
 
 

A Maximum Likelihood Approach to Background Rejection 
 
Introduction: In this memo I discuss a generalization of the "direct integration" method 
of background estimation.  This new method allows for a source search analysis that is 
based purely on the shapes of the ON and OFF source X2 distributions (# PMTs >2 PE / 
MAXPE), and on the expected shape of a signal.  The approach uses a binned maximum 
likelihood estimator and is easily generalized to take account for any D.C. excess.  This 
memo is more of a progress report on the application of the method.  Several issues have 
arisen during this investigation and further work on understanding our detector is needed 
before this method can be put to optimal use.  First I will review the salient points from 
my previous memo on gamma/hadron separation and show some results on its application 
to the Crab.  I will then explain the generalization of the direct integration method and 
derive the maximum likelihood approach to gamma/hadron separation.  Along the way I 
will point out the problems that we must still resolve, which relate to the PE calibrations 
and the Monte Carlo simulation of Milagro.  An appendix delves a little deeper into 
calibration issues directly relevant to gamma/hadron separation.  
 
Gamma Hadron Separation: 
The parameter used to distinguish gamma showers from hadronic showers is denoted as 
X2, where: 
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and the maximum is found over the PMTs in the muon layer.  For a complete discussion 
of this parameter see my previous memo.  In that memo I showed that if one wishes to 
simply make a cut on the data, the Monte Carlo predicts that an optimal cut would reject 
all showers with X2 less than 2.5.  However, if one uses the data to determine the proton 
distributions (and Monte Carlo gammas), the optimal cut is at very large values of X2.  
This is due to an incorrect prediction of the shape of the X2 distribution by the Monte 
Carlo.  In particular the data has more events with X2 values larger than 2.5 than the 
Monte Carlo predicts. For completeness I show these distributions in Figure 1.  It turns 
out that both the numerator and the denominator are incorrectly predicted by the Monte 
Carlo.  I believe that the error in the numerator is due to the values used for the 
absorption and scattering lengths of light in the pond.  The simulations used here are from 
Version 22 of the Monte Carlo, which has the Milagrito water.  The Version 23 Monte 
Carlo has insufficient numbers of triggered events to be used for this analysis (~300 as of 
10/11/00).  The PEMAX distribution (denominator) is incorrect because of the water and 
also because of the TOT-to-PE calibrations.  This is discussed in detail in the next 
section. 
 Andy has applied the above parameter (cut on 2.5) on the data from the Crab and 
observed a Q factor of 1.7 (resulting in a significance of 3.5σ), as predicted in my 
previous memo.  I have applied the new generalized analysis method to determine the 
significance as a function of the X2 cut value.  The data was processed with a NFIT > 20 
and >80 cut applied.  The results are shown in Figure 2.  Note that I obtain a smaller 
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significance than Andy at the value of X2=2.5, (3.1σ for NFIT>20 and 3.3σ for 
NFIT>80) but the same value for Q (1.7).  The maximum value I obtain for the 
significance is 3.3σ a cut on X2 at 3.2 (for NFIT>20) and 3.5σ at X2=2.6 (for NFIT>80).   

 
Figure 1 X2 distributions for data (red) Monte Carlo protons (black) and Monte Carlo gamma 

showers (blue). 

Note that the X2 distributions do depend upon the value of NFIT and the optimization in 
my previous memo was for NFIT>20.  (With the current uncertainties in the Monte Carlo 
there is little point in re-optimizing the value of the X2 cut for each NFIT value.) The 
difference between this analysis and Andy’s has been traced to a slight difference in the 
definition of the bin centered on the Crab and to a slightly different data set (I did not use 
sub-runs if the event rate changed by more than 7% from the previous sub-run).   

 
Figure 2 Significance of Signal from Crab vs. value of cut level in X2 parameter.  Solid line is for 

NFIT>20 and dashed line for NFIT>80. 

