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A Maximum Likelihood Approach to Background Re ection

Introduction: In thismemo | discuss a generalization of the "direct integration” method
of background estimation. This new method allows for a source search anaysisthat is
based purely on the shapes of the ON and OFF source X, distributions (# PMTs >2 PE /
MAXPE), and on the expected shape of asignal. The approach uses a binned maximum
likelihood estimator and is easily generalized to take account for any D.C. excess. This
memo is more of a progress report on the application of the method. Several issues have
arisen during thisinvestigation and further work on understanding our detector is needed
before this method can be put to optimal use. First | will review the salient points from
my previous memo on gamma/hadron separation and show some results on its application
to the Crab. | will then explain the generalization of the direct integration method and
derive the maximum likelihood approach to gamma/hadron separation. Along the way |
will point out the problems that we must still resolve, which relate to the PE calibrations
and the Monte Carlo ssmulation of Milagro. An appendix delves alittle deeper into
calibration issues directly relevant to gamma’hadron separation.

Gamma Hadron Separation:
The parameter used to distinguish gamma showers from hadronic showers is denoted as
X2, where:

_ N, (=2PE)

max; (PE,)
and the maximum is found over the PMTs in the muon layer. For a complete discussion
of this parameter see my previous memo. In that memo | showed that if one wishesto
simply make a cut on the data, the Monte Carlo predicts that an optimal cut would reject
all showerswith X, lessthan 2.5. However, if one uses the data to determine the proton
distributions (and Monte Carlo gammas), the optimal cut is at very large values of X.
Thisisdueto an incorrect prediction of the shape of the X, distribution by the Monte
Carlo. In particular the data has more events with X, values larger than 2.5 than the
Monte Carlo predicts. For completeness | show these distributionsin Figure 1. It turns
out that both the numerator and the denominator are incorrectly predicted by the Monte
Carlo. | believe that the error in the numerator is due to the values used for the
absorption and scattering lengths of light in the pond. The simulations used here are from
Version 22 of the Monte Carlo, which has the Milagrito water. The Version 23 Monte
Carlo has insufficient numbers of triggered events to be used for this analysis (~300 as of
10/11/00). The PEMAX distribution (denominator) isincorrect because of the water and
also because of the TOT-to-PE calibrations. Thisisdiscussed in detail in the next
section.

Andy has applied the above parameter (cut on 2.5) on the data from the Crab and
observed a Q factor of 1.7 (resulting in asignificance of 3.56), as predicted in my
previous memo. | have applied the new generalized analysis method to determine the
significance as a function of the X, cut value. The datawas processed with aNFIT > 20
and >80 cut applied. The results are shown in Figure 2. Notethat | obtain asmaller
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significance than Andy at the value of X,=2.5, (3.1c for NFIT>20 and 3.3c for
NFIT>80) but the same value for Q (1.7). The maximum value | obtain for the
significanceis 3.3¢ acut on X; at 3.2 (for NFIT>20) and 3.5¢ at X,=2.6 (for NFIT>80).
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Figure 1 X, distributionsfor data (red) Monte Carlo protons (black) and M onte Carlo gamma
showers (blue).

Note that the X distributions do depend upon the value of NFIT and the optimization in
my previous memo was for NFIT>20. (With the current uncertainties in the Monte Carlo
thereislittle point in re-optimizing the value of the X, cut for each NFIT value.) The
difference between this analysis and Andy’s has been traced to adlight differencein the
definition of the bin centered on the Crab and to a dlightly different data set (I did not use
sub-runs if the event rate changed by more than 7% from the previous sub-run).
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Figure 2 Significance of Signal from Crab vs. value of cut level in X, parameter. Solid lineisfor
NFIT>20 and dashed linefor NFIT>80.

