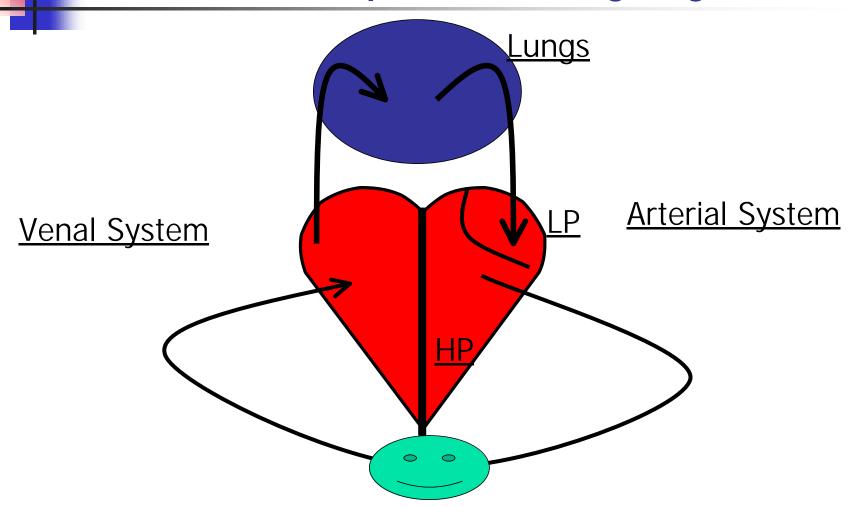
- Diving Physics
 - Pressure, Diffusion
- Diving Physiology
 - Cardiopulmonary System
 - The Ear
- Diving Injuries
 - The Bends
 - AGE: Arterial Gas Embolism
- Understanding Dive Tables
 - Repetitive Dives
 - Diving at Altitude

Diving Physics

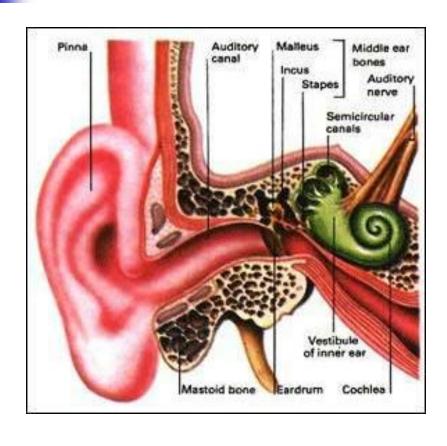
- \blacksquare PV = nRT
 - 10 m of $H_2O \sim 1$ atm
- Air = 20.8 % O_2 + 79 % N_2 + Contaminants
 - pp $O_2 = 0.2 \times 14.7 \sim 3 \text{ psi } O_2$
 - pp $N_2 = 0.8 \times 14.7 \sim 12 \text{ psi } N_2$
- Absorption rate is proportional to difference in partial pressure (tissue:ambient)
- Specific heat of $H_2O = 25 \times C_{air}$
 - Body loses heat 25 times faster in water

Breathing at Depth

- Equilibration
 - internal pressure = external pressure
- At 10m depth
 - pp $O_2 = 6$ psi
 - pp $N_2 = 24$ psi
- Breathe at depth hold breath rise to surface - air expands! Do Not Do!



Diving Physiology (Basics)


- 14 pints of blood in body
- Heart pumps blood to organs
- Blood transfers O₂ to organs
 - Perfusion: distribution of O₂ to tissues
- Arteries take blood from heart (high O₂)
- Veins bring blood to heart (low O₂)
- Lungs inject O₂ into blood
 - Alveoli surrounded by venal & arterial capillaries.
 Diffusion equalizes pp O₂/N₂ on each side of alveoli.

The Cardiopulmonary System

- Must Equalize pressure in ear
- Alternobaric Vertigo
 - Sudden pressure change
 - Lose orientation
- Round or Oval Window Rupture
 - Pain, blood, hearing loss

Diving Injuries I: The Bends

- At depth organs & tissues absorb N₂
 - Takes ~days to saturate
- At surface N₂ leaves tissues (pp N₂)
- Lungs screen bubbles and N₂
- But if N₂ out gasses too quickly or is too much to screen, bubbles form and roam body.

The Bends (cont'd.)

- Symptoms depend on where bubbles emerge.
 - In joints = pain
 - In spinal cord = sensory/motor dysfunction
 - In lungs = difficulty breathing
 - In brain = impairment of hearing, speech, thought. Loss of consciousness. Paralysis.

Bends: Signs and Symptoms

- Common Signs & Symptoms
 - Numbness, Headache, Pain
 - Dizziness, Nausea, Weakness
 - Unusual fatigue, Difficulty walking
- Other Signs & Symptoms
 - Breathing difficulty, itching, rash, bladder/bowel problems, personality change, speech problems, hearing loss, convulsions, coughing blood, paralysis.