Calibrations and PEMAX:  



Figure 3 shows the PEMAX distribution predicted by Version 22 of the Monte Carlo 
(protons).  Note the 2-peaked structure.  Previous examination of the data failed to 
observe this 2-peaked structure.  The presence of this structure in the data is strongly 
dependent upon the calibrations used to process the data.  Since my previous memo there 
has been an improvement in the calibrations that allows us to see this structure.  In Figure 
4 I show the PEMAX distribution using the old "spectrum"-based TOT-to-PE 
conversions.  One can see a shoulder on the distributions but the first peak is missing.  
Superimposed on this plot is the PEMAX distribution using the occupancy method in its 
first incarnation.  In this calibration if the HI TOT was not within it’s useful range the 
value of the LO-TOT was extrapolated to arbitrarily high PE values.  In the latest version 
of TOTPE_OCC4, the PE value from the LO-TOT is truncated at the minimum value that 
HI-TOT can give.  While this approach gives strange looking PE distributions for each 
PMT (see Figure 5), it makes a marked improvement in the PEMAX distribution, Figure 
6.  A way of improving upon this approach is to calibrate the HI-TOT to lower values; 
currently HI-TOT starts to be used between 200 and 300 counts, though above 100 
counts it contains reliable data.   
 

 
Figure 3 PEMAX distribution Monte Carlo (Version 22) protons. 

  
First some comments on the PEMAX distribution.  The second peak is due to 

local light from muons in the bottom layer.  The first peak is due to showers without 
muons and thus light that travels from the top layer to the bottom layer.  Thus, the 
position of the second peak is sensitive to the quantum efficiency of the PMTs and the 
position of the first peak is sensitive to both the quantum efficiency of the PMTs and the 



transparency of the water.  Clearer water should yield larger PEs in the bottom layer.  In 
fact, Version 22 of the Monte Carlo used Milagrito water (10 meter scattering and 10 
meter absorption).  This is consistent with the position of the first peak in the data. 
 

 
Figure 4 PEMAX distribution.  Solid line uses "spectrum"-based TOT-to-PE calibration and the 

dashed line uses the occupancy TOT-to-PE calibration (without the truncation of LO-TOT). 

 I have tried to improve upon these results by extrapolating HI-TOT to smaller 
values.  I used a linear extrapolation provided by Roman and Lazar.  The problem is 
knowing where a linear extrapolation breaks down.  By playing around with the start of 
HI-TOT one can play around with the relative amplitudes of the two peaks, and by 
linearly extrapolating HI-TOT down to 100 counts, one can make the first peak disappear 
completely.   Without being able to trust the Monte Carlo on a quantitative basis one 
cannot use this distribution to determine which is the best PE calibration.  Further work is 
needed in understanding the PE calibration in the region near high threshold. 
 
Extension of the Direct Integration Method: 
This technique estimates the background level at a given point in the celestial sky, by 
integrating the observed rate over the shape of our "efficiency" in local coordinates.  The 
detector efficiency map is determined from the data and is simply the probability that a 
given event came from any point in the sky.  The efficiency map is made in the local 
coordinates of hour angle (HA) and declination (DEC), with the same binning as the 
celestial maps of observed (OBS) and expected (EXP) events in right ascension (RA) and 
DEC.  By keeping track of how many events arrived during each sidereal interval 



(NSIDER) one can both estimate the background and determine the excess with a single 
pass through the data.  To eliminate systematic errors due to bin misalignments the array 

 
Figure 5 PE distribution from a single PMT using the occupancy TOT-to-PE calibration, with a 

truncation set on the PEs from LO-TOT. 

 

 
Figure 6 PEMAX distribution using occupancy TOT-to--PE calibration with a trunctation of the LO-

TOT. 



NSIDER is binned with the same width as the EFF, OBS, and EXP maps (0.1 degrees in 
HA or RA corresponds to 24 sidereal seconds).  (See Appendix B for a coding example.)  
The extension performs the following integration: 
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While this example I will give has to do with a parameter that is used to differentiate 
gamma-ray showers from proton showers, it may be used for any parameter (i.e. NFIT).  
The basis of the method is to expand the dimension of the EFF, OBS, and EXP arrays to 
include any/all parameters of interest.  For example, EFF[HA][DEC] would become 
EFF[HA][DEC][X].  Note that the same assumption applies to this third parameter as to 
the other two: The shape of the detector response function is independent of rate for each 
2-hour interval.  We assume that the shape of the X distribution may depend upon local 
coordinates HA, DEC, but that for the 2-hour interval over which we accumulate 
background data the shape of the X distribution is constant for each HA, DEC pair. 