Calibrations and PEMAX:




Figure 3 shows the PEMAX distribution predicted by Version 22 of the Monte Carlo
(protons). Note the 2-peaked structure. Previous examination of the data failed to
observe this 2-peaked structure. The presence of this structure in the datais strongly
dependent upon the calibrations used to process the data. Since my previous memo there
has been an improvement in the calibrations that allows us to see this structure. In Figure
4 | show the PEMAX distribution using the old " spectrum™-based TOT-to-PE
conversions. One can see a shoulder on the distributions but the first peak is missing.
Superimposed on this plot isthe PEMAX distribution using the occupancy method in its
first incarnation. In thiscalibration if the HI TOT was not within it’'s useful range the
value of the LO-TOT was extrapolated to arbitrarily high PE values. In the latest version
of TOTPE_OCCH4, the PE value from the LO-TOT istruncated at the minimum value that
HI-TOT can give. While this approach gives strange looking PE distributions for each
PMT (see Figure 5), it makes a marked improvement in the PEMAX distribution, Figure
6. A way of improving upon this approach isto calibrate the HI-TOT to lower values,
currently HI-TOT starts to be used between 200 and 300 counts, though above 100
countsit contains reliable data.
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Figure 3 PEMAX distribution Monte Carlo (Version 22) protons.

First some comments on the PEMAX distribution. The second peak is due to
local light from muonsin the bottom layer. Thefirst peak is due to showers without
muons and thus light that travels from the top layer to the bottom layer. Thus, the
position of the second peak is sensitive to the quantum efficiency of the PMTs and the
position of the first peak is sensitive to both the quantum efficiency of the PMTs and the



transparency of the water. Clearer water should yield larger PEs in the bottom layer. In
fact, Version 22 of the Monte Carlo used Milagrito water (10 meter scattering and 10
meter absorption). Thisis consistent with the position of the first peak in the data.
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Figure4 PEMAX distribution. Solid line uses" spectrum" -based TOT-to-PE calibration and the
dashed line uses the occupancy TOT-to-PE calibration (without the truncation of LO-TOT).

| have tried to improve upon these results by extrapolating HI-TOT to smaller
values. | used alinear extrapolation provided by Roman and Lazar. The problemis
knowing where alinear extrapolation breaks down. By playing around with the start of
HI-TOT one can play around with the relative amplitudes of the two peaks, and by
linearly extrapolating HI-TOT down to 100 counts, one can make the first peak disappear
completely. Without being able to trust the Monte Carlo on a quantitative basis one
cannot use this distribution to determine which is the best PE calibration. Further work is
needed in understanding the PE calibration in the region near high threshold.

Extension of the Direct | ntegration Method:

This technigue estimates the background level at a given point in the celestial sky, by
Integrating the observed rate over the shape of our "efficiency” inlocal coordinates. The
detector efficiency map is determined from the data and is simply the probability that a
given event came from any point in the sky. The efficiency map is made in the local
coordinates of hour angle (HA) and declination (DEC), with the same binning as the
celestial maps of observed (OBS) and expected (EXP) eventsin right ascension (RA) and
DEC. By keeping track of how many events arrived during each sidereal interval




(NSIDER) one can both estimate the background and determine the excess with asingle
pass through the data. To eliminate systematic errors due to bin misalignments the array

1o0*
105y
10%
]DE_

1 H
:u||I||||I||||I||||I||||I||||I||||I||||I||||I|||
r 10 Z0 30 46 e) [%a) T a0 =) 100

FEs

PE Distribution for PMT 50

Figure 5 PE distribution from a single PM T using the occupancy TOT-to-PE calibration, with a
truncation set on the PEsfrom LO-TOT.
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Figure6 PEMAX distribution using occupancy TOT-to--PE calibration with a trunctation of the LO-
TOT.



NSIDER is binned with the same width as the EFF, OBS, and EXP maps (0.1 degreesin
HA or RA corresponds to 24 sidereal seconds). (See Appendix B for a coding example.)
The extension performs the following integration:

EXP(RA, DEC, X) = H R(t)E(HA DEC, X)8((HA-t) — RA)dQdt

While this example | will give has to do with a parameter that is used to differentiate
gamma-ray showers from proton showers, it may be used for any parameter (i.e. NFIT).
The basis of the method is to expand the dimension of the EFF, OBS, and EXP arrays to
include any/all parameters of interest. For example, EFF[HA][DEC] would become
EFF[HA][DEC][X]. Note that the same assumption applies to this third parameter as to
the other two: The shape of the detector response function is independent of rate for each
2-hour interval. We assume that the shape of the X distribution may depend upon local
coordinates HA, DEC, but that for the 2-hour interval over which we accumulate
background data the shape of the X distribution is constant for each HA, DEC pair.
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Figure7 ON (solid) and OFF (dashed) source X distributionsin Crab bin. Thevaluesgiven on the
X-axisare bin number (X times 10). NFIT>20 2.1 degree wide square bin. Bottom panel isthe

difference ON - OFF.