Diving Injuries II: AGE

- AGE: Arterial Gas Embolism
 - Pressure differential = 4' of H₂O can burst alveoli.
 - Bubble goes to brain or heart
 - Bubble blocks artery/capillary in brain
 - Bubble stops blood flow to affected region

Diving Injuries III: Pulmonary Barotrauma

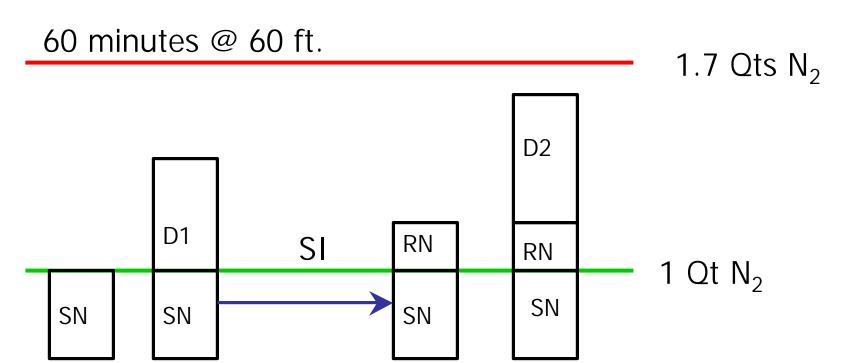
- Air bubbles can get other places
 - Under sternum
 - Into neck
- Signs & Symptoms
 - Difficult breathing
 - Chest pain
 - Cyanosis
 - Swelling of neck
 - Crackling under skin
 - Voice changes

Diving Injuries IV: Other

- Nitrogen narcosis (rapture of the deep)
 - Excessive N₂ level in blood has effects similar to laughing gas (nitrous oxide).
 - Occurs at depths of 80-120'
- Oxygen poisoning
 - pp $O_2 = 1.6$ (1.4) atm is toxic (work diving)
 - Can not dive > 70 m on air
 - Mixed gas diving Nitrox (elevated O_2), tri-gas (He, N_2 , O_2), Heliox (He, O_2)

Treatment of Diving Injuries

- 100% O₂ 100% O₂ 100% O₂ 100% O₂
 - Body burns O₂ (does not burn N₂)
 - Higher pp O₂ displaces N₂ in bubble DIFFUSION
 - Bubble shrinks.
- Emergency room for diagnosis
- Recompression

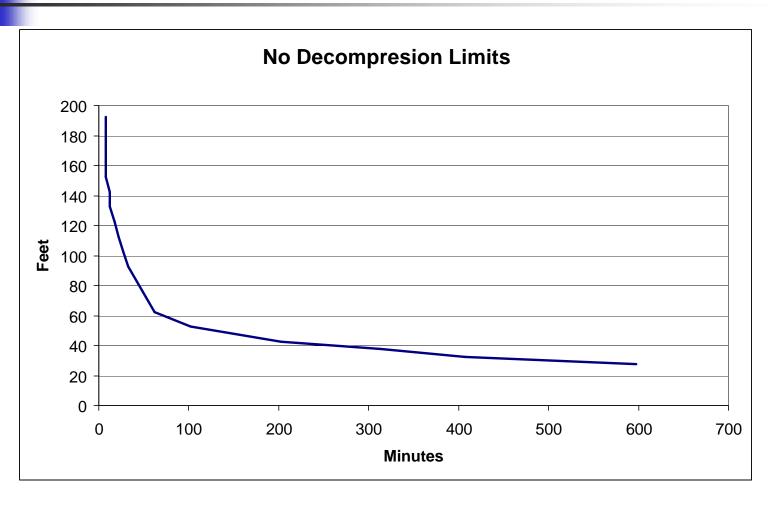


The Navy Dive Tables

- Use dive tables to <u>reduce the risk</u> of DCS (bends)
- CAUTION!! DCS depends on physical condition of diver, dive conditions, and N₂ level in tissue.
- 5-10% of Navy divers will get bent diving within the limits of the Navy tables.
- Use safety stop (3-5 mins @ 10' EDSL)

Navy Dive Tables (Cont'd)

SI: Surface Interval


RN: Residual N2

SN: Surface N2

Navy Dive Tables (Cont'd)

- Total Bottom Time (includes descent NOT ascent). Use TBT in tables.
- ALWAYS ROUND UP (21 = 30)!
- 3 Tables
 - NDL (No Decompression Limits) & Repetitive Group Designation Table
 - Surface Interval Table
 - RNT (Residual Nitrogen Time) Table

Navy Tables: Example

- Diver dives to 41' for 51 minutes
 - Group designation is H
- Diver stays on surface for 25 minutes
 - Group designation is H
- Diver dives to 53'
 - RNT is 52 min.
- How much time can diver spend @ 60'?
 - 8 minutes

Diving at Altitude

- Decreased pressure = faster outgassing
- How to compensate?

If:
$$\frac{d(gas)}{dt} = kf(N_2) \frac{p_{N_2}(tissue)}{p_{N_2}(ambient)}$$

• Keep d(gas)/dt as a sea level dive

$$\frac{Depth(altitude)}{Depth(sealevel)} = \frac{p(sealevel)}{p(altitude)}$$

Diving at Altitude (Cont'd)

- So use the same dive tables
- Correct the depth to reflect the pressure differential between depth and ambient pressure.
- Example: diving at 8650' ASL
 - P(SL)/P(8650) = 1.33
 - Equivalent Depth (EDSL) = 1.33 x Altitude Depth

Diving at Altitude (Cont'd)

- Flying after diving treat like diving at altitude.
 - Recommend wait 12-24 hrs after dive to fly
- Complication Arriving at altitude and diving
 - Tissues are already out gassing upon arrival to dive sight.
 - Treat as a repetitive dive
 - Ascent from LA B diver upon arrival to Fenton

Responsibilities of Supervisors

- Be aware of divers
 - Dive times (within AA NDLs)
 - Physical condition
- Organize dive site
 - Does everyone know their job?
 - Comms working?
 - Emergency personnel reachable?
- Ensure diver's safety

Accident Prevention

- Best time to prevent an accident is BEFORE A DIVE
- Warning signs
 - Stress
 - Pre-dive look for
 - Illness or injury
 - Equipment problems (broke or missing)
 - Hesitation, stress. Any sign diver does not want to dive
 - Entry look for
 - Improper technique
 - Equipment rejection, high treading
 - Hesitation going under (holding buddy etc.)