 
Figure 7 ON (solid) and OFF (dashed) source X distributions in Crab bin.  The values given  on the 

X-axis are bin number (X times 10).  NFIT>20 2.1 degree wide square bin.  Bottom panel is the 
difference ON - OFF. 

 
Maximum Likelihood Method of Source Analysis: 
Using, 
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with 100 bins in X spanning [0-10] (overflows going into the last bin) I analyzed the Crab 
data re-reconstructed at Maryland (runs 1121-2451).  I then summed the arrays 
EXP[RA][DEC][X] and OBS[RA][DEC][X] over RA and DEC (around the Crab: 2.1 
degrees bin width for NFIT>20 and 1.7 degree bin width for NFIT>80), to obtain an 
EXP[X] and OBS[X] distribution.  These are shown in Figure 7 (NFIT>20) and Figure 8 
(NFIT>80) superimposed upon each other with the difference (OBS-EXP) shown in the 
lower panels of each figure. 
 

 
Figure 8 Same as Figure 7 with NFIT>80 and 1.7 degree wide bin. 

In Figure 9 I show the expected X distribution for gamma showers with NFIT>20 (solid 
line) and NFIT>80 (dashed line).  The problem is how to use the ON source, OFF source, 
and Monte Carlo gamma distributions to search for an excess of "gamma-like" events 
from the Crab.  I derive a method that uses only the shapes of the distributions, with no 
account taken for the overall D.C. excess observed.  This technique relies solely on the 
gamma-like nature of the images from the direction of the Crab in Milagro. 
 I use a binned likelihood ratio approach, where the goal is to determine the 
likelihood that the ON source distribution is made up of a contribution from the OFF 
source distribution plus a contribution from the gamma distribution (as determined by the 



Monte Carlo).  This is a binned likelihood approach because the product is over the 100 
bins in the X distributions.  The likelihood function is defined as: 

))(|(),(
100

1
i

i
SOBSiSiSOBSS OFFNNNONPNNNL ×−+Γ=− ∏

=

 

Where the ONi is the number of ON source events in the ith bin of the X distribution, Γi is 
the fraction of Monte Carlo gamma-ray events in the ith bin of the X distribution, and 
OFFi is the fraction of OFF source events in the ith bin of the X distribution.  P(a | b) is 
simply the Poisson probability of observing a events when one expects b events.  I have 
applied the constraint NB + NS = NOBS.  One then maximizes the above quantity over NS 
and finds the ratio: 
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Then, -2ln(λ) is distributed as a χ2(1 dof), so the square root of [-2ln(λ)] is the 
significance of the likelihood ratio.  In Figure 10 I show -2ln(λ) as a function of NS for 
the NFIT>20 and NFIT>80 data sets.  In neither of these cases is the significance of the 
likelihood ratio very impressive (though it is better than the observed D.C. excess for 
each case).  A better result is obtained by making a hard cut on the data.   
 

 
Figure 9 X distribution from Monte Carlo gamma rays.  Version 22 of Monte Carlo with 50 PMT 

trigger requirement.  Solid line is for NFIT>20 and dashed line for NFIT>80. 

The table below shows the results of the analyses.  It is interesting that though the 
likelihood approach maximizes at small number of excess events, the significance of 



these events is much greater than the simply Gaussian excess.  This would seem to 
indicate that not only is the shape important, but that the simulation does a reasonable job 
of predicting the shape for the X distribution for gamma ray showers. 
 

Table 1 Result of Crab analysis. 

Analysis NExp NObs 
D.C. 

Excess 
Sigma 

Likelihood: 
NSignal 

Likelihood: 
Significance 

NFIT>20 4,525,489 4,529,268 3378 1.8σ 648 2.4σ 
NFIT>80 730,560 731,345 784 0.9σ 596 2.25σ 

 
Figure 10 -2ln(�) as a function of the number of signal events.  Top plot is for NFIT>20 and bottom 

for NFIT>80.  The significance is the square root of the y-axis. 