Maximum Likeihood Method of Source Analysis:

Using,

_Nion (> 2PE)
PEMAX (muon)




with 100 binsin X spanning [0-10] (overflows going into the last bin) | analyzed the Crab
datare-reconstructed at Maryland (runs 1121-2451). | then summed the arrays
EXP[RA][DEC][X] and OBS[RA][DEC][X] over RA and DEC (around the Crab: 2.1
degrees bin width for NFIT>20 and 1.7 degree bin width for NFIT>80), to obtain an
EXP[X] and OBY[ X] distribution. These are shown in Figure 7 (NFIT>20) and Figure 8
(NFIT>80) superimposed upon each other with the difference (OBS-EXP) shown in the
lower panels of each figure.
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Figure 8 Sameas Figure 7 with NFIT>80 and 1.7 degree wide bin.

In Figure 9 | show the expected X distribution for gamma showers with NFIT>20 (solid
line) and NFIT>80 (dashed line). The problem ishow to use the ON source, OFF source,
and Monte Carlo gamma distributions to search for an excess of "gamma-like" events
from the Crab. | derive a method that uses only the shapes of the distributions, with no
account taken for the overall D.C. excess observed. This technique relies solely on the
gamma-like nature of the images from the direction of the Crab in Milagro.

| use abinned likelihood ratio approach, where the goal is to determine the
likelihood that the ON source distribution is made up of a contribution from the OFF
source distribution plus a contribution from the gamma distribution (as determined by the



Monte Carlo). Thisisabinned likelihood approach because the product is over the 100
binsin the X distributions. The likelihood function is defined as:

100
L(Ng, Nggs = Ng) = H P(ON; NI +(Nggs — Ng) X OFF;)

i=1
Where the ON,; is the number of ON source eventsin the ™ bin of the X distribution, T is
the fraction of Monte Carlo gamma-ray eventsin thei™ bin of the X distribution, and
OFF; isthe fraction of OFF source eventsin thei™ bin of the X distribution. P(a |b) is
simply the Poisson probability of observing a events when one expects b events. | have
applied the constraint Ng + Ns = Npgs. One then maximizes the above quantity over Ns
and finds the ratio:

— L (0, Nogs)
maX(Ns)[L(N57 NOBS - Ns)]

Then, -2In()) is distributed as ax*(1 dof), so the square root of [-2In(A)] isthe
significance of the likelihood ratio. In Figure 10 | show -2In(A) as afunction of Nsfor
the NFIT>20 and NFIT>80 data sets. In neither of these cases is the significance of the
likelihood ratio very impressive (though it is better than the observed D.C. excess for
each case). A better result is obtained by making a hard cut on the data.
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Figure9 X distribution from Monte Carlo gammarays. Version 22 of Monte Carlo with 50 PM T
trigger requirement. Solid lineisfor NFIT>20 and dashed linefor NFIT>80.

The table below shows the results of the analyses. It isinteresting that though the
likelihood approach maximizes at small number of excess events, the significance of



these events is much greater than the smply Gaussian excess. Thiswould seem to
indicate that not only is the shape important, but that the simulation does a reasonable job
of predicting the shape for the X distribution for gammaray showers.

Table 1 Result of Crab analysis.

. D.C. . Likelihood: | Likelihood:
Analysis NExp NObs Excess Sigma NSignal Significance
NFIT>20 |4,525489 | 4,529,268 3378| 18c 648 240
NFIT>80 730,560 731,345 784 | 0.9c 596 2.250
Top (MFIT20) Bottam {MFITSS)
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Figure 10 -2In(1) as a function of the number of signal events. Top plot isfor NFIT>20 and bottom
for NFIT>80. Thesignificanceisthe squareroot of the y-axis.