 
What Went Wrong?:  Examination of Figure 9 shows that the Monte Carlo predicts that 
there should be significant overflow in the X distribution (i.e. many gamma ray events 
with X>10.).  In fact examination of Figure 8 shows that this is not the case.  Secondly, 



the number of signal events that maximized the likelihood function is smaller than the 
observed excess, especially for the NFIT>20 analysis.  Recall that for proton showers the 
Monte Carlo over predicted, by nearly an order of magnitude, the number of events at 
large X values.  I will hypothesize that the Monte Carlo has a similar problem in its 
prediction of gamma ray events at large X values.  To investigate this hypothesis, I set the 
number of Monte Carlo events in the ith bin of the X distribution to zero for all i’s greater 
than some value Xmax, and investigate the behavior of the likelihood function as a 
function of Xmax. 
 Figure 11 shows the significance of the results for all values of Xmax between 3 
and 10 (a value of Xmax=10 corresponds to no truncation of the X distribution).  Figure 12 
shows the number of signal-like events (that maximizes the likelihood function) as a 
function of Xmax. 

 
Figure 11 Significance of likelihood ratio as a function of Xmax.  Top plot is for NFIT>20 and bottom 

plot for NFIT>80. 

Both analyses (NFIT>20 and NFIT>80) maximize at roughly 3.5σ and have broad areas 
of Xmax for which they are above 3σ.  In both cases the number of signal events deduced 
is reasonable.  While the above significances have been tuned, we have reason to suspect 
that the Monte Carlo is incorrect in precisely the manner investigated.  The above 
discussion is meant to provide a feeling for how good we could do in principle if the 
Monte Carlo matched the data.  Clearly we must work on improving the simulations to 



match the observed proton distributions.  Hopefully this will also correct the gamma 
distributions. 
 
Conclusions:  I have developed an extension to the "direct integration" method of 
background estimation that allows for a binned likelihood analysis of the Milagro data.  I 
have applied this technique to the Crab data using a gamma/hadron discrimination 
parameter previously discussed.  The likelihood method gives results that are better than 
a straightforward D.C. excess analysis, but not as good as they could be.  I believe that an 
improvement in the Monte Carlo simulation of both proton and gamma showers should 
enable us to detect the Crab nebula solely from the shape of the X distributions.  

 
Figure 12 Number of signal events (that maximizes the likelihood function) as a function of Xmax.  

Top plot is for NFIT>20 and bottom plot for NFIT>80. 

 
Appendix A: Discussion of the quantum efficiency of the PMTs: 
The current TOT-to-PE calibration method tells us how many PEs where detected at each 
PMT.  For gamma/hadron separation we would like to know how many incident photons 
struck each PMT.  The difference between the two numbers is the relative efficiency of 
the PMTs (quantum efficiency, collection efficiency, and baffle efficiency).  In principle 
one could use through-going muons to give an absolute calibration for each PMT.   Here 



I demonstrate a straightforward method using the measured average PE level in each 
PMT to adjust for the relative differences in the PMT efficiencies. 
 To demonstrate why this is a problem I examine the uniformity of the frequency 
distribution of the PMTs selected to have the maximum pulse height.  (i.e.  for each PMT 
the of times that PMT was selected as having the highest pulse height.)  The Monte Carlo 
predicts that there are three classes of PMTs: center PMTs, edge PMTs, and corner 
PMTs.  The corner PMTs are selected the most frequently, than the edge PMTs, and 
finally the central PMTs.  Within each class the frequency distribution should be 
"relatively" uniform (see below).  In Figure 13 I show the frequency distribution for the 
central PMTs.  It is highly non-uniform.  The χ2 to a straight line is 3109 for 193 degrees 
of freedom.  The lower panel shows the same distribution after the corrections for relative 
efficiency (described below) have been applied to the data. 
 The relative efficiency of the PMTs can be determined by measuring the average 
number of PEs detected by each PMT.  Assuming that all PMTs in the same class should 
have identical PE distributions (and therefore identical <PE>) and if <PEClass> is the 
average PE value for all events and all PMTs in the class, then: 
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Where the latter formula is the correction applied to the current TOT-to-PE calibration on 
a PMT-by-PMT basis.  Figure 14 is a histogram of the Qi for all PMTs in the muon layer.  
Figure 15 shows the PEMAX frequency distribution after applying the correction for the 
relative PMT efficiencies.  For comparison the same distribution derived from Monte 
Carlo protons is shown in the lower panel of the Figure.  The χ2 is now 1070 for 193 
dofs.  While this is a marked improvement, it is still not as uniform as the Monte Carlo 
predicts it should be.  The remaining discrepancy is due to 17 PMTs that lie far from the 
mean.  After removal of these outliers there is good agreement with the Monte Carlo. 