What Went Wrong?: Examination of Figure 9 shows that the Monte Carlo predicts that

there should be significant overflow in the X distribution (i.e. many gammaray events
with X>10.). In fact examination of Figure 8 shows that thisis not the case. Secondly,




the number of signal events that maximized the likelihood function is smaller than the
observed excess, especialy for the NFIT>20 analysis. Recall that for proton showers the
Monte Carlo over predicted, by nearly an order of magnitude, the number of events at
large X values. | will hypothesize that the Monte Carlo has asimilar problem in its
prediction of gammaray events at large X values. To investigate this hypothesis, | set the
number of Monte Carlo eventsin thei'™ bin of the X distribution to zero for all i’s greater
than some value Xnax, and investigate the behavior of the likelihood function asa
function of X max.

Figure 11 shows the significance of the results for al values of X between 3
and 10 (avalue of Xy=10 corresponds to no truncation of the X distribution). Figure 12
shows the number of signal-like events (that maximizes the likelihood function) as a
function of X max.
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Figure 11 Significance of likelihood ratio as a function of X .x. Top plot isfor NFIT>20 and bottom
plot for NFIT>80.

Both analyses (NFIT>20 and NFIT>80) maximize at roughly 3.5¢ and have broad areas
of Xmax for which they are above 3c. In both cases the number of signal events deduced
isreasonable. While the above significances have been tuned, we have reason to suspect
that the Monte Carlo isincorrect in precisely the manner investigated. The above
discussion is meant to provide afeeling for how good we could do in principleif the
Monte Carlo matched the data. Clearly we must work on improving the simulations to



match the observed proton distributions. Hopefully thiswill also correct the gamma
distributions.

Conclusions: | have developed an extension to the "direct integration™ method of
background estimation that allows for a binned likelihood analysis of the Milagro data. |
have applied this technique to the Crab data using a gamma/hadron discrimination
parameter previously discussed. The likelihood method gives results that are better than
astraightforward D.C. excess analysis, but not as good as they could be. | believe that an
improvement in the Monte Carlo simulation of both proton and gamma showers should
enable us to detect the Crab nebula solely from the shape of the X distributions.

Top (MFIT20) Bottom {NFITSO)

e

4000

Z0C0

2000

10G0

D—fIIIIIIIIIIIIIIIIIIIIIIIII

20 40 B &0 105

Mumber of Signal Events vs ¥ Cutcff level

3000

2500

2060

TS0

10C0

S0

=

D—rlllllIII|IIII|IIII|IIII|IIII|III

20 40 Bl L1 105

Mumber of Signal Events vs X Cutcff level

Figure 12 Number of signal events (that maximizesthelikelihood function) asa function of X .
Top plot isfor NFIT>20 and bottom plot for NFIT>80.

Appendix A: Discussion of the guantum efficiency of the PMTs:

The current TOT-to-PE calibration method tells us how many PEs where detected at each
PMT. For gamma/hadron separation we would like to know how many incident photons
struck each PMT. The difference between the two numbersis the relative efficiency of
the PMTs (quantum efficiency, collection efficiency, and baffle efficiency). In principle
one could use through-going muons to give an absolute calibration for each PMT. Here




| demonstrate a straightforward method using the measured average PE level in each
PMT to adjust for the relative differencesin the PMT efficiencies.

To demonstrate why thisis a problem | examine the uniformity of the frequency
distribution of the PMTs selected to have the maximum pulse height. (i.e. for each PMT
the of timesthat PMT was selected as having the highest pulse height.) The Monte Carlo
predicts that there are three classes of PMTs:. center PMTs, edge PMTs, and corner
PMTs. The corner PMTs are selected the most frequently, than the edge PMTs, and
finally the central PMTs. Within each class the frequency distribution should be
"relatively” uniform (see below). In Figure 13 | show the frequency distribution for the
central PMTs. Itishighly non-uniform. They?to astraight lineis 3109 for 193 degrees
of freedom. The lower panel shows the same distribution after the corrections for relative
efficiency (described below) have been applied to the data.

Therelative efficiency of the PMTs can be determined by measuring the average
number of PEs detected by each PMT. Assuming that all PMTsin the same class should
have identical PE distributions (and therefore identical <PE>) and if <PEcjass> iSthe
average PE valuefor all eventsand all PMTsin the class, then:

Q :<PEC'%E_> and PE™ =QPE,.