Table 2 compares the uniformity of the PEMAX frequency distribution in the data 
with the Monte Carlo.  After the efficiency correction has been applied to the data and the 
17 outliers removed, the uniformity is consistent with the Monte Carlo predictions.  The 
outliers may be PMTs that are poorly extrapolated to very high pulse heights (beyond 100 
PE).  Up to 100 PE there appears to be no difference in the PE distributions of these 
outlier PMTs and the remaining PMTs.  The remaining observed (and predicted) non-
uniformity is most likely due to the same effect that causes the outer PMTs to be selected 
as "hottest" the most frequently, most of our shower cores lie outside of the pond.  I 
believe that the difference between the data and Monte Carlo in regards to the relative 
frequency of selecting a central versus edge PMT has to do with the arrangement of dead 
PMTs in Milagro.  The Monte Carlo has no dead PMTs. 



 

Table 2 Uniformity of PEMAX frequency distribution.  There are three rows that describe the data:  
the first without the correction, the second after the correction, and the third after the correction and 
after removal of 17 "outlier" PMTs.  An outlier is defined as any PMT that is more that 4 standard 

deviations from the mean. 

Data Source χ2 to Flat 
Central PMT 

Freq. 
Edge PMT 

Freq. 
Corner PMT 

Freq. 
Data uncorrected 3109 (16/dof) 0.0036 0.0050 0.0071 
Data corrected 1070 (5.5/dof) 0.0036 0.0050 0.0071 
Data corrected 
outliers removed 

627 (3.5/dof) n/a n/a n/a 

Monte Carlo 
Protons 

684 (3.3/dof) 0.0028 0.0063 0.0084 

 
 

 
Figure 13 Frequency Distribution of PEMAX.  Top plot is before rescaling of PMTs bottom plot after 

rescaling.  Lines are drawn at the average. 



 
Figure 14 Rescaling factors applied to PMTs to correct for relative efficiencies. 

 
Figure 15 Frequency distribution of PEMAX.  Top panel is data after rescaling and bottom panel is 

Monte Carlo protons.  Lines are drawn at the average. 



Appendix B: Direct Integration Code Fragment: 

 
 
In the code fragment IR, ID, and IS are macros that define/determine the binning used.  
Every 2-hours the EFF map is convoluted with the array NSIDER to determine the 
expected background (EXP) (this is the purpose of the upDateBKG function).  The 
resulting EXP and OBS arrays may be examined over any time interval of interest to 
search for an excess. 

While MilagroEvent2( &eventData, &dataCon, &coords){ 
upDateSKY(RA, DEC, OBS); 
sidereal_time = sider(julianDate, time); 
HA = sidereal_time - RA; 
upDateSKY(HA,DEC,EFF); 
is = IS(sidereal_time); 
NSIDER[is]++; 
If (time - tZero >= 2 HOURS){ 
 upDateBKG(NSIDER, EFF, EXP); 
 tZero = time; 
 bzero(EFF); 
} 

} 
void upDateSKY(float alpha, float dec, float array[][DECBINS]){ 
 ir  = IR(alpha); 
 id = ID(dec);  
 array[ir][id]++; 
 return; 
} 
void upDateBKG(int NSIDER[], float EFF[][DECBINS], float EXP[][DECBINS]){ 
    for(is = 0; is < RABINS; is++){ 
     evts = NSIDER[is]; 
     for(ir=0; ir<RABINS; ir++){ 
          ih = (is - ir); 
          for(id=0; id<DECBINS; id++){ 
             EXP[ir][id]  += ((float) evts*EFF[ih][id]); 
          } 
     } 
  } 
  return; 
} 