Where the latter formulais the correction applied to the current TOT-to-PE calibration on
aPMT-by-PMT basis. Figure 14 is a histogram of the Q; for all PMTs in the muon layer.
Figure 15 shows the PEMAX frequency distribution after applying the correction for the
relative PMT efficiencies. For comparison the same distribution derived from Monte
Carlo protonsis shown in the lower panel of the Figure. The xz isnow 1070 for 193
dofs. Whilethisisamarked improvement, it is still not as uniform as the Monte Carlo
predictsit should be. The remaining discrepancy isdueto 17 PMTsthat lie far from the
mean. After removal of these outliersthere is good agreement with the Monte Carlo.

Table 2 compares the uniformity of the PEMAX frequency distribution in the data
with the Monte Carlo. After the efficiency correction has been applied to the data and the
17 outliers removed, the uniformity is consistent with the Monte Carlo predictions. The
outliers may be PMTs that are poorly extrapolated to very high pulse heights (beyond 100
PE). Up to 100 PE there appears to be no difference in the PE distributions of these
outlier PMTs and the remaining PMTs. The remaining observed (and predicted) non-
uniformity is most likely due to the same effect that causes the outer PMTs to be selected
as "hottest” the most frequently, most of our shower cores lie outside of the pond. |
believe that the difference between the data and Monte Carlo in regards to the relative
frequency of selecting a central versus edge PMT has to do with the arrangement of dead
PMTsin Milagro. The Monte Carlo has no dead PMTs.



Table 2 Uniformity of PEMAX frequency distribution. There arethreerowsthat describe the data:
the first without the correction, the second after the correction, and the third after the correction and
after removal of 17 " outlier™ PMTs. An outlier isdefined asany PMT that ismorethat 4 standard

deviations from the mean.

Data Source Xz to Flat Centra PMT Edge PMT Corner PMT
Freq. Freq. Freq.

Data uncorrected 3109 (16/dof) 0.0036 0.0050 0.0071
Data corrected 1070 (5.5/dof) 0.0036 0.0050 0.0071
Data corrected 627 (3.5/dof) na na na
outliers removed

'\P"rome Carlo 684 (3.3/dof) 0.0028 0.0063 0.0084

otons

Top Panel Data Hefore Rescaling. Bottom Fanel Dota After Rescaling

[ 5 I
oD
[ N

]
]

120

Times Selected as Hattest

130

=N}

&

EBO

GO

=1l

PMT PEMAYX Distribution {Central PRTs)

Ejaln]
FMT Mumber

2350

200

130

100

Times Selected as Hottest

50

1 I
550

BOC

BEG

PMT PEMAS Distribution {Central PRTs)

1 I 1
FoO
PMT Murmbear

Figure 13 Frequency Distribution of PEMAX. Top plot is before rescaling of PM Tsbottom plot after
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Appendix B: Direct | ntegration Code Fragment:

While MilagroEvent2( &eventData, &dataCon, &coords){
upDateSKY(RA, DEC, OBS);
sidereal_time = sider(julianDate, time);
HA = sidereal_time - RA,;
upDateSKY(HA,DEC,EFF);
is = I1S(sidereal_time);
NSIDER[is]++;
If (time - tZero >= 2 HOURS){
upDateBKG(NSIDER, EFF, EXP);

tZero = time;
bzero(EFF);
} }
void upDateSKY (float alpha, float dec, float array[][DECBINS]){
ir =IR(alpha);
id = ID(dec);
array[ir][id]++;
return;
}

void upDateBKG(int NSIDER]], float EFF[][DECBINS], float EXP[][DECBINS]){
for(is = 0; is < RABINS; is++){
evts = NSIDERis];
for(ir=0; ir<RABINS; ir++){
ih = (is - ir);
for(id=0; id<DECBINS; id++){
EXPIir][id] += ((float) evts*EFF[ih][id]);
}

}
}
return;

}

In the code fragment IR, 1D, and IS are macros that define/determine the binning used.
Every 2-hours the EFF map is convoluted with the array NSIDER to determine the
expected background (EXP) (thisis the purpose of the upDateBK G function). The
resulting EXP and OBS arrays may be examined over any timeinterval of interest to
search for an excess.




